六年级数学概念整理

合集下载

小学六年级数学知识点汇总

小学六年级数学知识点汇总

1.数的认识与构成-自然数的概念:从1开始的整数序列。

-整数的概念:包括自然数、0和负整数。

-分数的概念:表示一个数被另一个数等分的形式。

-有理数的概念:包括整数和分数的集合。

-实数的概念:包括有理数和无理数的集合。

2.计算方法-加法:加法的交换律和结合律,进位法和退位法。

-减法:减法的巧算法和退位法。

-乘法:乘法的交换律和结合律,进位法和退位法。

-除法:除法的整数除法和余数除法。

3.分数运算-分数的加法和减法:找到两个分数的公共分母,然后进行加法或减法运算。

-分数的乘法和除法:分子相乘,分母相乘;除法转化为乘法,取倒数计算。

-分数的化简:分子和分母同时除以最大公因数进行化简。

4.单位换算-长度单位换算:厘米、分米、米、千米。

-容量单位换算:毫升、升、立方米。

-质量单位换算:克、千克、吨。

5.图形与几何-平面图形的认识:三角形、正方形、长方形、梯形、圆等。

-图形的特点和性质:边数、顶点数、对边、对角线等。

-判断图形相似:对应角相等、对应边成比例。

-判断图形的对称性:线对称和中心对称。

6.数据统计-线图和柱图:通过线条或柱形来表示数据的数量。

-折线图和散点图:通过连接线和散点来表示数据的变化趋势。

-数据的分析和比较:寻找规律,进行数据的对比。

7.时间与运算-时间的概念:秒、分钟、小时、天等单位。

-时间的运算:时间的加减法运算。

8.逻辑与推理-推理和问题解决:通过观察和思考,解决问题和推理。

-条件的判断和运用:通过条件来判断和推导结论。

9.适当扩展的知识点-负数的概念和运算:负数的加减乘除运算。

-小数的概念和运算:小数的加减乘除运算。

-比例与比例关系:找出两个量的比例关系。

-倍数与约数:找出数的倍数和约数。

-分形图形:通过重复图形来构成新图形。

以上是小学六年级数学知识点的一个汇总,希望对你的学习有帮助!。

人教版,六年级数学上册,概念与公式总结与归纳

人教版,六年级数学上册,概念与公式总结与归纳

人教版,六年级数学上册,概念与公式总
结与归纳
概念与公式总结与归纳:
1. 数的概念:
- 数是人们用来表示事物数量的符号,包括自然数、整数、分数、小数、负数等。

- 自然数由0和比0大的正整数组成,用N表示。

- 整数由正整数、0和负整数组成,用Z表示。

- 分数由整数和真分数组成,用Q表示。

- 小数是不能化成整数的有理数或无理数,用R表示。

2. 四则运算:
- 加法:两个数相加,结果为和。

- 减法:一个数减去另一个数,结果为差。

- 乘法:两个数相乘,结果为积。

- 除法:一个数除以另一个数,结果为商。

3. 数的大小比较:
- 两个数的大小比较可以使用不等号进行表示。

- 大于:用>表示。

- 小于:用<表示。

- 大于等于:用≥表示。

- 小于等于:用≤表示。

4. 使用等式:
- 等式是指两个数或两个代数式之间相等的关系。

- 等号的左右两边的值相等,可以用等号表示。

- 可以进行等式的运算、变形和求解。

5. 坐标系与图形:
- 坐标系是由两条相互垂直的直线组成的,用于表示点在平面
上的位置。

- x轴和y轴是两条相互垂直的直线,它们交叉的点称为原点O,表示为(0, 0)。

- 横坐标表示点在x轴上的位置,纵坐标表示点在y轴上的位置。

- 平面上的点可以用坐标来表示。

以上是人教版六年级数学上册的概念与公式总结与归纳。

希望对你的学习有所帮助!。

六年级数学(下册)概念汇总

六年级数学(下册)概念汇总

一、负数1.正数负数的意义:生活中具有相反意义的量可以用正数和负数表示。

2.正数和负数的读写方法:写正数,一般在数字前面加一个正号“+”,也可以省略不写;读正数,有正号的读正几,没有正号的直接读数。

写负数,在数字前面加负号“-”;读负数,读作负几。

3.认识数轴:在数轴上,0左边的数是负数,右边的数是正数。

二、百分数1.折扣:几折就表示十分之几,也就是现价是原价的百分之几十。

商品现价=原价×折扣2.成数:成数表示一个数是另一个数的十分之几,通称“几成”3.税率:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率。

