钢平台柱肢的强度与稳定性验算

合集下载

支撑系统强度及稳定性验算

支撑系统强度及稳定性验算

支撑系统强度及稳定性验算按《GB50017-2003钢结构设计规范》5.2.2-1条,平面内压弯构件稳定性按下式计算:f N N W M A N Ex x x xmx x ≤-+)8.01(`1γβϕ一、车站标准段钢横撑强度与稳定性验算1、根据钢支撑轴力计算,对轴力较大的第三道横撑进行验算,其轴力设计值为: 32368()N KN =2、稳定系数计算0 1.026.326.3()x x l u l m ==⨯=4444341() 3.14(0.6090.577) 1.3110()6464d d I m π--⨯-===⨯(取φ609,壁厚t=16mm 验算) 2222221()3.14(0.6090.577) 2.9810()44d d A m π--⨯-===⨯; 0.21x i ==; 0.1=mx β; 15.1=x γ; 26.3125.240.21x λ==119.79λ= 按b 类查表,得:0.44x φ=3、计算x W 1 333122 1.3110 4.310()0.609x I W m d --⨯⨯===⨯ 4、计算`Ex N 2282`223.14 2.110 2.98104154.91.1 1.1116.19Exx EA N πλ-⨯⨯⨯⨯===⨯ 5、计算构件段范围内最大弯矩x M(1)自重产生的弯矩计算221.352.981078.526.3273.05()8z M KN m -⨯⨯⨯⨯==⋅ (2)钢横撑附加弯矩计算26.30.02630.021000i e ==>,取0.0263i e = 323680.026362.28()f i M N e KN m =⨯=⨯=⋅故,273.0562.28335.33()x z f M M M KN m =+=+=⋅6、强度及稳定性验算(1)强度验算212236879463.1(/)2.9810N KN m A σ-===⨯ 223335.3367811.9(/)1.15 4.310KN m σ-==⨯⨯ 2212147275.0(/)[]215000(/)KN m f KN m σσσ=+=<=,满足规范要求。

钢结构连接、钢结构强度稳定性、钢筋支架、格构柱计算

钢结构连接、钢结构强度稳定性、钢筋支架、格构柱计算

钢结构连接、钢结构强度稳定性、钢筋支架、格构柱计算◆钢结构连接计算一、连接件类别不焊透的对接焊缝二、计算公式1.在通过焊缝形心的拉力,压力或剪力作用下的焊缝强度按下式计算:2.在其它力或各种综合力作用下,σf,τf共同作用处。

式中N──-构件轴心拉力或轴心压力,取 N=100N;lw──对接焊缝或角焊缝的计算长度,取lw=50mm;γ─-作用力与焊缝方向的角度γ=45度;σf──按焊缝有效截面(helw)计算,垂直于焊缝长度方向的应力;hf──较小焊脚尺寸,取 hf=30mm;βt──正面角焊缝的强度设计值增大系数;取1;τf──按焊缝有效截面计算,沿焊缝长度方向的剪应力;Ffw──角焊缝的强度设计值。

α──斜角角焊缝两焊脚边的夹角或V形坡口角度;取α=100度。

s ──坡口根部至焊缝表面的最短距离,取 s=12mm;he──角焊缝的有效厚度,由于坡口类型为V形坡口,所以取he=s=12.000mm.三、计算结果1. 正应力:σf=N×sin(γ)/(lw×he)=100×sin(45)/(50×12.000)=0.118N/mm2;2. 剪应力:τf=N×cos(γ)/(lw×he)=100×cos(45)/(50×12.000)=0.118N/mm2;3. 综合应力:[(σf/βt)2+τf2]1/2=0.167N/mm2;结论:计算得出的综合应力0.167N/mm2≤对接焊缝的强度设计值ftw=10.000N/mm2,满足要求!◆钢结构强度稳定性计算一、构件受力类别:轴心受弯构件。

