高中数学一年级复习练习题
高中一年级数学分式练习题

高中一年级数学分式练习题分式是数学中的一种常见形式,它在高中数学中占据重要地位。
通过练习分式题,可以帮助我们更好地理解和掌握分式的相关概念和运算方法。
本文将为大家提供一些高中一年级数学分式练习题,以帮助大家巩固所学知识。
练习题一:化简下列分式,并求出其值:1. $\frac{3}{4} \times \frac{2}{3}$2. $\frac{4}{5} \div \frac{2}{3}$3. $\frac{5}{6} + \frac{1}{2}$4. $\frac{2}{3} - \frac{1}{4}$5. $\frac{7}{8} \times \frac{3}{4}$练习题二:根据题意,填写下列分式中被省略的数:1. $\frac{3}{5} \times \frac{5}{9} = \frac{3}{5} \times\frac{\dots}{9}$2. $\frac{4}{7} \times \frac{3}{5} = \frac{4}{\dots} \times\frac{3}{5}$3. $\frac{2}{3} \div \frac{5}{7} = \frac{2}{3} \times \frac{\dots}{5}$4. $\frac{5}{9} \div \frac{2}{3} = \frac{5}{9} \times \frac{\dots}{3}$5. $\frac{7}{8} + \frac{1}{4} = \frac{7}{\dots} + \frac{1}{4}$练习题三:将下列分数转化为分式,并进行化简:1. $0.25$2. $0.6\overline{3}$3. $1.5$4. $2.0$5. $3.\overline{6}$练习题四:根据题意,写出下列分式的最简形式:1. $\frac{12}{18}$2. $\frac{24}{36}$3. $\frac{8}{12}$4. $\frac{40}{60}$5. $\frac{9}{15}$练习题五:判断下列分数是否为完全约分,并说明理由:1. $\frac{4}{6}$2. $\frac{5}{7}$3. $\frac{8}{16}$4. $\frac{9}{27}$5. $\frac{10}{20}$练习题六:解方程:1. $\frac{x}{3} = \frac{4}{6}$2. $\frac{2x}{5} = \frac{3}{15}$3. $\frac{3}{4}x + \frac{1}{2} = \frac{1}{3}$4. $\frac{2}{3}x - \frac{3}{4} = \frac{1}{2}$5. $\frac{5x}{6} = \frac{2}{3}$练习题七:求值:1. $(\frac{3}{4})^2$2. $(\frac{5}{6})^3$3. $\frac{(\frac{1}{2})^3}{(\frac{1}{4})^2}$4. $\frac{(\frac{7}{8})^2}{(\frac{1}{2})^3}$5. $\frac{(\frac{2}{3})^4}{(\frac{3}{4})}$以上是几道高中一年级数学分式的练习题,大家可以根据这些题目来进行练习,巩固所学知识。
高中一年级数学二次函数练习题

高中一年级数学二次函数练习题在高中一年级的数学学习中,二次函数是一个非常重要的知识点。
为了帮助同学们更好地掌握这部分内容,下面为大家准备了一些二次函数的练习题。
一、选择题1、函数\(y = x^2 2x + 3\)的对称轴是()A \(x = 1\)B \(x =-1\)C \(y\)轴D \(x = 2\)2、二次函数\(y = 2(x 3)^2 + 1\)的图像的顶点坐标是()A \((3, 1)\)B \((-3, 1)\)C \((3, -1)\)D \((-3, -1)\)3、已知二次函数\(y = ax^2 + bx + c\)的图像经过点\((0, 3)\),\((1, 0)\),\((2, 5)\),则这个二次函数的解析式是()A \(y = x^2 2x + 3\)B \(y = x^2 + 2x 3\)C \(y =x^2 + 2x + 3\) D \(y = x^2 2x + 3\)4、对于二次函数\(y =-2(x + 1)^2 3\),下列说法正确的是()A 图像开口向上B 图像的对称轴是\(x = 1\)C 当\(x <-1\)时,\(y\)随\(x\)的增大而增大D 图像的顶点坐标是\((1, -3)\)5、二次函数\(y = ax^2 + bx + c\)的图像如图所示,则下列结论正确的是()A \(a > 0\),\(b > 0\),\(c > 0\)B \(a < 0\),\(b < 0\),\(c > 0\)C \(a < 0\),\(b > 0\),\(c < 0\)D \(a < 0\),\(b < 0\),\(c < 0\)二、填空题1、二次函数\(y = 2x^2 4x + 5\)的最小值是_____。
2、抛物线\(y =-3(x 1)^2 + 5\)的开口方向是_____,顶点坐标是_____。
3、把二次函数\(y = x^2 2x 3\)化成\(y = a(x h)^2 + k\)的形式是_____。
2023学年上海市重点高中高一年级数学专项(基本不等式求最值)好题练习(附答案)

2023学年上海市重点高中高一年级数学专项(基本不等式求最值)好题练习题型一:基本不等式‐运用凑配法求最值一.选择题(共4小题)1.(2022秋•金水区校级期末)若a>2,则a+有( )A.最小值为4 B.最大值为4 C.最小值为0 D.最大值为02.(2019秋•徐汇区校级期中)设x>0,y>0,下列不等式中等号能成立的有( )①;②;③;④;A.1个 B.2个 C.3个 D.4个3.(2022秋•广州期末)已知x<0,则的最小值为( )A. B.4 C. D.4.(2022秋•九龙坡区校级期中)若a>﹣3,则的最小值为( )A.2 B.4 C.5 D.6二.填空题(共9小题)5.(2022春•甘州区校级月考)函数的最小值是. 6.(2022秋•徐汇区校级期中)若x>1,则的最小值为.7.(2018秋•浦东新区校级期中)已知正实数x,y满足x+y=1,则﹣的最小值是 8.(2016秋•黄浦区校级期末)若x>1,则的最小值为.9.(2017春•浦东新区校级期末)函数y=4x+(x>5)的最小值是.10.(2022秋•天津期末)若x>﹣1,则的最小值为.11.(2022秋•西城区校级月考)函数y=x+(x>﹣1)的最小值是,此时x的值.12.(2022秋•渝北区校级期中)已知正实数x,y满足,则的最小值为.13.(2022秋•北碚区校级月考)已知正实数a,b,c,满足a+b+c=1,则的最大值为.三.答案解答题(共5小题)14.(2022秋•秀峰区校级月考)(1)已知x>0,求函数的最小值;(2)已知,求的最大值.15.(2022秋•长春期中)(1)已知x>3,求的最小值;(2)已知x,y是正实数,且x+y=4,求:①的最小值;②的最小值.16.(2022秋•连云港月考)(1)已知a>0,b>0,且4a+b=1,求ab的最大值;(2)若正数x,y满足x+3y=5xy,求3x+4y的最小值;(3)已知x<,求f(x)=4x﹣2+的最大值.17.(2022秋•靖江市校级期中)(1)当x>3时,求函数的最小值;(2)若正数a,b满足2a+b=6,求的最小值.18.(2022秋•海沧区校级月考)如图,某人计划用篱笆围成一个一边靠墙(墙足够长)的矩形菜园,设菜园的长为x米,宽为y米.(1)若菜园面积为36平方米,则x,y为何值时,所用篱笆总长最小?(2)若使用的篱笆总长为30米,求+的最小值.题型二:基本不等式‐运用1的代换求最值一.选择题(共2小题)1.(2022秋•郫都区校级期中)已知0<x<4,则的最小值为( )A.2 B.3 C.4 D.82.(2022秋•北海期中)已知正实数a,b满足a+b=3,则的最小值是( )A. B.4 C.1 D.二.填空题(共13小题)3.(2022秋•黄浦区校级期中)若正数x,y满足=1,则x+y的最小值为.4.(2018秋•宝山区校级期末)已知x,y∈R+,且满足xy﹣x﹣2y=0,则x+y的最小值为. 5.(2022秋•金山区期末)设a、b为正数,且a+b=1,则的最小值为.6.(2018秋•浦东新区校级期中)已知正实数x,y满足x+y=1,则﹣的最小值是 7.(2022秋•庐江县期末)设a>0,b>2,且a+b=3,则的最小值是. 8.(2022秋•越秀区期末)函数y=a x﹣1+1(a>0,a≠1)的图象恒过定点P,则点P的坐标是;若点P在直线mx+ny=1(m>0,n>0上,则的最小值为.9.(2022秋•松江区校级期末)设x>0,y>1,且,若x+y的最小值为4,则实数a的值为.10.(2022秋•宝山区校级期中)a>0,b>0,a+2b=2,则的最小值为.11.(2022秋•朝阳区校级期末)若函数f(x)=﹣2x+3经过点(a,b),a>0且b>0,则的最小值为.12.(2022秋•南开区校级期末)已知a>1,b>2,a+b=5,则的最小值为. 13.(2023春•安徽月考)已知正数a,b满足ln=2a+2b﹣4,则的最小值为. 14.(2018秋•青浦区期末)设实数x>0,y<0,且,则2x+y的取值范围是. 15.(2022秋•和平区期末)已知函数,正实数a,b满足f(2a﹣4)+f(b)+2=0,则的最小值为.三.答案解答题(共9小题)16.(2022秋•桂林月考)已知a,b为正数,且满足a+b=1,求的最小值.17.(2021秋•滨海新区校级月考)已知a>0,b>0,满足a+9b=1.(1)求ab的最大值;(2)求的最小值.18.(2021秋•丹阳市校级月考)(1)已知,求函数的最小值;(2)已知a,b>0.则,求a+b的最小值.19.(2022秋•武进区校级月考)(1)设0<x<2,求y=的最大值;(2)已知a>0,b>0,若a+b=2,求的最小值.20.(2022秋•武清区校级月考)(1)已知x,y为正数,且=1,求x+y的最小值;(2)已知0<x<,求x(3﹣2x)的最大值.21.(2022秋•徐州期中)设函数f(x)=|x﹣a|.(1)当a=2时,解不等式f(x)≥7﹣|x﹣1|;(2)若f(x)≤2的解集为[﹣1,3],=a(m>0,n>0),求m+4n的最小值.22.(2021秋•泗阳县校级月考)已知命题P:两个正实数x,y满足,且x+2y>m2+2m恒成立,命题Q:“∃x∈{x|1≤x≤2},使x+2+m≥0”,若命题P,命题Q都为真命题,求实数m的取值范围.23.