应纳税额=总价×税率4.利率:利息与本金的比率叫做利率。

利息=本金×利率×存期5.解决生活中的实际问题:应用百分数知识解决生活中的实际问题。

三、圆柱与圆锥1.圆柱特征:底面:两个底面完全相同,都是圆形。

侧面:沿高剪开,展开后是一个长方形或正方形。

高:两个底面之间的距离,有无数条。

2.圆锥特征:底面:一个底面,是圆形。

高:顶点到底面圆心的距离,只有一条。

3.面积:(1)底面积=圆周率×半径的平方,字母公式:S=πr ²。

(2)侧面积=底面周长×高,字母公式:Sπdh。

(3)表面积=侧面积+底面积×24.体积:物体所占空间的大小。

底面积×高,字母公式:V=Sh或V=πr ²h。

底面积×高×3/1,字母公式:V=3/1Sh或V3/1πr ²h。

四、比例1.比例的意义和性质:(1)表示两个比相等的式子叫做比例。

(2)在比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质。

2.正比例和反比例:(1)用x和y分别表示两种相关联的量,用k表示它们的比值(一定),正比例关系可可以用这样的式子表示:x/y=k。

(2)用x和y分别表示两种相关联的量,用k表示它们的积(一定),反比例关系可以用这样式子表示:xy=k。

六年级数学定义和公式

六年级数学定义和公式

六年级数学定义和公式六年级是小学的最后一年,在这一年里,学生将会学习到更多高级的数学概念。

以下是六年级数学中一些主要的概念和公式:分数1. 定义:分数是表示部分与整体关系的数。

形式为 $\frac{p}{q}$,其中$p$ 是分子,$q$ 是分母。

2. 性质:基本性质:分数的分子和分母同时乘以或除以同一个非零数,分数的大小不变。

约分:简化分数的过程。

通分:将两个或多个分数化为同分母。

3. 运算:加法减法乘法除法小数1. 定义:小数是一种十进制表示的数,由整数部分、小数点和小数部分组成。

2. 性质:小数的末尾添上0或去掉0,小数的大小不变,但计数单位会改变。

3. 运算:加法减法乘法除法百分数1. 定义:百分数是一种特殊的分数,表示部分与整体的比例。

形式为$\%$ 或 $\frac{p}{100}$。

2. 性质:与分数相似,百分数也可以进行加、减、乘、除运算。

负数1. 定义:负数是小于0的数。

在数轴上,负数位于0的左侧。

2. 性质:负数与正数、0都有明确的界限和关系。

3. 运算:负数可以进行加、减、乘、除运算。

几何学基础1. 定义:几何学是研究形状、大小、图形的属性以及它们之间关系的科学。

2. 基础概念:点、线、面、角、多边形等。

3. 定理:如两点确定一条直线、内角和定理等。

4. 图形面积和体积公式:如矩形、三角形、圆的面积和体积公式等。

代数基础1. 定义:代数是研究数学中各种代数结构的科学。

2. 基础概念:变量、方程式、不等式等。

3. 运算律:加法交换律、结合律,乘法交换律、结合律、分配律等。

4. 一元一次方程式解法:通过移项、合并同类项等方法解方程式。

小学六年级数学公式与概念大全

小学六年级数学公式与概念大全

这篇关于⼩学六年级数学公式与概念⼤全,是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助!第⼀部分: 概念1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同⼀个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×56、除法的性质:在除法⾥,被除数和除数同时扩⼤(或缩⼩)相同的倍数,商不变。

O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前⾯的相乘,零不参加运算,有⼏个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式⼦叫做等式。

等式的基本性质:等式两边同时乘以(或除以)⼀个相同的数,等式仍然成⽴。

8、什么叫⽅程式?答:含有未知数的等式叫⽅程式。

9、什么叫⼀元⼀次⽅程式?答:含有⼀个未知数,并且未知数的次数是⼀次的等式叫做⼀元⼀次⽅程式。

学会⼀元⼀次⽅程式的例法及计算。

即例出代有χ的算式并计算。

10、分数:把单位“1”平均分成若⼲份,表⽰这样的⼀份或⼏分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分⼦相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12、分数⼤⼩的⽐较:同分母的分数相⽐较,分⼦⼤的⼤,分⼦⼩的⼩。