二、强度验算:1、受弯的实腹构件,其抗弯强度可按下式计算:Mx/γxWnx + My/γyWny ≤ f式中 Mx,My──绕x轴和y轴的弯矩,分别取100.800×106 N·mm,10.000×106 N·mm;γx, γy──对x轴和y轴的截面塑性发展系数,分别取 1.2,1.3;Wnx,Wny──对x轴和y轴的净截面抵抗矩,分别取 947000 mm3,85900 mm3;计算得:Mx/(γxWnx)+My/(γyWny)=100.800×106/(1.2×947000)+10.000×106/(1.3×85900)=178.251 N/mm2受弯的实腹构件抗弯强度=178.251 N/mm2 ≤抗弯强度设计值f=215N/mm2,满足要求!2、受弯的实腹构件,其抗剪强度可按下式计算:τmax = VS/Itw ≤ fv式中V──计算截面沿腹板平面作用的剪力,取V=10.300×103 N;S──计算剪力处以上毛截面对中和轴的面积矩,取 S= 947000mm3;I──毛截面惯性矩,取 I=189300000 mm4;tw──腹板厚度,取 tw=8 mm;计算得:τmax = VS/Itw=10.300×103×947000/(189300000×8)=6.441N/mm2受弯的实腹构件抗剪强度τmax =6.441N/mm2≤抗剪强度设计值fv = 175 N/mm2,满足要求!3、局部承压强度计算τc = φF/twlz ≤ f式中φ──集中荷载增大系数,取φ=3;F──集中荷载,对动力荷载应考虑的动力系数,取 F=0kN;tw──腹板厚度,取 tw=8 mm;lz──集中荷载在腹板计算高度上边缘的假定分布长度,取lz=100(mm);计算得:τc = φF/twlz =3×0×103/(8×100)=0.000N/mm2局部承压强度τc =0.000N/mm2≤承载力设计值f = 215 N/mm2,满足要求!4、在最大刚度主平面内受弯的构件,其整体稳定性按下式计算:Mx/φbWx ≤ f式中Mx──绕x轴的弯矩,取100.8×106 N·mm;φb──受弯构件的整体稳定性系数,取φb= 0.9;Wx──对x轴的毛截面抵抗矩Wx,取 947000 mm3;计算得:Mx/φbwx = 100.8×106/(0.9×947000)=118.268 N/mm2≤抗弯强度设计值f= 215 N/mm2,满足要求!5、在两个主平面受弯的工字形截面构件,其整体稳定性按下式计算:Mx/φbWx + My/γyWny ≤ f式中 Mx,My──绕x轴和y轴的弯矩,分别取100.8×106 N·mm,10×106 N·mm;φb──受弯构件的整体稳定性系数,取φb= 0.9;γy──对y轴的截面塑性发展系数,取 1.3;Wx,Wy──对x轴和y轴的毛截面抵抗矩,分别取 947000 mm3, 85900 mm3;Wny──对y轴的净截面抵抗矩,取 85900 mm3计算得:Mx/φbwx +My/ γyWny =100.8×106/(0.9×947000)+10×106/(1.3×85900)=207.818 N/mm2≤抗弯强度设计值f=215 N/mm2,满足要求!◆钢筋支架计算公式一、参数信息钢筋支架(马凳)应用于高层建筑中的大体积混凝土基础底板或者一些大型设备基础和高厚混凝土板等的上下层钢筋之间。