(2021秋•东海县期中)已知正实数x,y满足x+2y﹣xy=0.(1)求xy的最小值;(2)若关于x的方程有解,求实数m的取值范围.24.在“基本不等式”应用探究课中,甲和乙探讨了下面两个问题:(1)已知正实数x、y满足2x+y=1,求+的最小值.甲给出的解法:由1=2x+y≥2,得≤,所以+≥2=≥4,所以+的最小值为4.而乙却说甲的解法是错的,请你指出其中的问题,并给出正确的解法;(2)结合上述问题(1)的结构形式,试求函数y=+(0<x<)的最小值.参考答案题型一:基本不等式‐运用凑配法求最值一.选择题(共4小题)1.(2022秋•金水区校级期末)若a>2,则a+有( )A.最小值为4 B.最大值为4 C.最小值为0 D.最大值为0【详细分析】利用配凑法运用基本不等式求最值.【答案解答】解:a>2,则a+=a﹣2++2≥2+2=4,当且仅当a=3取等号,则a+有最小值4.故选:A.【名师点评】本题考查基本不等式的运用,属于基础题.2.(2019秋•徐汇区校级期中)设x>0,y>0,下列不等式中等号能成立的有( )①;②;③;④;A.1个 B.2个 C.3个 D.4个【详细分析】设x>0,y>0,x+,所以①成立,利用基本不等式可知②成立,=,不成立,,当x=y时成立,得出结论. 【答案解答】解:设x>0,y>0,x+,所以①成立,因为x>0,y>0,所以=,当且仅当x=y=1时取等号,故②成立,=,运用基本不等式不能取等号,此时x2+5=4,显然不成立,,当x=y时成立,故正确的有三个,故选:C.【名师点评】考查基本不等式的应用,注意一正二定三相等,条件是否成立,基础题.3.(2022秋•广州期末)已知x<0,则的最小值为( )A. B.4 C. D.【详细分析】利用配凑法求的最小值即可.【答案解答】解:=+(1﹣x)﹣1≥2﹣1=2﹣1,当且仅当=1﹣x,即x =1﹣时取等号,所以的最小值为2﹣1.故选:D.【名师点评】本题考查基本不等式的应用,属于基础题.4.(2022秋•九龙坡区校级期中)若a>﹣3,则的最小值为( )A.2 B.4 C.5 D.6【详细分析】把常数分离后即可利用基本不等式求最值.【答案解答】解:a>﹣3,=≥2=4,当且仅当a+3=,即a=﹣1取等号.故选:B.【名师点评】本题考查基本不等式的应用,属于基础题.二.填空题(共9小题)5.(2022春•甘州区校级月考)函数的最小值是2. 【详细分析】可以通过配凑法使得两式的积出现定值,再利用基本不等式求最小值.【答案解答】解:∵x>1,∴x﹣1>0.∴≥2=.当且仅当时,f(x)取得最小值2.故答案为:2.【名师点评】本题主要考查利用配凑法解决基本不等式的最值问题,属于基础题.6.(2022秋•徐汇区校级期中)若x>1,则的最小值为4.【详细分析】由题意可得:=x﹣1+1+=,然后结合基本不等式求解即可. 【答案解答】解:x>1,则=x﹣1+1+=,当且仅当,即x=2时取等号,故答案为:4.【名师点评】本题考查了基本不等式,属基础题.7.(2018秋•浦东新区校级期中)已知正实数x,y满足x+y=1,则﹣的最小值是 【详细分析】由已知分离﹣==,然后进行1的代换后利用基本不等式即可求解. 【答案解答】解:正实数x,y满足x+y=1,则﹣===()[x+(y+1)]﹣4=(5+)﹣4=当且仅当且x+y=1即y=,x=时取得最小值是/故答案为:【名师点评】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换8.(2016秋•黄浦区校级期末)若x>1,则的最小值为5.【详细分析】原式变形得,,由x>1得出x﹣1>0,从而,即得出最小值.【答案解答】解:=;∵x>1;∴x﹣1>0;∴;∴;∴最小值为5.故答案为:5.【名师点评】考查函数最值的定义及求法,以及基本不等式求最值的方法.9.(2017春•浦东新区校级期末)函数y=4x+(x>5)的最小值是32.【详细分析】先进行换元t=x﹣5,则t>0,可得y=4x+=4t++20,然后利用基本不等式即可求解. 【答案解答】解:由x>5可得x﹣5>0,令t=x﹣5,则t>0,则y=4x+=4t++20=32,当且仅当4t=即t=时取得最小值32,此时x=.故答案为:32【名师点评】本题主要考查了利用基本不等式求解函数的最值,属于基础试卷.10.(2022秋•天津期末)若x>﹣1,则的最小值为.【详细分析】利用配凑法求函数最值即可.【答案解答】解:若x>﹣1,则=2(x+1)+﹣2≥2﹣2=2﹣2,当且仅当2(x+1)=,x=﹣1,取等号.故答案为2﹣2.【名师点评】本题考查基本不等式的应用,属于基础题.11.(2022秋•西城区校级月考)函数y=x+(x>﹣1)的最小值是,此时x的值. 【详细分析】因为x>﹣1,即x+1>0,则,然后即可得解. 【答案解答】解:因为x>﹣1,即x+1>0,则=,当且仅当,即时取等号, 故答案为:;.【名师点评】本题考查了基本不等式,属基础题.12.(2022秋•渝北区校级期中)已知正实数x,y满足,则的最小值为. 【详细分析】将化为24﹣3x+4﹣3x=2y+1+y+1,利用函数y=2x+x为增函数,得到4﹣3x=y+1,即3x+y=3,在利用基本不等式求出结论的最小值即可.【答案解答】解:因为x,y>0,且,可化为24﹣3x+4﹣3x=2y+1+y+1,因为函数y=2x+x显然为增函数,故4﹣3x=y+1,即3x+y=3,所以===2,(当且仅当和3x+y=3同时成立即:,时取等号). 故答案为:2.【名师点评】本题考查基本不等式的应用,函数的性质等,属于中档题.13.(2022秋•北碚区校级月考)已知正实数a,b,c,满足a+b+c=1,则的最大值为+.【详细分析】利用均值不等式可得:b+≥,c+=c++≥3=,进而得出结论.【答案解答】解:∵b+≥,c+=c++≥3=,∴≤a+b++c+=+,当且仅当a=﹣,b=,c=时取“=”,∴的最大值为=+,故答案为:+.【名师点评】本题考查了基本不等式的应用、配凑转化方法,考查了推理能力与计算能力,属于中档题. 三.答案解答题(共5小题)14.(2022秋•秀峰区校级月考)(1)已知x>0,求函数的最小值;(2)已知,求的最大值.【详细分析】(1)变形,再利用基本不等式求解,注意等号成立的条件.(2)根据0<x<,将函数y配凑系数,再利用基本不等式求解.注意等号成立的条件.【答案解答】解:(1)∵=x++5≥2+5=9,当且仅当x=,即x=2时等号成立;故的最小值为9;(2)∵,∴1﹣2x>0,∴y=×2x(1﹣2x)≤()2=×=.当且仅当2x=1﹣2x(),即x=时,y max=.【名师点评】本题考查基本不等式求最值,还考查了变形转化的能力,属于基础题.15.(2022秋•长春期中)(1)已知x>3,求的最小值;(2)已知x,y是正实数,且x+y=4,求:①的最小值;②的最小值.【详细分析】(1)由,利用基本不等式即可求解最小值;(2)利用“乘1法”与基本不等式的性质即可得出.【答案解答】解:(1)∵x>3,∴x﹣3>0,∴,当且仅当,即x=5时取等号,∴的最小值为7;(2)①∵x,y∈R+,x+y=4,可得,∴.当且仅当,即,时取“=”号.即的最小值为1+;②,当且仅当即时取号,即的最小值为.【名师点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.16.(2022秋•连云港月考)(1)已知a>0,b>0,且4a+b=1,求ab的最大值;(2)若正数x,y满足x+3y=5xy,求3x+4y的最小值;(3)已知x<,求f(x)=4x﹣2+的最大值.【详细分析】利用基本不等式逐项求解即可.【答案解答】解:(1)因为a>0,b>0,且4a+b=1,所以1=4a+b=4,当且仅当4a=b=时取等号,故ab,即ab的最大值为;(2)由正数x,y满足x+3y=5xy,得=1,故3x+4y=(3x+4y)()==5,当且仅当x=2y=1时取等号, 故3x+4y的最小值为5;(3)因为,故4x﹣2+=≤=1,当且仅当x=1时取等号, 故f(x)的最大值为1.【名师点评】本题考查基本不等式的应用,要注意适用条件是否满足,属于中档题.17.(2022秋•靖江市校级期中)(1)当x>3时,求函数的最小值;(2)若正数a,b满足2a+b=6,求的最小值.【详细分析】(1)=2(x﹣3)++6,利用基本不等式,即可得出答案;(2)由a>0,b>0,且满足2a+b=6,则有2(a+1)+b=8,即,则,利用基本不等式“1”的应用,即可得出答案. 【答案解答】解(1)=2(x﹣3)++6,∵x>3,∴2(x﹣3)+≥2=8,当且仅当2(x﹣3)=,即x=5时等号成立,∴y=2(x﹣3)++6≥8+6=14,∴当x=5时,函数的最小值为14;(2)由a>0,b>0,且满足2a+b=6,则有2(a+1)+b=8,即,∴当且仅当,即时,有最小值.【名师点评】本题考查基本不等式的应用,考查转化思想,考查构造法,考查逻辑推理能力和运算能力,属于中档题.18.(2022秋•海沧区校级月考)如图,某人计划用篱笆围成一个一边靠墙(墙足够长)的矩形菜园,设菜园的长为x米,宽为y米.(1)若菜园面积为36平方米,则x,y为何值时,所用篱笆总长最小?(2)若使用的篱笆总长为30米,求+的最小值.【详细分析】(1)由题意得xy=36,利用基本不等式,即可得出答案;(2)由题意得x+2y=30,利用基本不等式的配凑法可得+=(x+2y)(+),即可得出答案. 【答案解答】解:(1)由题意得xy=36,且x>0,y>0∴篱笆总长x+2y≥2=2=12,当且仅当x=2y,即x=6,y=3时,等号成立, 故x=6米,y=3米时,所用篱笆总长最小;(2)由题意得x+2y=30,且x>0,y>0,则+=(x+2y)(+)=(5++)≥(5+2)=,当且仅当=,即x =y=10时,等号成立,∴+的最小值为.【名师点评】本题考查基本不等式的应用,考查逻辑推理能力和运算能力,属于中档题.题型二:基本不等式‐运用1的代换求最值一.选择题(共2小题)1.(2022秋•郫都区校级期中)已知0<x<4,则的最小值为( )A.2 B.3 C.4 D.8【详细分析】可利用“1”的代换,根据x+(4﹣x)=4配凑应用基本不等式.【答案解答】解:∵0<x<4,则=[x+(4﹣x)]()=(10++)≥(10+2)=4, 当且仅当,即x=1时取等号.故选:C.【名师点评】本题考查基本不等式的应用,属于基础题.2.