异分母的分数相⽐较,先通分然后再⽐较;若分⼦相同,分母⼤的反⽽⼩。

13、分数乘整数,⽤分数的分⼦和整数相乘的积作分⼦,分母不变。

14、分数乘分数,⽤分⼦相乘的积作分⼦,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分⼦⽐分母⼩的分数叫做真分数。

六年级数学知识点归纳总结

六年级数学知识点归纳总结

六年级数学知识点归纳总结六年级数学是小学数学的最后一个阶段,也是为上初中做准备的关键阶段。

六年级数学的内容主要包括:整数、分数、小数、计算、比例与比例、比较大小、面积与体积、图形的运动等。

下面是对六年级数学知识点的归纳总结。

一、整数1. 整数的概念和表示方法:自然数、零、负整数、正整数的概念,用数轴表示整数的大小关系。

2. 整数的加法和减法:同号相加、异号相减的规律,计算整数的加减等式和不等式。

3. 整数的乘法和除法:正负数相乘、相除的法则,求整数的商和余数,计算整数的乘除等式和不等式。

二、分数1. 分数的概念和表示方法:分子、分母的概念,用数线表示分数的大小关系。

2. 分数的加法和减法:同分母分数的加减法,分数的加减等式和比较大小。

3. 分数的乘法和除法:分数的乘法和除法的法则,计算分数的乘除等式和比较大小。

4. 分数的化简和约分:分数的约分法则,化简分数的方法。

三、小数1. 小数的概念和表示方法:小数点的意义,用数线表示小数的大小关系。

2. 小数和分数的关系:小数和分数的转换,小数和分数的加减乘除。

3. 小数的四则运算:小数的加法、减法、乘法、除法,小数的运算法则。

四、计算1. 快速计算的技巧:心算口诀和技巧,加减乘除的口诀。

2. 算式的变形和计算规则:算式的变形法则,计算顺序的规则。

3. 逻辑推理和计算题:通过逻辑推理解决计算题,通过计算解决逻辑题。

五、比例与比例1. 比例的概念和表示方法:比例的概念,比例的表示方法。

2. 比例中的四则运算:比例中的加减乘除,比例的运算法则。

3. 比例问题的应用:比例问题的解决方法,比例问题的应用。

六、比较大小1. 整数、分数、小数的比较大小:整数、分数、小数的大小比较方法。

2. 含有整数、分数、小数的混合运算:比较大小后进行混合运算的方法。

七、面积和体积1. 面积的概念和计算:面积的概念,不规则图形的面积计算。

2. 体积的概念和计算:体积的概念,长方体、正方体的体积计算。

六年级数学概念(630份)

六年级数学概念(630份)