钢支撑(钢管)强度及稳定性验算

钢支撑(钢管)强度及稳定性验算

b类 0.965 6.1E+04 0.936 1.0000 176.46 满足
+α3λy'+λy'2)2-4λy'2]1/2}/2λy'2 α1λy'2 N/ψyA+0.7Mx/W (N/mm2) f
4601.00 53.61 6300 6300 1.0 4 29807.43 4305986.88 30.0 30.0 30.0
验算 d/t ≤ 100*(235/fy) 刚度验算 Max[λx,λy]<[λ] 验算 N/A+M/γW ≤ f
满足 满足 满足
构件所属的截面类型 系数α2 欧拉临界力NEx=π2EA/(1.1*λx2 )(KN) +α3λx'+λx'2)2-4λx'2]1/2}/2λx'2 α1λx'2 =1.64-0.23*(d/t)1/4 (d/t>60时) ) (N/mm2) Ex) ≤ φf
基本参数 钢管外径d (mm) 管壁厚度t (mm) 2 钢材抗压强度设计值f (N/mm ) 钢材屈服强度值fy (N/mm2) 2 钢材弹性模量E (N/mm ) 自重w(kN/m) 609 16.0 215 235 206000.00 2.34

钢管内径d1=d-2t (mm) 577 4 4 4 1311173005.04 截面惯性矩I=π*(d -d1 )/64 (mm ) 1/2 209.73 截面回转半径i=(I/A) (mm) 塑性发展系数γ 1.15 Me(偏心矩) 28.9863 M(计入偏心矩) 53.61162188 M0(未计入偏心矩)(=1/8 x w l2)(kNm) 24.62532188 局部稳定性验算 径厚比 刚度验算 构件容许长细比[λ] 150 强度验算 165.18 N/A+M/γW (N/mm2) 稳定性验算 ⒈弯矩平面内 0.323 λx'=(fy/E)1/2*λx/π 系数α1 0.650 系数α3 0.300 当λx'>0.215时,稳定系数ψx={(α2+α3λx'+λx'2)-[(α2+ 当λx'≤0.215时,稳定系数ψx=1-α 局部稳定系数φ=1 (d/t≤60时);φ=1.64-0.23*(d/t) N/ψxA+βmMx/γW(1-0.8N/NEx) (N/mm 验算 N/ψxA+βmMx/γW(1-0.8N/NEx ⒉弯矩平面外 不需验算 λy'=(fy/E)1/2*λy/π 当λy'〉0.215时,稳定系数ψy={(α2+α3λy'+λy'2)-[(α2+ 当λy'≤0.215时,稳定系数ψy=1-α ψy 1.15 验算 N/ψyA+0.7Mx/W ≤ φf

钢支撑(钢管)强度及稳定性验算

钢支撑(钢管)强度及稳定性验算
计算长度l0x (mm) 计算长度l0y (mm) 等效弯矩系数β m 支撑面集中荷载p(kN)
截面面积A=π *(d2-d12)/4 (mm2) 截面抵抗矩W=2I/d (mm3) 构件长细比λ x=l0x/i 构件长细比λ y=l0y/i l x sqrt(fy/235)
验算 d/t ≤ 100*(235/fy)
基本参数
钢管外径d (mm) 管壁厚度t (mm) 钢材抗压强度设计值f (N/mm2) 钢材屈服强度值fy (N/mm2) 钢材弹性模量E (N/mm2) 自重w(kN/m)
273 14.0 215 235 206000.00 110
钢管内径d1=d-2t (mm)
截面惯性矩I=π *(d4-d14)/64 (mm4) 截面回转半径i=(I/A)1/2 (mm)
245 95797528.05
91.70
塑性发展系数γ
1.15
Me(偏心矩)
0
M(计入偏心矩)
0
M0(未计入偏心矩)(=1/8 x w l2)(kNm)
0
局部稳定性验算
径厚比
验算 d/t ≤ 100*(235/f
刚度验算
构件容许长细比[λ ]
150
强度验算
N/A+M/γ W (N/mm2)
60.57
当λ y'〉0.215时,稳定系数ψ y={(α 2+α 3λ y'+λ y'2)-[(α 2+α 3λ y'+λ y'2)2-4λ y'2]1
当λ y'≤0.215时,稳定系数ψ y=1-α 1λ y'2
ψy
1.15
验算 N/ψ yA+0.7Mx/W ≤ φ f