(2022秋•北海期中)已知正实数a,b满足a+b=3,则的最小值是( ) A. B.4 C.1 D.【详细分析】根据给定的条件,利用“1”的妙用及均值不等式可得代数式的最小值.【答案解答】解:因正实数a,b满足a+b=3,可得=1,所以=()•1=()•=(2++)≥(2+2)=,当且仅当a=b=时取等号,所以的最小值是.故选:A.【名师点评】本题考查“1”的活用及基本不等式的应用,属于基础题.二.填空题(共13小题)3.(2022秋•黄浦区校级期中)若正数x,y满足=1,则x+y的最小值为16. 【详细分析】由题意知正数x,y满足=1,则x+y=()(x+y)展开即为基本不等式应用. 【答案解答】解:由题意知正数x,y满足=1,则x+y=()(x+y)=10++≥16,当x=4,y=12时取到等号.故答案为:16.【名师点评】本题考查基本不等式的应用,属于简单题.4.(2018秋•宝山区校级期末)已知x,y∈R+,且满足xy﹣x﹣2y=0,则x+y的最小值为. 【详细分析】由题知x,y,满足xy﹣x﹣2y=0,则xy=x+2y,同除xy,得=1,借助基本不等式得最小值. 【答案解答】解:由题知x,y,满足xy﹣x﹣2y=0,则xy=x+2y,同除xy,得=1,x+y=(x+y)()=3+≥3+2,当且仅当x=2+,y=+1时取到等号.故答案为:3+2.【名师点评】本题考查了基本不等式求最小值,属于简单题.5.(2022秋•金山区期末)设a、b为正数,且a+b=1,则的最小值为4.【详细分析】利用“1”的代换求最值即可.【答案解答】解:a、b为正数,且a+b=1,则=()(a+b)=2++≥2+2=4,当且仅当=,即a=b=时取等号.则的最小值为4.故答案为:4.【名师点评】本题考查基本不等式中的“1”的代换,属于基础题.6.(2018秋•浦东新区校级期中)已知正实数x,y满足x+y=1,则﹣的最小值是 【详细分析】由已知分离﹣==,然后进行1的代换后利用基本不等式即可求解. 【答案解答】解:正实数x,y满足x+y=1,则﹣===()[x+(y+1)]﹣4=(5+)﹣4=当且仅当且x+y=1即y=,x=时取得最小值是/故答案为:【名师点评】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换7.(2022秋•庐江县期末)设a>0,b>2,且a+b=3,则的最小值是3+2. 【详细分析】运用“1“的配凑,结合基本不等式求出最小值.【答案解答】解:∵a+b=3,∴a+(b﹣2)=1,且a>0,b﹣2>0,则+=(+)[a+(b﹣2)]=2+++1≥3+2=3+2,当且仅当a2=2(b﹣2)2时取等号,又a+b=3,即a=2﹣,b=+1时取等号.故答案为:3+2.【名师点评】本题考查基本不等式求最值,考查配凑法的应用,属于基础题.8.(2022秋•越秀区期末)函数y=a x﹣1+1(a>0,a≠1)的图象恒过定点P,则点P的坐标是(1,2) ;若点P在直线mx+ny=1(m>0,n>0上,则的最小值为8.【详细分析】利用指数函数恒过点(0,1)来判断函数y=a x﹣1+1(a>0,a≠1)过哪个定点;利用1的代换求的最小值.【答案解答】解:函数y=a x﹣1+1(a>0,a≠1),令x=1,y=2,则函数恒过点(1,2),则点P的坐标是(1,2);若点P在直线mx+ny=1(m>0,n>0上,则m+2n=1,则=()(m+2n)=4++≥2+4=8,当且仅当=,即m=,n=取等号,则的最小值为8.故答案为:(1,2);8.【名师点评】本题考查函数恒过定点,考查基本不等式的应用,属于基础题.9.(2022秋•松江区校级期末)设x>0,y>1,且,若x+y的最小值为4,则实数a的值为. 【详细分析】利用“1”的代换思想,求x+y的最小值,并验证等号成立的条件,即可求a.【答案解答】解:∵x>0,y>1,且,∴y﹣1>0,a>0,∴x+y=x+y﹣1+1=•a(x+y﹣1)+1=•(+)(x+y﹣1)+1=(2++)+1≥(2+2)+1=+1,当且仅当=,又,即x=,y=+1取等号,此时x+y的最小值为+1=4,则a=.故答案为:.【名师点评】本题考查基本不等式“1”的代换思想,属于基础题.10.(2022秋•宝山区校级期中)a>0,b>0,a+2b=2,则的最小值为.【详细分析】利用“乘1法”和基本不等式的性质即可得出.【答案解答】解:a>0,b>0,a+2b=2,则=()(a+2b)=(3++)≥(3+2)=+,当且仅当a=2﹣2,b=2﹣取等号,故答案为:+【名师点评】本题考查了“乘1法”和基本不等式的性质,属于基础题.11.(2022秋•朝阳区校级期末)若函数f(x)=﹣2x+3经过点(a,b),a>0且b>0,则的最小值为. 【详细分析】由题意可得2a+b=3,运用基本不等式,即可得到所求最小值.【答案解答】解:a>0,b>0,函数f(x)=﹣2x+3的图象经过点(a,b),可得﹣2a+3=b,即2a+b=3, 可得=•(2a+b)()=•(2+2++)≥+•=,当且仅当=,即a=,b=时取得等号,则的最小值为.故答案为:.【名师点评】本题考查基本不等式的运用,求最值,属于中档题.12.(2022秋•南开区校级期末)已知a>1,b>2,a+b=5,则的最小值为. 【详细分析】将a+b=5变形a﹣1+b﹣2=2,利用“1”的代换思想即可得.【答案解答】解:∵a>1,b>2,a+b=5,则a﹣1+b﹣2=2,=(a﹣1+b﹣2)()=[1+4++]≥(5+2)=,当且仅当=,即a=,b=时取等号.故答案为:.【名师点评】本题考查了基本不等式的性质、考查了“1”的代换思想,属于基础题.13.(2023春•安徽月考)已知正数a,b满足ln=2a+2b﹣4,则的最小值为. 【详细分析】根据式子结构特征构造函数,利用函数的单调性得到a+b=2,再利用基本不等式求解最小值. 【答案解答】解:因为正数a,b满足,所以ln(2﹣b)+2(2﹣b)=lna+2a,设f(x)=lnx+2x,则,所以函数f(x)=lnx+2x在(0,+∞)上单调递增,因为f(2﹣b)=f(a),所以2﹣b=a,即a+b=2,所以, 当且仅当即时,等号成立.故答案为:.【名师点评】本题考查基本不等式的应用,属于中档题.14.(2018秋•青浦区期末)设实数x>0,y<0,且,则2x+y的取值范围是(﹣. 【详细分析】先由得出,并可结合已知条件求出x的取值范围,然后将关系式代入2x+y转化为x的代数式,利用基本不等式可求出2x+y的取值范围.【答案解答】解:由,可得,∵x>0,y<0,由,可得0<x<1,则0<1﹣x<1, 所以,=,当且仅当,即当时,等号成立,所以,2x+y的取值范围是.故答案为:.【名师点评】本题考查利用基本不等式求代数式的取值范围,解决本题的关键在于将代数式进行转化,并进行灵活配凑,考查计算能力与化简变形能力,属于中等题.15.(2022秋•和平区期末)已知函数,正实数a,b满足f(2a﹣4)+f(b)+2=0,则的最小值为.【详细分析】先根据函数的解析式代入化简,再构造函数,由单调性得到a,b的关系,代入目标式化简之后,利用基本不等式求解即可.【答案解答】解:由于,f(2a﹣4)+f(b)+2=0,则,即,即, 令,则g(x)在(0,+∞)上单调递增,g(2a﹣4)=g(﹣b),故2a﹣4=﹣b,即2a+b =4,=,当且仅当,即a=b时取等号,故的最小值为,故答案为:.【名师点评】本题考查函数的基本性质,以及利用基本不等式求最值,属于中档题.三.答案解答题(共9小题)16.(2022秋•桂林月考)已知a,b为正数,且满足a+b=1,求的最小值.【详细分析】利用“1”的代换,基本不等式即可求的最小值.【答案解答】解:因为a,b为正数,且满足a+b=1,所以:,当且仅当=,即取等号,有最小值9.【名师点评】本题考查基本不等式,属于基础题.17.(2021秋•滨海新区校级月考)已知a>0,b>0,满足a+9b=1.(1)求ab的最大值;(2)求的最小值.【详细分析】(1)直接运用基本不等式求解即可;(2)利用=()(a+9b),进而利用基本不等式求解即可.【答案解答】解:(1)∵a>0,b>0,满足a+9b=1,∴1=a+9b≥,即6≤1,∴0<ab≤,当且仅当a=9b,即a=,b=时,等号成立,∴ab的最大值;(2)∵a>0,b>0,满足a+9b=1,∴=()(a+9b)=10+≥10+2=16,当且仅当,即a=,b=时,等号成立,∴的最小值是16.【名师点评】本题主要考查基本不等式在最值求解中的应用,要注意应用条件的检验及配凑,属于基础题. 18.(2021秋•丹阳市校级月考)(1)已知,求函数的最小值;(2)已知a,b>0.则,求a+b的最小值.【详细分析】(1)由,得4x﹣5>0,=4x﹣5++3,再利用基本不等式可求得y的最小值;(2)由a,b>0.,得a+b=(+)(a+b),展开此式后利用基本不等式可求得a+b最小值. 【答案解答】解:(1)由,得4x﹣5>0,=4x﹣5++3≥2+3=5,当且仅当4x﹣5=,即x=时,y取最小值5;(2)由a,b>0,,得a+b=(+)(a+b)=++5≥2+5=9,当且仅当+=1且=,即a=3,b=6时,a+b的最小值9.【名师点评】本题考查基本不等式应用,考查数学运算能力,属于基础题.19.(2022秋•武进区校级月考)(1)设0<x<2,求y=的最大值;(2)已知a>0,b>0,若a+b=2,求的最小值.【详细分析】(1)由0<x<2,得0<4﹣2x<4,由基本不等式可得y==•≤•,即可得出答案.(2)由a+b=2,得(a+1)+(b+1)=4,即[(a+1)+(b+1)]=1,进而可得+=(+)•1=•(+)•[(a+1)+(b+1)],由基本不等式,即可得出答案.【答案解答】解:(1)由0<x<2,得0<4﹣2x<4,y==•≤•=,当且仅当2x=4﹣2x,即x=1取等号,所以函数y=的最大值为.(2)因为a+b=2,所以(a+1)+(b+1)=4,所以[(a+1)+(b+1)]=1,所以+=(+)•1=•(+)•[(a+1)+(b+1)]=[1+4++]≥[5+2]=(5+4)=,(当且仅当=,即a=b时,取等号),所以+的最小值为.【名师点评】本题考查基本不等式的应用,解题中需要理清思路,属于中档题.20.(2022秋•武清区校级月考)(1)已知x,y为正数,且=1,求x+y的最小值;(2)已知0<x<,求x(3﹣2x)的最大值.【详细分析】(1)变形利用“1”的代换可得x+y=(2+x+y)()﹣2,展开利用基本不等式x+y的最小值.(2)变形x(3﹣2x)=2x(﹣x),利用基本不等式即可得出x(3﹣2x)的最大值.