一、概念1、分数乘整数的意义与整数乘法的意义相同:表示几个相同加数的和是多少。

如13×6表示6个13相加的和是多少。

一个数乘分数的意义:表示一个数的几分之几是多少。

如6×13表示6的13是多少。

2、分数乘整数的方法:分母不变,整数与分子的乘积作分子,能约分的要约分。

分数乘分数的方法:分子乘分子,分母乘分母,能约分的先约分,再相乘。

一个数乘大于1的数,积比原来的数大;一个数乘小于1的数,积比原来的数小。

3、分数除法和整数除法的意义相同:已知两个数的积和其中一个因数,求另一个因数是多少。

如:8÷13表示已知两个因数的积是8,其中一个因数是13,求另一个因数是多少。

分数除法的方法: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。

一个数除以大于1的数,商比原来的数小;一个数除以小于1的数,商比原来的数大。

4、乘积是1的两个数互为倒数。

1的倒数是1,0没有倒数。

5、比的意义:两个数相除又叫做两个数的比。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

比的后项不能是零。

a÷b = a:b = ab(b≠0)6、比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

7、连接圆心和圆上任意一点的线段叫做半径,用r 表示;通过圆心并且两端都在圆上的线段叫做直径,用 d 表示。

8、圆的周长与它的直径的比值叫做圆周率。

将一个圆平均分成若干等份,可以拼成一个近似的长方形,长方形的长相当于圆周长的一半(r),宽相当于圆的半径(πr )。

9. 一个圆的半径扩大a倍,直径也扩大a倍,周长也扩大a倍,面积扩大a2倍。

10、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。

正方形有4条对称轴,长方形有2条对称轴。

等腰三角形有1条对称轴,等边三角形有3条对称轴。

小学六年级数学知识点大全

小学六年级数学知识点大全

一、基础知识1.数的认识:整数、正数、负数、零的概念2.数的读法和写法3.顺序比较与排序4.数的正序、逆序、顺序相等5.十进制的认识与运算二、基本运算1.加法的概念与运算法则2.减法的概念与运算法则3.乘法的概念与运算法则4.除法的概念与运算法则5.加减法、乘除法的混合运算6.乘方与开方三、数的性质与运算1.数的位数与数位的认识2.偶数与奇数的判断3.求一个数的相反数4.数与数的加减法性质5.乘法的交换律、结合律和分配律6.乘法的一些特殊性质7.除法的性质与应用四、单位换算1. 长度的单位换算(mm、cm、dm、m、km)2.容量的单位换算(mL、L)3. 质量的单位换算(g、kg、t)五、数的应用1.问题解决能力的训练2.两步及以上的问题解决3.阶梯问题的解决4.包含数学思想的问题解决六、四则混合运算1.四则混合运算的顺序2.分数的加减乘除法七、图形的认识与性质1.直线、线段与射线的认识2.角的认识与性质3.三角形、四边形及其分类4.圆的分类与计算5.长方形、正方形与平行四边形的性质6.梯形与矩形的性质八、计量单位1. 长度的计量单位(mm、cm、dm、m、km)2.容量的计量单位(mL、L)3. 质量的计量单位(g、kg、t)4.时间的计量单位(秒、分钟、小时、天)九、简单方程1.简单方程的解法2.利用方程式解决问题3.推理解决方程问题十、时钟与时间1.时钟的读法与写法2.时间的计算与比较3.年、月、星期的认识4.时间的应用问题十一、小数的认识与运算1.小数的读法与写法2.小数与分数的转换3.小数的比较与排序4.小数的四则运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章数和数的运算1. 整数:自然数都是整数,整数包括自然数。

2. 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4 .数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5.数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a 能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

6.一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

7.一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

8.个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

9.能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。

自然数按能否被2 整除的特征可分为奇数和偶数。

10.一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

11.一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。

12. 1不是质数也不是合数,自然数除了1外,不是质数就是合数。

如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

13.每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数28=2×2×714.几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。

其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

15.公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

16.如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。

如果两个数是互质数,它们的最大公约数就是1。

17.几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

18.如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

19.小数的分类纯小数:整数部分是零的小数,叫做纯小数。

例如:0.25 、0.368 都是纯小数。

带小数:整数部分不是零的小数,叫做带小数。

例如: 3.25 、 5.26 都是带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。

例如:41.7 、25.3 、0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。

例如:4.33 …… 3.1415926 ……20.无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

例如:∏21.循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。

例如:3.555 …… 0.0333 …… 12.109109 ……22.一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。

例如:3.99 ……的循环节是“ 9 ” ,0.5454 ……的循环节是“ 54 ” 。

纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。

例如:3.111 …… 0.5656 ……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。

3.1222 ……0.03333 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。

如果循环节只有一个数字,就只在它的上面点一个点。

例如: 3.777 …… 简写作0.5302302 …… 简写作。

23.分数的意义 :把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

24.分数的分类真分数:分子比分母小的分数叫做真分数。

真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

25 .约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

26.表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

百分数通常用"%"来表示。

百分号是表示百分数的符号。

27. 整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

28.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

29.一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

(1)准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。

(2)近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如:1302490015 省略亿后面的尾数是13 亿。

四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。

例如:省略345900 万后面的尾数约是35 万。

省略4725097420 亿后面的尾数约是47 亿。

30. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。

分数的分母和分子都不相同的,先通分,再比较两个数的大小。

31. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

分数化成小数:用分母去除分子。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

32.一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

33.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

34.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

35. 成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。

36.商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

37.小数点位置的移动引起小数大小的变化(1) 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……(2)小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……38.把两个数合并成一个数的运算叫做加法。

已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

加法和减法互为逆运算。

求几个相同加数的和的简便运算叫做乘法。

已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

乘法和除法互为逆运算。

在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。

在除法里,0不能做除数。

因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

39. 加数+加数=和一个加数=和-另一个加数被减数-除数=差减数=被减数-差被减数=差+减数一个因数×一个因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数40.加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

相关文档
最新文档