钢结构柱稳定性分析与设计

钢结构柱稳定性分析与设计

钢结构柱稳定性分析与设计钢结构的应用已经广泛应用于工业、民用、桥梁等各个领域。

其中,钢结构柱作为承载重要纵向荷载的主要构件之一,在结构设计中起着至关重要的作用。

本文将对钢结构柱的稳定性进行分析与设计,以确保其在使用过程中的安全可靠性。

1. 稳定性分析在进行钢结构柱的稳定性分析之前,首先需要了解柱的受力情况和设计参数。

柱的受力主要包括压力、弯矩和轴向力三个方面。

同时,还需要确定柱的几何参数,如截面形状、截面尺寸、材料等。

基于这些基本参数,可以进行稳定性分析。

1.1 基本理论:稳定系数与屈曲强度稳定性分析的核心理论是稳定系数和屈曲强度。

稳定系数是指柱在受力情况下的稳定性能,通常以稳定性安全系数来衡量,数值一般大于1。

屈曲强度是指柱在受力超过一定临界值时,发生屈曲破坏的承载能力。

1.2 欧拉公式欧拉公式是钢结构柱稳定性分析中最常用的公式之一,公式表达如下:Pcr = (π² × E × I) / L²其中,Pcr为柱的临界压力,E为钢材的弹性模量,I为截面二阶矩,L为柱的长度。

1.3 弯扭和细长柱对于弯扭和细长钢结构柱,需要引入额外的参数进行分析。

弯扭柱的主要特点是在受力过程中不仅产生弯曲,还会发生扭转变形。

细长柱则是指其长径比较大,易产生扭转屈曲失稳。

针对这两种特殊情况,需要进行详细的计算和分析。

2. 柱的设计在进行钢结构柱的设计时,需要根据结构的实际需求和使用条件,综合考虑稳定性、经济性和施工性等因素。

2.1 确定截面形状和尺寸根据实际情况和设计要求,选择合适的截面形状和尺寸。

常见的截面形状包括矩形、圆形、H型等,不同形状有其各自的优缺点。

同时,根据受力情况和设计参数,确定截面的尺寸。

2.2 材料选择钢结构柱的材料选择与整个结构的设计息息相关。

常见的钢材种类包括普通碳素钢、低合金高强度钢等,根据实际的使用情况和设计要求,选用合适的材料。

2.3 考虑稳定性安全系数在设计过程中,需要合理考虑稳定性安全系数的取值。

钢结构工程案例分析(一)-邱鹤年

钢结构工程案例分析(一)-邱鹤年

4 百家论坛Building StructureWe learn we go钢结构工程案例分析(一)邱鹤年/中冶京诚工程技术有限公司1 重级工作制吊车梁的抗疲劳要求吊车梁,尤其是行驶重级工作制吊车的吊车梁,除设计计算、选材方面有验算疲劳的专门要求外,在构造、对施工要求和注意方面,也有很多事项必须向施工、生产单位说明。

首先,属于设计方面必须交代的,如吊车梁的选材,应根据当地日平均最低温度和吊车工作循环次数来确定钢材牌号及质量等级,并选定相应的焊接材料具体型号,以及所依据的标准、名称、代号、年号。