【答案解答】解:(1)∵x,y为正数,且=1,∴x+y=(2+x+y)()﹣2=++3≥2+3=7,当且仅当=,=1,解得x=1,y=6时取等号.∴x+y的最小值为7.(2)∵0<x<,∴x(3﹣2x)=2x(﹣x)≤2×=,当且仅当x=﹣x,即x=时取等号.∴x(3﹣2x)的最大值是.【名师点评】本题考查了基本不等式的应用、转化方法,考查了推理能力与计算能力,属于中档题. 21.(2022秋•徐州期中)设函数f(x)=|x﹣a|.(1)当a=2时,解不等式f(x)≥7﹣|x﹣1|;(2)若f(x)≤2的解集为[﹣1,3],=a(m>0,n>0),求m+4n的最小值.【详细分析】(1)题意即为解不等式|x﹣2|+|x﹣1|≥7,分类讨论x<1,1≤x≤2,x>2,去绝对值符号,即可得出答案;(2)表示出不等式|x﹣a|≤2的解集﹣2+a≤x≤2+a,结合题意得出,求出a,利用基本不等式,即可得出答案.【答案解答】解:(1)当a=2时,f(x)=|x﹣2|,由题意得|x﹣2|+|x﹣1|≥7,∴①或②或③,解①得x≥5,解②得x≤﹣2,解③得x无解,故原不等式的解集为(﹣∞,﹣2]∪[5,+∞);(2)由题意得|x﹣a|≤2,解得﹣2+a≤x≤2+a,∵f(x)≤2的解集为[﹣1,3],∴,解得a=1,则+=1,∵m>0,n>0,∴m+4n=(m+4n)(+)=3++≥3+2=3+2,当且仅当=,即m=+1,n=,等号成立,故m+4n的最小值为3+2.【名师点评】本题考查绝对值不等式的解法和基本不等式的应用,考查分类讨论思想和转化思想,考查逻辑推理能力和运算能力,属于中档题.22.(2021秋•泗阳县校级月考)已知命题P:两个正实数x,y满足,且x+2y>m2+2m恒成立,命题Q:“∃x∈{x|1≤x≤2},使x+2+m≥0”,若命题P,命题Q都为真命题,求实数m的取值范围.【详细分析】利用“1”的巧用求出最值,处理恒成立问题;利用一次函数的最值,处理不等式有解问题,从而得到结果.【答案解答】解:∵x>0,y>0,,∴x+2y==(当且仅当x=4,y=2时取等号),∴命题P为真命题时,m2+2m<8,可得﹣4<m<2,∴命题Q为真命题时,2+2+m≥0⇒m≥﹣4,∴命题P,命题Q都为真命题时,﹣4<m<2,即实数m的取值范围为(﹣4,2).【名师点评】本题考查了利用基本不等式求最值和不等式恒成立问题,考查了转化思想,属中档题. 23.(2021秋•东海县期中)已知正实数x,y满足x+2y﹣xy=0.(1)求xy的最小值;(2)若关于x的方程有解,求实数m的取值范围.【详细分析】(1)直接根据基本不等式即可求出;(2)利用乘“1”法可得x(y+1)﹣4的最小值,再得到关于m的不等式,解得即可.【答案解答】解:(1)因为x,y为正实数,x+2y﹣xy=0,所以,解得:xy≥8,当且仅当x=2y,即x=4,y=2时,等号成立,则xy的最小值为8;(2)由x+2y﹣xy=0得:x+2y=xy,则,所以x(y+1)﹣4===6(当且仅当,即,时,等号成立),所以m2﹣m≥6,解得:m≥3或m≤﹣2,故m的取值范围为{m|m≥3或m≤﹣2}.【名师点评】本题考查了基本不等式的应用,考查了运算求解能力,属于中档题.24.在“基本不等式”应用探究课中,甲和乙探讨了下面两个问题:(1)已知正实数x、y满足2x+y=1,求+的最小值.甲给出的解法:由1=2x+y≥2,得≤,所以+≥2=≥4,所以+的最小值为4.而乙却说甲的解法是错的,请你指出其中的问题,并给出正确的解法;(2)结合上述问题(1)的结构形式,试求函数y=+(0<x<)的最小值.【详细分析】(1)判断基本不等式成立的条件,即可得到甲的解法错误;+=(2x+y)(+)通过变形,再利用基本不等式即可得出答案;(2)因为0<x<,所以0<2﹣3x<2,通过变形y=+=[3x+(2﹣3x)][+],展开后利用基本不等式即可求解.【答案解答】解:(1)甲的解法中两次用到基本不等式,取到等号的条件分别是2x=y和x=2y,显然不能同时成立,故甲的解法是错的.正确的解法如下:因为x>0,y>0,且2x+y=1,所以+=(2x+y)(+)=++≥+2=,当且仅当=,即x=y=时等号成立,所以+的最小值为;(2)因为0<x<,所以0<2﹣3x<2,所以y=+=[3x+(2﹣3x)][+]=(4++)≥(4+)=2+, 当且仅当=,即x=1﹣∈(0,)时等号成立,所以y=+(0<x<)的最小值为2+.【名师点评】本题主要考查了基本不等式求解最值及基本不等式的应用条件的检验,属于中档题.。
2023学年上海市重点高中高一年级数学专项(基本不等式)好题练习(附答案)

2023学年上海市重点高中高一年级数学专项(基本不等式)好题练习一.基本不等式及其应用(共4小题)1.(2022秋•宝山区校级期中)某新建居民小区欲建一面积为700平方米的矩形绿地,在绿地四周铺设人行道,设计要求绿地长边外人行道宽3米,短边外人行道宽4米.怎样设计绿地的长与宽,才能使人行道的占地面积最小?(结果精确到0.1米)2.(2022秋•宝山区校级期中)(1)设x>1,求函数的最小值;(2)设x∈R,求函数y=x(8﹣x)的最大值.3.(2022秋•浦东新区校级期中)定义min{a1,a2⋯,,a n}为n个实数a1,a2,…,a n中的最小数,max{a1,a2,⋯,a n}为n个实数a1,a2,…,a n中的最大数.(1)设a,b都是正实数,且a+b=1,求;(2)解不等式:min{x+1,x2+3,|x﹣1|}>2x﹣3;(3)设a,b都是正实数,求的最小值.4.(2019秋•浦东新区校级期中)已知两个正数a、b满足a+2b=1,求的最小值.二.函数恒成立问题(共1小题)5.(2022秋•临渭区期末)已知函数f(x)=x2+(1﹣k)x+2﹣k.(1)解关于x的不等式f(x)<2;(2)若函数f(x)在区间(﹣1,1)上有两个不同的零点,求实数k的取值范围.(3)对任意的x∈(﹣1,2),f(x)≥1恒成立,求实数k的取值范围.三.根据实际问题选择函数类型(共19小题)6.(2022秋•浦东新区校级期末)为了响应国家节能减排的号召,2022年某企业计划引进新能源汽车生产设备.通过市场详细分析:全年需投入固定成本2500万元,每生产x(百辆)新能源汽车,需另投入成本C(x)万元,且.由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2022年的利润L(x)(万元)关于年产量x(百辆)的函数关系式;(利润=售价﹣成本)(2)当2022年的总产量为多少百辆时,企业所获利润最大?并求出最大利润.7.(2022秋•浦东新区校级期末)2023年某企业计划引进新能源汽车生产设备,经过市场详细分析,全年投入固定成本2500万元,每生产x百辆新能源汽车需另投入成本C(x)万元,且,由市场调研知,每一百辆车的售价为500万元,且全年内生产的车辆当年能全部销售完.(注:利润=销售额﹣成本)(1)求2023年的利润L(x)(万元)关于年产量x(百辆)的函数关系式;(2)当2023年的年产量为多少百辆时,企业所获利润最大?并求出最大利润.8.(2022秋•长宁区校级期末)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,生产口罩的固定成本为400万元,每生产x万箱(x>0,x∈N),需另投入成本p(x)万元.当产量不足60万箱时,;当产量不小于60万箱时,,若每箱口罩售价100元,通过市场详细分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y(万元)关于产量x(万箱)的函数关系式;(2)当产量为多少万箱时,该口罩生产厂在生产中所获利润最大?9.(2022秋•浦东新区校级月考)双碳战略之下,新能源汽车发展成为乘用车市场转型升级的重要方向.根据工信部最新数据显示,截至2022年一季度,我国新能源汽车已累计推广突破1000万辆大关.某企业计划引进新能源汽车生产设备,通过市场详细分析,每生产x(千辆)获利10W(x)(万元),该公司预计2022年全年其他成本总投入(20x+10)万元.由市场调研知,该种车销路畅通,供不应求.22年的全年利润为f(x)(单位:万元).(1)求函数f(x)的解析式;(2)当2022年产量为多少辆时,该企业利润最大?最大利润是多少?请说明理由.10.(2022秋•徐汇区校级期中)如图,某研究员需要围成相同的长方形小白鼠笼四间来做观察对比实验,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36dm长网的材料,每间小白鼠笼的长、宽各设计为多少时,可使每间小白鼠笼面积最大?(2)若使每间小白鼠笼面积为24dm2,则每间小白鼠笼的长、宽各设计为多少时,可使围成四间小白鼠笼的钢筋总长度最小?11.(2022秋•宝山区校级期中)某公司经过测算,计划投资A、B两个项目.若投入A项目资金x(万元),则一年创造的利润为(万元);若投入B项目资金x(万元),则一年创造的利润为(万元).(1)当投入A、B两个项目的资金相同且B项目比A项目创造的利润高,求投入A项目的资金x(万元)的取值范围;(2)若该公司共有资金30万元,全部用于投资A、B两个项目,且要求投资B项目的资金不超过10万元,则该公司一年至少能创造多少利润?(结果精确到0.1万元).12.(2022秋•宝山区校级月考)某校拟建一个面积为100平方米的矩形健身区,张老师请同学们小组合作设计出使 周长最小的建造方案,下面是其中一个小组的探究过程,请补充完整.(1)列式:设矩形的一边长是x米,若周长为y米,则y与x之间的函数关系式为_____.(2)填表画图:x • 4 6 10 13 16 20 25 30 •y • 58 a 40 41 44 50 58 66 • 填表:①其中a=_____.②描点连线,请在图中画出该函数的图象.(3)请求出周长y的最小值.13.(2021秋•黄浦区校级月考)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为5万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x(单位:cm)满足关系:,其中k为能耗系数,k>0.设f(x)为隔热层建造费用与20年的能源消耗费用之和,即f(x)=5x+20C(x).(1)若建1cm隔热层时,每年能源消耗费用C为16万元,求此时k的值及f(x)的表达式;(2)在第(1)问的条件下,隔热层修建多厚时,总费用f(x)达到最小,并求最小值;(3)在实际生产中,隔热层厚度x(单位:cm)控制在3≤x≤10之间,求总费用f(x)的最小值关于k的函数g(k).14.