对焊缝具体要求也应明确,不宜选用部分熔合的对接焊缝用于垂直于受力方向的连接,角焊缝表面应做成直线形或凹形。

焊脚尺寸的比例:对正面角焊缝宜为1:1.5(长边顺内力方向);对侧面角焊缝可为1:1。

对翼缘板或腹板的焊接拼接应采用加引弧板和引出板的焊透对接焊缝,引弧板割去处应打磨平整。

支座加劲肋上、下端及中间横向加劲肋上端均应刨平,顶紧翼缘。

中间横向加劲肋下端不得与受拉翼缘相焊,在距受拉翼缘50~100mm 处断开,且其与腹板的连接焊缝不宜在下端起落弧。

受拉翼缘与支撑不宜焊接。

重级工作制吊车梁的受拉翼缘板边缘宜为轧制边或自动气割边,当用手工气割或剪切机切割时应沿全长刨边。

吊车梁的受拉部位不得焊接悬挂设备的零件,并不宜在该处打火或焊接夹具。

当采用焊接长轨时,压板与钢轨间应留约1mm 空隙,以利纵向伸缩。

过去曾发生过在吊车梁腹板上焊摩电滑线支架、焊小型吊具,随意引弧打火,引起疲劳裂缝损坏等事故。

也有个别工艺管线专业对小管道、小零件没有详细节点交代,由现场处理,出现不当焊接,造成不良后果。

必要的小焊件,可焊在加劲肋上。

2 重型平台柱头的剪切破损冶金工厂操作平台为防止冲击,在结构层上铺砂垫层,再砌耐火砖,有的还铺铸钢板防护。

平台上通行火车、修炉机、载重车及堆料等负荷,有时还有冲击、碰撞、高温等异常作用,平台结构常有破损情况出现,现在就柱顶承压及抗剪问题给出算例分析。

钢支撑(钢管)强度及稳定性验算

钢支撑(钢管)强度及稳定性验算

验算 d/t ≤ 100*(235/fy) 刚度验算 Max[λ x,λ y]<[λ ] 验算 N/A+M/γ W ≤ f
满足 满足 满足
构件所属的截面类型 系数α 2 欧拉临界力NEx=π 2EA/(1.1*λ 2 2 2 2 1/2 2 x' )-[(α 2+α 3λ x'+λ x' ) -4λ x' ] }/2λ x' 系数ψ x=1-α 1λ x'2 =1.64-0.23*(d/t)1/4 (d/t>60时) .8N/NEx) (N/mm2) (1-0.8N/NEx) ≤ φ f
向钢斜撑计算
支撑轴心压力N (KN) 最大弯矩Mx (KN· m) 计算长度l0x (mm) 计算长度l0y (mm) 等效弯矩系数β m 支撑面集中荷载p(kN) 截面面积A=π *(d2-d12)/4 (mm2) 截面抵抗矩W=2I/d (mm3) 构件长细比λ x=l0x/i 构件长细比λ y=l0y/i l x sqrt(fy/235) 2034.93 41.78 6800 6800 1.0 4 24328.49 2852661.83 39.7 39.7 58.3
2 x
)(KN)
b类 0.965 2.9E+04 0.865 1.0000 1/2 2 y' )-[(α 2+α 3λ y'+λ y' ) -4λ y' ] }/2λ y' 系数ψ y=1-α 1λ y'2 N/ψ yA+0.7Mx/W (N/mm2) Mx/W ≤ φ f
竖向钢斜撑计算
基本参数 钢管外径d (mm) 管壁厚度t (mm) 钢材抗压强度设计值f (N/mm2) 钢材屈服强度值fy (N/mm2) 钢材弹性模量E (N/mm2) 自重w(kN/m) 500 16.0 300 345 206000.00 2.34