(2023春•和平区校级月考)某航运公司用300万元买回客船一艘,此船投入营运后,每月需开支燃油费、维修费、员工工资,已知每月燃油费7000元,第n个月的维修费和工资支出为600(n﹣1)+3000元.(1)设月平均消耗为y元,求y与n(月)的函数关系;(2)投入营运第几个月,成本最低?(月平均消耗最小)(3)若第一年纯收入50万元(已扣除消耗),以后每年纯收入以5%递减,则多少年后可收回成本?15.(2022秋•新邵县期末)为最大程度减少人员流动,减少疫情发生的可能性,一些城市陆续发出“春节期间非必要不返乡,就地过年”的倡议.某地政府积极制定政策,决定政企联动,鼓励企业在春节期间留住员工在本市过年并加班追产.为此,该地政府决定为当地某A企业春节期间加班追产提供x万元(x∈[10,20])的专项补贴.A 企业在收到政府x万元补贴后,产量将增加到t=(x+2)万件.同时A企业生产t万件产品需要投入成本为)万元,并以每件()元的价格将其生产的产品全部售出.(注:收益=销售金额+政府专项补贴﹣成本)(1)求A企业春节期间加班追产所获收益R(x)(万元)关于政府补贴x(万元)的函数关系式;(2)当政府的专项补贴为多少万元时,A企业春节期间加班追产所获收益最大?16.(2022秋•徐州期末)“硬科技”是以人工智能、航空航天、生物技术、光电芯片、信息技术、新材料、新能源、智能制造等为代表的高精尖科技,属于由科技创新构成的物理世界,是需要长期研发投入、持续积累才能形成的原创技术,具有极高技术门槛和技术壁垒,难以被复制和模仿、最近十年,我国的一大批自主创新的企业都在打造自己的科技品牌,某高科技企业自主研发了一款具有自主知识产权的高级设备,并从2023年起全面发售.经测算,生产该高级设备每年需投入固定成本1000万元,每生产x百台高级设备需要另投成本y万元,且y=,每百台高级设备售价为160万元,假设每年生产的高级设备能够全部售出,且高级设备年产展最大为10000台.(1)求企业获得年利润P(万元)关于年产量x(百台)的函数关系式;(2)当年产量为多少时,企业所获年利润最大?并求最大年利润.17.(2022秋•青秀区校级期末)某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W(单位:千克)与施用肥料x(单位:千克)满足如下关系:W(x)=,肥料成本投入为10x元,其它成本投入(如培育管理、施肥等人工费)20x元.已知这水果的时常售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润f(x)(单位:元).(1)求f(x)的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?18.(2022秋•临澧县校级期末)新冠肺炎是近百年来人类遭遇的影响范围最广的全球性大流行病.面对前所未知,突如其来,来势汹汹的疫情天灾,中央出台了一系列助力复工复产好政策城市快递行业运输能力迅速得到恢复,市民的网络购物也越来越便利.根据大数据统计,某条快递线路运行时,发车时间间隔x(单位:分钟)满足:4≤x≤15,x∈N,平均每趟快递车辆的载件个数f(x)(单位:个)与发车时间间隔x近似地满足,其中x∈N.(1)若平均每趟快递车辆的载件个数不超过1500个,试求发车时间间隔x的值;(2)若平均每趟快递车辆每分钟的净收益(单位:元),问当发车时间间隔x为多少时,平均每趟快递车辆每分钟的净收益最大?并求出最大净收益.19.(2022秋•安徽期末)2022年是不平凡的一年,由于受疫情的影响,各行各业都受到很大冲击,为了减少疫情带来的损失,某书商准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到(10﹣0.1x)万套.现出版社为配合该书商的活动,决定进行价格改革,每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为20元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价﹣供货价格.(1)求每套丛书利润y与售价x的函数关系,并求出每套丛书售价定为80元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,每套丛书的利润最大?并求出最大利润.20.(2022秋•安次区校级期末)某大型企业原来每天成本y1(单位:万元)与日产量x(单位:吨)之间的函数关系式为y1=2x2+(15﹣4k)x+120k+8,为了配合环境综合整治,该企业积极引进尾气净化装置,每吨产品尾气净化费用为k万元,尾气净化装置安装后当日产量x=1时,总成本y=142.(1)求k的值;(2)设每吨产品出厂价为48万元,试求尾气净化装置安装后日产量为多少时,日平均利润最大,其最大值为多少.(日平均利润就是日总利润÷日产量)21.(2022秋•岳阳期末)党的二十大报告指出:我们要推进美丽中国建设,坚持山水林田湖草沙一体化保护和系统治理,统筹产业结构调整、污染治理、生态保护、应对气候变化,协同推进降碳、减污、扩绿、增长,推进生态优先、节约集约、绿色低碳发展.某乡政府也越来越重视生态系统的重建和维护.若乡财政下拨一项专款400百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数M(x)(单位:百万元):;处理污染项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数N(x)(单位:百万元):.(1)设分配给植绿护绿项目的资金为x(百万元),则两个生态项目五年内带来的收益总和为y(百万元),写出y关于x的函数解析式;(2)生态维护项目的投资开始利润薄弱,只有持之以恒,才能功在当代,利在千秋.试求出y的最大值,并求出此时对两个生态项目的投资分别为多少?22.(2022秋•槐荫区校级期末)我国某企业为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机.通过市场详细分析,生产此款手机全年需投入固定成本250万,每生产x(千部)手机,需另投入可变成本R(x)万元,且R(x)=,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(利润=销售额﹣固定成本﹣可变成本).(1)求2023年的利润W(x)(万元)关于年产量x(千部)的函数关系式;(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?23.(2022秋•九龙坡区期末)2021年11月初,新冠肺炎疫情由兰州转到天水,天水市某村施行“封村”行动.为了更好地服务于村民,村卫生室需建造一间地面面积为30平方米且墙高为3米的长方体供给监测站.供给监测站的背面靠墙,无需建造费用,因此甲工程队给出的报价为:正面新建墙体的报价为每平方米600元,左右两面新建墙体报价为每平方米360元,屋顶和地面以及其他报价共计21600元,设屋子的左右两侧墙的长度均为x 米(3≤x≤10).(1)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价;(2)现有乙工程队也要参与此监测站的建造竞标,其给出的整体报价为元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a的取值范围.24.(2022秋•浙江月考)如图,某学校为庆祝70周年校庆,准备建造一个八边形的中心广场,广场的主要造型是由两个相同的矩形ABCD和EFGH构成的面积为100m2的十字形地域.计划在正方形MNPQ上建一座花坛,造价为2800元/m2;在四个相同的矩形(图中阴影部分)上铺花岗岩地面,造价为250元/m2;再在四个空角(图中四个三角形)上铺草坪,造价为80元/m2.设总造价为W(单位:元),AD长为x(单位:m).(1)当x=4m时,求草坪面积;(2)当x为何值时,W最小?并求出这个最小值.四.绝对值不等式的解法(共1小题)25.(2022秋•浦东新区期末)解不等式|2x﹣1|>1.五.不等式的证明(共2小题)26.(2020秋•黄浦区校级期末)已知a、b都是正实数,且=b﹣a.(1)求证:a>1;(2)求b的最小值.27.(2021秋•徐汇区校级期中)(1)在△ABC中,角A,B,C所对的边分别是a,b,C,求证:A,B,C中至少有一个角大于或等于60°;(2)已知a,b,c为不全相等的正数,且abc=1,求证:.六.反证法与放缩法证明不等式(共1小题)28.(2022秋•长宁区校级期中)已知实数a>b>c,a+b+c=1,a2+b2+c2=1. (1)若,求a﹣b的值;(2)求证:;(3)用反证法证明:c<0.参考答案一.基本不等式及其应用(共4小题)1.(2022秋•宝山区校级期中)某新建居民小区欲建一面积为700平方米的矩形绿地,在绿地四周铺设人行道,设计要求绿地长边外人行道宽3米,短边外人行道宽4米.怎样设计绿地的长与宽,才能使人行道的占地面积最小?(结果精确到0.1米)【详细分析】根据已知条件,结合基本不等式的公式,即可求解.【名师解答】解:设矩形绿地的长度为x,宽为,人行道的占地面积S,则S=(x+8)(+6)﹣700=6x++48+48=80+48≈414.4,当且仅当6x=,即x=时,等号成立,故绿地的长为≈30.5米,宽为23米时,人行道的占地面积最小为414.4平方米.【名师点评】本题主要考查函数的实际应用,掌握基本不等式公式是解本题的关键,属于基础题. 2.(2022秋•宝山区校级期中)(1)设x>1,求函数的最小值;(2)设x∈R,求函数y=x(8﹣x)的最大值.【详细分析】(1)构造函数的表达式为:a+类型,利用基本不等式求解函数的最小值即可.(2)化简函数的解析式,求出函数的对称轴,利用二次函数的性质求解函数的值域以及函数的最值即可. 【名师解答】解:(1)∵x>1,∴x﹣1>0.∴y=x+=x﹣1++1≥2+1=4+1=5,当且仅当x﹣1=,即x=3时,取等号.∴x=3时,函数的最小值是5.(2)因为y=x(8﹣x)=﹣(x﹣4)2+16,函数的对称轴为:x=4,由二次函数的性质可知,当x=4时,最大值是16.【名师点评】本题考查基本不等式在最值中的应用,注意基本不等式成立的条件,考查转化思想以及计算能力. 3.(2022秋•浦东新区校级期中)定义min{a1,a2⋯,,a n}为n个实数a1,a2,…,a n中的最小数,max{a1,a2,⋯,a n}为n个实数a1,a2,…,a n中的最大数.(1)设a,b都是正实数,且a+b=1,求;(2)解不等式:min{x+1,x2+3,|x﹣1|}>2x﹣3;(3)设a,b都是正实数,求的最小值.【详细分析】(1)由基本不等式放缩即可;(2)利用最小值函数定义,化简函数,分段解不等式;(3)利用最大值函数定义放缩,然后利用最值定义求最值.【名师解答】解:(1)由基本不等式,所以=;(2)由于x2+3﹣(x+1)=x2﹣x+2>0,则min{x+1,x2+3,|x﹣1|}=min{x+1,|x﹣1|}=,当x<0时,原不等式可化为x+1>2x﹣2,即x<3,结合x<0得x<0;当x≥0时,原不等式可化为|x﹣1|>2x﹣3,即或,解得1≤x<2或0≤x<1,即0≤x<2;综上,原不等式解集为:(﹣∞,2);(3)设M=,则,于是,从而,当且仅当时取等号,故的最小值为.【名师点评】本题考查基本不等式及不等式的解法,属于中档题.4.(2019秋•浦东新区校级期中)已知两个正数a、b满足a+2b=1,求的最小值. 【详细分析】直接利用函数的关系式的恒等变换,基本不等式的应用求出结果.【名师解答】解:两个正数a、b满足a+2b=1,故:=1+,(当且仅当a=b时,等号成立).故答案为:9.【名师点评】本题考查的知识要点:函数的关系式的恒等变换,基本不等式的应用,主要考查学生的运算能力和数学思维能力,属于基础题.二.函数恒成立问题(共1小题)5.(2022秋•临渭区期末)已知函数f(x)=x2+(1﹣k)x+2﹣k.(1)解关于x的不等式f(x)<2;(2)若函数f(x)在区间(﹣1,1)上有两个不同的零点,求实数k的取值范围.(3)对任意的x∈(﹣1,2),f(x)≥1恒成立,求实数k的取值范围.【详细分析】(1)由题意得(x+1)(x﹣k)<0,令(x+1)(x﹣k)=0,解得x=﹣1或x=k,分类讨论k=﹣1,k>﹣1,k<﹣1,结合二次函数的图象与性质,即可得出答案;(2)题意转化为方程x2+(1﹣k)x+2﹣k=0在(﹣1,1)上有两个不同的根,结合二次函数的图象与性质,列出关于k的不等式组,即可得出答案;(3)利用分离参数法,题意转化为对任意的x∈(﹣1,2),恒成立,构造函数,x∈(﹣1,2),利用基本不等式求出g(x)的最小值,即可得出答案. 【名师解答】解:(1)∵f(x)=x2+(1﹣k)x+2﹣k,∴f(x)<2,即x2+(1﹣k)x﹣k<0,即(x+1)(x﹣k)<0,令(x+1)(x﹣k)=0,解得x=﹣1或x=k,当k=﹣1时,此时(x+1)2<0,故原不等式的解集为∅,当k>﹣1时,不等式的解集为(﹣1,k),当k<﹣1时,不等式的解集为(k,﹣1);(2)函数f(x)在区间(﹣1,1)上有两个不同的零点,转化为方程x2+(1﹣k)x+2﹣k=0在(﹣1,1)上有两个不同的根,∴,解得,故实数k的取值范围为;(3)f(x)=x2+(1﹣k)x+2﹣k,对任意的x∈(﹣1,2),f(x)≥1恒成立,转化为对任意的x∈(﹣1,2),恒成立,令,x∈(﹣1,2),则k≤g(x)min,又0<x+1<3,则,当且仅当,即x=0时等号成立, ∴k≤1,故实数k的取值范围为(﹣∞,1].【名师点评】本题考查函数恒成立问题和二次函数的图象与性质、基本不等式的应用,考查转化思想、函数思想和分类讨论思想,考查逻辑推理能力和运算能力,属于中档题.三.根据实际问题选择函数类型(共19小题)6.(2022秋•浦东新区校级期末)为了响应国家节能减排的号召,2022年某企业计划引进新能源汽车生产设备.通过市场详细分析:全年需投入固定成本2500万元,每生产x(百辆)新能源汽车,需另投入成本C(x)万元,且.由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2022年的利润L(x)(万元)关于年产量x(百辆)的函数关系式;(利润=售价﹣成本)(2)当2022年的总产量为多少百辆时,企业所获利润最大?并求出最大利润.【详细分析】(1)根据给定条件,分段求出C(x)的表达式,即可得出答案;(2)由(1)得,根据分段函数的性质,分类讨论0<x<40,x≥40求出最大值,比较大小,即可得出答案.【名师解答】解:(1)∵,∴当0<x<40时,L(x)=9×100x﹣10x2﹣500x﹣2500=﹣10x2+400x﹣2500,当x≥40时,,故;(2)由(1)得,∴当0<x<40时,L(x)=﹣10(x﹣20)2+1500,∴当x=20时,L(x)max=1500;∴当x≥40时,,当且仅当,即x =80时等号成立,又3640>1500,∴当x=80,即2022年生产80百辆时,该企业获得利润最大,且最大利润为3640万元.【名师点评】本题考查分段函数的性质,考查转化思想和分类讨论思想,考查逻辑推理能力和运算能力,属于中档题.7.(2022秋•浦东新区校级期末)2023年某企业计划引进新能源汽车生产设备,经过市场详细分析,全年投入固定成本2500万元,每生产x百辆新能源汽车需另投入成本C(x)万元,且,由市场调研知,每一百辆车的售价为500万元,且全年内生产的车辆当年能全部销售完.(注:利润=销售额﹣成本)(1)求2023年的利润L(x)(万元)关于年产量x(百辆)的函数关系式;(2)当2023年的年产量为多少百辆时,企业所获利润最大?并求出最大利润.【详细分析】(1)根据利润=销售额﹣成本,分类讨论0<x<40,x≥40,求解即可得出答案;(2)根据分段函数的性质,分类讨论0<x<40,x≥40,分别求出最大值,比较大小,即可得出答案. 【名师解答】解:(1)∵,∴当0<x<40时,L(x)=500x﹣10x2﹣100x﹣2500=﹣10x2+400x﹣2500,当x≥40时,,故;(2)由(1)得,当0<x<40时,L(x)=﹣10(x﹣20)2+1500,∴L(x)max=L(20)=1500,当x≥40时,,当且仅当,即x =100时等号成立,故L(x)max=L(100)=1800,∵1800>1500,故当2023年的年产量为100百辆时,该企业所获利润最大,最大利润为1800万元.【名师点评】本题考查根据实际问题选择函数类型和分段函数的性质,考查转化思想和分类讨论思想,考查逻辑推理能力和运算能力,属于中档题.8.(2022秋•长宁区校级期末)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,生产口罩的固定成本为400万元,每生产x万箱(x>0,x∈N),需另投入成本p(x)万元.当产量不足60万箱时,;当产量不小于60万箱时,,若每箱口罩售价100元,通过市场详细分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y(万元)关于产量x(万箱)的函数关系式;(2)当产量为多少万箱时,该口罩生产厂在生产中所获利润最大?【详细分析】(1)由题意得y=100x﹣p(x)﹣400,分类讨论0<x<60,x≥60,即可得出答案;(2)由(1)得y=,分别求出0<x<60,x≥60,的最大值,比较大小,即可得出答案.【名师解答】解:(1)由题意得y=100x﹣p(x)﹣400,当0<x<60时,,则y=100x﹣(x2+50x)﹣400=﹣x2+50x﹣400,当x≥60时,,则y=100x﹣(101x+﹣1860)﹣400=1460﹣x﹣, 综上所述,y=;(2)由(1)得y=,当0<x<60时,y=﹣x2+50x﹣400==﹣(x﹣50)2+850,二次函数y的图象开口向下,且对称轴为x=50,∴当x=50时,y max=850,当x≥60时,y=1460﹣x﹣≤1460﹣2=1300,当且仅当x=,即x=80时等号成立, ∵1300>850,∴当产量为80万箱时,该口罩生产厂在生产中所获利润最大.【名师点评】本题考查根据实际问题选择函数类型,考查转化思想和分类讨论思想,考查逻辑推理能力和运算能力,属于中档题.9.(2022秋•浦东新区校级月考)双碳战略之下,新能源汽车发展成为乘用车市场转型升级的重要方向.根据工信部最新数据显示,截至2022年一季度,我国新能源汽车已累计推广突破1000万辆大关.某企业计划引进新能源汽车生产设备,通过市场详细分析,每生产x(千辆)获利10W(x)(万元),该公司预计2022年全年其他成本总投入(20x+10)万元.由市场调研知,该种车销路畅通,供不应求.22年的全年利润为f(x)(单位:万元).(1)求函数f(x)的解析式;(2)当2022年产量为多少辆时,该企业利润最大?最大利润是多少?请说明理由.【详细分析】(1)由题意得f(x)=10W(x)﹣(20x+10),结合题意和分段函数的性质,分类讨论0<x≤2,2<x≤5,化简计算,即可得出答案.(2)由(1)得,根据分段函数的性质,分别求出0<x≤2,2<x≤5的最大值,比较大小,即可得出答案.【名师解答】解:(1)由题意得f(x)=10W(x)﹣(20x+10),∵,∴当0<x≤2时,W(x)=2(x2+17),则f(x)=20(x2+17)﹣(20x+10)=20x2﹣20x+330,当2<x≤5时,W(x)=50﹣,则f(x)=10(50﹣)﹣(20x+10)=490﹣﹣20x,综上所述,函数f(x)的解析式为;(2)由(1)得,当0<x≤2时,,∴f(x)在(0,]上单调递减,在[,2]上单调递增,∴f(x)max=f(2)=370;当2<x≤5时,当且仅当,即x=3时,f(x)max=390,∵370<390,∴f(x)最大值为390,故当2022年产量为3000辆,该企业利润最大,最大利润是390万元.【名师点评】本题考查根据实际问题选择函数类型和分段函数的性质,考查函数思想和转化思想、分类讨论思想,考查逻辑推理能力和运算能力,属于中档题.10.(2022秋•徐汇区校级期中)如图,某研究员需要围成相同的长方形小白鼠笼四间来做观察对比实验,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36dm长网的材料,每间小白鼠笼的长、宽各设计为多少时,可使每间小白鼠笼面积最大?(2)若使每间小白鼠笼面积为24dm2,则每间小白鼠笼的长、宽各设计为多少时,可使围成四间小白鼠笼的钢筋总长度最小?【详细分析】(1)设每间小白鼠笼的长为x,宽为y,则每间小白鼠笼的面积为xy,由题意得4x+6y=36,利用基本不等式,即可得出答案;(2)设每间小白鼠笼的长为x,宽为y,则每间小白鼠笼的面积为xy=24,则围成四间小白鼠笼的钢筋总长度为4x+6y,利用基本不等式,即可得出答案.【名师解答】解:(1)设每间小白鼠笼的长为x,宽为y,则每间小白鼠笼的面积为xy,由题意得4x+6y=36,即2x+3y=18,∵x>0,y>0,∴18=2x+3y≥2,当且仅当2x=3y,即x=dm,y=3dm时等号成立,即≤,则xy≤, 故每间小白鼠笼的长、宽各设计为dm、3dm时,可使每间小白鼠笼面积最大;(2)设每间小白鼠笼的长为x,宽为y,则每间小白鼠笼的面积为xy=24,则围成四间小白鼠笼的钢筋总长度为4x+6y≥2=4=4=48,当且仅当4x=6y,即x=6,y=4时等号成立,故每间小白鼠笼的长、宽各设计为6dm、4dm时,可使围成四间小白鼠笼的钢筋总长度最小.【名师点评】本题考查基本不等式的应用,考查转化思想,考查逻辑推理能力和运算能力,属于中档题. 11.(2022秋•宝山区校级期中)某公司经过测算,计划投资A、B两个项目.若投入A项目资金x(万元),则一年创造的利润为(万元);若投入B项目资金x(万元),则一年创造的利润为(万元).(1)当投入A、B两个项目的资金相同且B项目比A项目创造的利润高,求投入A项目的资金x(万元)的取值范围;。