钢支撑(H型钢)强度及稳定性验算

钢支撑(H型钢)强度及稳定性验算
) 钢梁型号 820.40 400x400x13x21 (mm) 最大弯矩Mx (KN· m) 25.48 2 计算长度l0x (mm) 215 8000 钢材抗压强度设计值f (N/mm ) 2 计算长度 l (mm) 235 8000 钢材屈服强度值fy (N/mm ) 0y 2 等效弯矩系数β m 206000.00 1.0 钢材弹性模量E (N/mm ) 自重w(kN/m) 1.72 支撑面集中荷载p(kN) 0 4 666900000.00 截面抵抗矩Wx (mm3) 3340000.00 截面惯性矩Ix (mm ) 2 截面回转半径ix (mm) 175 21950.00 截面面积(mm ) 4 3 224000000.00 1120000.00 截面惯性矩Iy (mm ) 截面抵抗矩Wy (mm ) 构件长细比λ x=l0x/i x 截面回转半径iy (mm) 101.00 45.7 构件长细比λ y=l0y/iy 塑性发展系数γ 1.20 79.2 Me(偏心矩) l x sqrt(fy/235) 6.5632 45.7 M(计入偏心矩) 25.4832 M0(未计入偏心矩)(=1/8 x w l2)(kNm) 18.92 验算ho/tw ≤( 25+0.5λx)*(235/fy) 局部稳定性验算: 腹板(ho/tw) 验算b/t ≤ (10+0.1λx)*(235/fy) 翼缘(b/t) 满足 刚度验算 构件容许长细比[λ ] 刚度验算 Max[λ x,λ y]<[λ ] 200 满足 强度验算 验算 N/A+M/γ W ≤ f 56.34 满足 N/A+M/γ W (N/mm2) 稳定性验算 ⒈弯矩平面内 1/2 0.491 构件所属的截面类型 a类 λ x'=(fy/E) *λ x/π 系数α 1 系数α 2 0.410 0.986 2 2 系数α 3 0.152 1.9E+04 欧拉临界力NEx=π EA/(1.1*λ x )(KN) 2 2 2 2 1/2 2 0.927 当λ x'>0.215时,稳定系数ψ x={(α 2+α 3λ x'+λ x' )-[(α 2+α 3λ x'+λ x' ) -4λ x' ] }/2λ x' 2 当λ x'≤0.215时,稳定系数ψ x=1-α 1λ x' N/ψ xA+β mMx/γ W(1-0.8N/NEx) (N/mm2) 验算 N/ψ xA+β mMx/γ W(1-0.8N/NEx) ≤ f ⒉弯矩平面外 需要验算 λ y'=(fy/E)1/2*λ y/π 当λ y'〉0.215时,稳定系数ψ y={(α 2+α 3λ y'+λ y'2)-[(α 2+α 3λ y'+λ y'2)2-4λ y'2]1/2}/2λ y'2 当λ y'≤0.215时,稳定系数ψ y=1-α 1λ y'2 ψy 1.15 N/ψ yA+0.7Mx/W (N/mm2) 验算 N/ψ yA+0.7Mx/W ≤ f 59.92 满足 0.852 0.788 48.43 满足
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢平台柱肢的强度与稳定性验算
对应格构柱的轴压与压弯受力状态,稳定性验算也应分别按轴压构件的稳定性、压弯构件的稳定性两种情况验算,其中压弯构件的稳定性应考虑平面内和平面外两种稳定状态,稳定性验算根据文献2中的相关公式处理。

柱肢的强度与稳定性验算
进行柱肢强度与稳定性验算的主要目的是保证单肢不先于整体破坏。

在进行柱肢的强度与稳定性验算时,首先要确定作用的柱肢的内力,假设组合式钢中的格构柱的各柱肢截面均相等,则轴力和弯矩平均分布在相应柱肢上,以此确定单柱肢的内力大小;柱肢的强度与稳定性,根据柱肢的截面形状参照文献2中的单轴对称开口截面的相关公式验算;在稳定性验算时,柱肢的计算长度依据上文中关于计算长度的相关处理和计算。

此外,应注意保证格构柱的缀条或缀板应具有足够的强度与刚度,可一次性对某型产品进行定型设计和验算,并通过限值要求以确定选型时是否进行再验证,现行规范是通过保证缀材的受剪承载力来满足上述要求的,验算公式参见文献2,格构柱构件的局部稳定性是通过采用有效净截面来实现的,因此在稳定性验算过程中,必须要注意对构件有效截面的核算,为提高手工规划设计钢平台结构的有效性,对次重要构件多采用过量设计,并规定在大于柱片某设计承载时才重点验算部分结构件。

相关文档
最新文档