2024年高中一年级数学考试题及答案

《2024年高中一年级数学考试题及答案》一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3},B={2, 3, 4},则A∩B=______。
A. {1, 2, 3, 4}B. {2, 3}C. {1, 2}D. {1, 3}2. 函数f(x)=2x+3的图像是一条直线,下列结论正确的是______。
A. 直线必经过点(0, 3)B. 直线的斜率为2C. 直线在y轴上的截距为2D. 直线在x轴上的截距为33. 若a, b为实数,且a≠b,则下列哪个选项是正确的?A. (ab)^2 > 0B. (a+b)^2 > 0C. a^2 + b^2 > 0D. a^2b^2 > 04. 等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a4=______。
A. 6B. 8C. 10D. 125. 在ΔABC中,若sinA : sinB : sinC = 3 : 4 : 5,则ΔABC为______三角形。
A. 直角B. 锐角C. 钝角D. 等腰二、填空题(每题3分,共30分)6. 已知函数f(x)=ax^2+bx+c(a≠0),若f(1)=2,f(2)=3,则______。
7. 在平面直角坐标系中,点P(2, 3)关于原点的对称点坐标为______。
8. 等比数列{an}的前n项和为Sn,若a1=1,q=2,S5=______。
9. 若函数f(x)在区间[0, +∞)上单调递增,且f(0)=0,则对于任意x>0,有______。
10. 在ΔABC中,a=5, b=12, A=30°,则sinB=______。
三、解答题(每题10分,共40分)11. 已知函数f(x)=ln(x+1),求f'(x)。
12. 在ΔABC中,a=8, b=10, C=60°,求c。
13. 设数列{an}满足an=2^n 1,求证数列{an}为等比数列。
2024年高中一年级数学考试题及答案

2024年高中一年级数学考试题及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 设全集U={1,2,3,4,5,6,7,8},集合A={2,4,6,8},集合B={3,4,5,6},则A∩B=()A. {2,4,6,8}B. {3,4,5,6}C. {4,6}D. {2,3,4,5,6,8}2. 若函数f(x)在区间(a,b)内单调递增,则f'(x)在(a,b)内()A. ≥0B. ≤0C. ≥0或≤0D. ≠03. 下列函数中,既是奇函数又是偶函数的是()A. y=x^3B. y=|x|C. y=x^2D. y=x^2+x4. 已知函数f(x)=x^33x,则f'(0)=()A. 0B. 3C. 3D. 不存在5. 若函数f(x)在x=a处可导,则f(x)在x=a处()A. 连续B. 可导C. 可微D. 连续、可导、可微6. 设函数f(x)在区间I上可导,且f'(x)>0,则f(x)在I上()A. 单调递减B. 单调递增C. 增函数D. 减函数7. 设函数f(x)在区间(a,b)内单调递增,且f'(x)>0,则f(x)在(a,b)内()A. 连续B. 可导C. 可微D. 连续、可导、可微二、判断题(每题1分,共20分)8. 函数的极值点一定在导数为0的点处取得。
()9. 若函数f(x)在区间(a,b)内单调递增,则f'(x)在(a,b)内≥0。
()10. 若函数f(x)在x=a处可导,则f(x)在x=a处连续。
()11. 若函数f(x)在x=a处连续,则f(x)在x=a处可导。
()12. 若函数f(x)在区间I上单调递增,则f'(x)在I上≥0。
()13. 若函数f(x)在区间I上单调递减,则f'(x)在I上≤0。
()14. 若函数f(x)在区间I上单调递增,则f(x)在I上连续。
()15. 若函数f(x)在区间I上单调递减,则f(x)在I上连续。
高一数学练习试题及答案
高一数学练习试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-6x+8,则f(1)的值为()A. 3B. 5C. -3D. -12. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B 为()A. {1, 2}B. {2, 3}C. {1, 3}D. {2}3. 若a,b,c是等差数列,且a+c=10,b=5,则a+b+c的值为()A. 15B. 20C. 25D. 304. 函数y=x^3-3x^2+2在x=1处的导数为()A. 0B. 1C. -1D. 25. 已知向量a=(3, -2),b=(1, 2),则向量a+b的坐标为()A. (4, 0)B. (2, 0)C. (1, 0)D. (0, 0)6. 已知函数f(x)=2sin(x)+√3cos(x),x∈[0, 2π],则f(x)的最大值为()A. 3B. 2C. 1D. 07. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为√5,且a=1,则b的值为()A. 2B. 3C. 4D. 58. 已知直线l:y=kx+b与圆x^2+y^2=1相切,则|b|的最小值为()A. 0B. 1C. √2D. 29. 已知等比数列{an}的前n项和为S_n,若a_1=1,q=2,则S_4的值为()A. 15B. 16C. 8D. 410. 已知函数f(x)=x^2-4x+m,若f(x)在[2, +∞)上单调递增,则实数m的取值范围为()A. m≥-4B. m>-4C. m<-4D. m≥0二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x+1,则f'(x)=_________。
12. 已知向量a=(2, 3),b=(-1, 2),则向量a·b=_________。
13. 已知等差数列{an}的公差d=3,a_1=2,则a_5=_________。
高中一年级数学练习题
高中一年级数学练习题一、选择题(每题3分,共15分)1. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数是:A. 1B. 2C. 3D. 42. 若函数f(x)=3x+2,求f(-1)的值:A. -1B. 1B. -3D. 33. 已知直线l的方程为y=2x-6,求该直线与x轴的交点坐标:A. (3,0)B. (0,-6)C. (-3,0)D. (6,0)4. 圆的一般方程为(x-a)^2+(y-b)^2=r^2,其中(a,b)是圆心坐标,r 是半径。
若圆心为(1,1),半径为2,求圆的方程:A. (x-1)^2+(y-1)^2=4B. (x-1)^2+(y-1)^2=1C. (x-2)^2+(y-2)^2=4D. (x+1)^2+(y+1)^2=45. 已知等差数列的首项为5,公差为3,求第10项的值:A. 32B. 35C. 28D. 40二、填空题(每题2分,共10分)6. 若a=3,b=4,则a^2+b的值为______。
7. 函数y=x^2-4x+4的顶点坐标为______。
8. 已知三角形ABC的三边长分别为3, 4, 5,根据勾股定理,该三角形是______三角形。
9. 将函数f(x)=x^3-2x^2+3x+1展开成泰勒级数,其展开点为x=0,前三项为______。
10. 已知等比数列的首项为2,公比为-1/2,求第5项的值是______。
三、解答题(每题5分,共20分)11. 解不等式:2x+5 > 3x-2。
12. 已知点A(-1,2)和点B(3,-1),求直线AB的斜率及方程。
13. 证明:若a, b, c属于实数集R,且a^2+b^2=c^2,则a, b, c构成一个直角三角形。
14. 已知数列{an}的通项公式为an=2n-1,求前n项和Sn。
四、应用题(每题10分,共20分)15. 某工厂计划生产一种新产品,预计生产成本为每件20元,销售价格为每件40元。
高一新课程数学必修(III) 学段复习题
高中一年级数学必修(Ⅲ)学段复习题一、选择题1.任何一个算法都必须有的基本结构是( ).A 顺序结构B 条件结构C 循环结构D 三个都有2.循环结构可以嵌套的结构是( ).A 条件结构B 循环结构C 顺序结构D 以上三种结构 3.我国古代数学发展一直处于世界领先水平,特别是宋、元时期的“算法”,其中可以同欧几里德辗转相除法相媲美的是( ).A 割圆术B 更相减损术C 秦九韶算法D 孙子乘余定理4.用秦九韶算法求多项式65432x 3x 5x 6x 79x 8x 3512)x (f +++++-+=在4x -=的值时,其中4v 的值为( ). A -57 B 124C -845D 2205.右面的伪代码输出的结果是( ).A 3B 5C 9D 136.3名老师随机从3男3女共6人中各带2名学生进行实验,其中每名老师各带1名男生和1名女生的概率为( )A.52 B.53 C.54 D.1097.某人射击5枪,命中3枪,3枪中恰有2枪连中的概率为( )A.52B.53 C.101 D.201 8. 一批产品中,有10件正品和5件次品,对产品逐个进行检测,如果已检测到前3次均为正品,则第4次检测的产品仍为正品的概率是( )A.7/12B. 4/15C. 6/11D. 1/39.有一人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是( )A.至多有1次中靶B.2次都中靶C.2次都不中靶D.只有1次中靶 10.在一块并排10垄的土地上,选择2垄分别种植A 、B 两种植物,每种植物种植1垄,为有利于植物生长,则A 、B 两种植物的间隔不小于6垄的概率为( )A.301 B.154 C.152 D.30111.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8180,则此射手的命中率是( )A.31B.32C.41D.5212.数4557,1953,5115的最大公约数为( ).A .93B .31C .651D .217 13.下面的伪代码输出的结果S 为( ).A .17B .19C .21D .2314. 设有一个直线回归方程为 ^^2 1.5y x =- ,则变量x 增加一个单位时 ( )A. y 平均增加 1.5 个单位B. y 平均增加 2 个单位C. y 平均减少 1.5 个单位D. y 平均减少 2 个单位15. 某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、,中年人、青年人分别各抽取的人数是( )A.6, 12 ,18B. 7,11,19C.6,13,17D. 7,12,17 16.若共有则平面上的点且)n ,m (,8n m N n ,m *≤+∈ ( )A .21B .20C .28D .3017.3位男生,3位女生排成一排,恰好三位女生排在相邻位置的概率是( )A .51 B .201C .1201 D .30118.某班30名同学,一年按365天计算,至少有两人生日在同一天的概率是( )A .3030365365A 1-B .3030365365A C .3036511- D .30365119.样本4,2,1,0,-2的标准差是:A .1B .2C .4D .5220.某次考试有70000名学生参加,为了了解这70000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法: (1) 1000名考生是总体的一个样本;(2) 1000名考生数学成绩的平均数是总体平均数; (3) 70000名考生是总体; (4) 样本容量是1000, 其中正确的说法有:A .1种B .2种C .3种D .4种21.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽到的概率为0.25,则N 的值为( ) (A )120(B) 200(C) 150(D)10022 . 下列说法正确的是:(A)甲乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样(B)期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好(C)期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好(D)期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好23. 一组数据的方差是2s ,将这组数据中的每一个数据都乘以2,所得到的一组数据的方差是( )A. 22s ; B. 22s ; C.24s ; D.2s24.从某鱼池中捕得120条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,计算其中有记号的鱼为10条,试估计鱼池中共有鱼的条数为( )A. 1000B. 1200C. 130D.1300 25. (1)已知一组数据1,2,1,0,-1,-2,0,-1,则这组数数据的平均数为 ;方差为 ;0,12(2)若5,-1,-2,x 的平均数为1,则x= ;2 (3)已知n 个数据的和为56,平均数为8,则n= ;7(4)某商场4月份随机抽查了6天的营业额,结果分别如下(单位:万元):2.8,3.2,3.4,3.7,3.0,3.1,试估算该商场4月份的总营业额,大约是__万元 96 二、填空题26.已知集合A={1,2,3,4,……,n},则A 的所有含有3个元素的子集的元素和为 。
高一年级上册数学考试卷
高一年级上册数学考试卷一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数不是实数?A. πB. -3C. √2D. i2. 如果f(x) = 2x + 3,那么f(-1)的值是多少?A. -1B. 1C. 0D. -53. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的结果。
A. {1}B. {2, 3}C. {4}D. {1, 2, 3}4. 函数y = x^2 + 2x - 3的顶点坐标是什么?A. (-1, -4)B. (1, -2)C. (-2, -3)D. (0, -3)5. 已知等差数列的首项a1=3,公差d=2,求第5项a5的值。
A. 11C. 15D. 176. 一个圆的半径是5,那么这个圆的面积是多少?A. 25πB. 50πC. 75πD. 100π7. 如果一个三角形的三边长分别为3, 4, 5,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形8. 已知sin(θ) = 1/2,且θ在第一象限,求cos(θ)的值。
A. √3/2B. -√3/2C. 1/2D. -1/29. 函数y = log2(x)的定义域是什么?A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)10. 如果一个向量a与向量b的夹角为90度,那么a·b等于:A. |a||b|B. 0D. -1二、填空题(本题共5小题,每小题4分,共20分)11. 计算(2x - 3)(x + 4)的展开式中x的系数是_________。
12. 已知等比数列的首项a1=2,公比q=3,求第4项a4的值是_________。
13. 一个正弦波函数y = sin(ωx + φ),若φ = π/4,ω = 2π,求该函数在x=0时的值是_________。
14. 一个圆的直径是14,求这个圆的周长是_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学一年级复习练习题
一、单选题
1.已知集合 则( )
A .[-2,1]
B .[-1,1]
C .[1,3]
D .[-2,3]
2.已知R a ∈,则“1a >”是“
11a <”的( ) A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既非充分又非必要条件
3. 已知集合{}212,4,2A a a a =+-,且3A -∈,则a =( )
A. 1-
B. 3-或1-
C. 3
D. 3-
4.已知函数222,02,0x x x f
x x x x ≥,若0f a f a ,求a 的取值范围( ) A.1,1 B.2,0 C.
0,2 D.2,2
5. 下列图象不可能成为函数y =f (x )图象的是( ) A. B. M B ⋂={13},{21},M x x B x x =|-≤≤=|-≤≤
C.
D.
6.已知函数f (x )在区间[a ,b ]上单调,且图象是连续不断的,若f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上( )
A .至少有一实数根
B .必有唯一的实数根
C .没有实数根
D .至多有一实数根
7、不等式
的解集为( ) A.
B. C.
D.
二、多选题
8. 若,a b R ∈,且0ab >,则下列不等式恒成立的为( )
A.
222a b ab +≥ B. a b +≥ C. 11+
a b > D. 2b a a b +≥
9.若,x M x x “
”为真命题, ,3x M x “”为假命题 ,则集合M 可能是( ) A.
,5 B.3,1 C.
3+, D.03,
10. 已知f (x )是定义在R 上的增函数,则下列结论错误的是( )
A.y =[f (x )]2是增函数
B.y =1
f (x )(f (x )≠0)是减函数
C.y =−f (x )是减函数
D.y =|f (x )|是增函数
11、若函数
为R 上的偶函数,且 在 上单调递增,则不等式
的解集为( ) A.
B. C. D. 三、填空题
12.已知函数241,1,4y
x x x ,则函数的值域为 .
13.已知1243==b a ,则b a 11+=______________.
14. 某商店已按每件80元的成本购进某商品1000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件 元。
15. 已知扇形的半径为2,面积为43
π,则扇形的圆心角的弧度数为______
16.设函数f (x )=⎩⎨⎧ x 2-4x +6,x ≥0x +6,x <0
,则不等式f (x )>f (1)的解集是________.
三、解答题:(本大题共六小题,共70分。
写出必要的文字说明和解题过程。
)
17.(本小题满分10分)
设全集合U=R ,
,,求,,,
18. 已知集合A ={x|−1<x ≤4},B ={x|x 2−x −m <0}.
(1)当m =2时,求A ∩(∁R B );
(2)若A ∩B ={x|−1<x <3},求实数m 的值.
19.已知b ax x x f ++=2)(,满足)6()2(f f =-,且0)(=x f 的两实根之积为4.
(1)求)(x f 的解析式;
(2)求函数)(2)(x f mx x g -=,在]2,0[∈x 上的最大值(用m 表示).
21.求函数的解析式
22(1)()((())94()(2)1)();
11(3)(),()1(4)2()()(0)().(5),,()()(21)f x f f x x f x f x f x f x x f x x x
f f x x x f x x
x y f x y f x y x y =+=++=++=≠-=--+已知是一次函数,且,求的解析式;
已知求已知求的解析式;已知,求已知对于任意实数等式恒成立, (0)1()f f x =若,求的解析式。