2020年黑龙江绥化中考数学试卷(解析版)

合集下载

2024年黑龙江省绥化市中考数学试卷(附答案解析)

2024年黑龙江省绥化市中考数学试卷(附答案解析)

2024年黑龙江省绥化市中考数学试卷(附答案解析)一、单项选择题(本题共12个小题,每小题3分,共36分)1.(3分)实数﹣的相反数是()A.2025B.﹣2025C.﹣D.【解答】解:﹣的相反数是,故选:D.2.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形B.等腰三角形C.圆D.菱形【答案】B.分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.(3分)某几何体是由完全相同的小正方体组合而成,如图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是()A.5个B.6个C.7个D.8个【答案】A.4.(3分)若式子有意义,则m的取值范围是()A.m≤B.m≥﹣C.m≥D.m≤﹣【解答】解:由题意得:2m﹣3≥0,解得:m≥,故选:C.5.(3分)下列计算中,结果正确的是()A.(﹣3)﹣2=B.(a+b)2=a2+b2C.=±3D.(﹣x2y)3=x6y3【解答】解:(﹣3)﹣2=,则A符合题意;(a +b )2=a 2+2ab +b 2,则B不符合题意;=3,则C 不符合题意;(﹣x 2y )3=﹣x 6y 3,则D 不符合题意;故选:A .6.(3分)小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是﹣2和﹣5.则原来的方程是()A .x 2+6x +5=0B .x 2﹣7x +10=0C .x 2﹣5x +2=0D .x 2﹣6x ﹣10=0【答案】B .7.(3分)某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:鞋码3637383940平均每天销售量/双1012201212如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的()A .平均数B .中位数C .众数D .方差【解答】解:因为众数是在一组数据中出现次数最多的数,又根据题意,每双鞋的销售利润相同,鞋店为销售额考虑,应关注卖出最多的鞋子的尺码,这样可以确定进货的数量,所以该店主最应关注的销售数据是众数.故选:C .8.(3分)一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为()A .5km /hB .6km /hC .7km /hD .8km /h【解答】解:设江水的流速为x km /h ,则沿江顺流航行的速度为(40+x )km /h ,沿江逆流航行的速度为(40﹣x )km /h ,根据题意得:=,解得:x =8,∴江水的流速为8km /h .故选:D .【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.9.(3分)如图,矩形OABC各顶点的坐标分别为O(0,0),A(3,0),B(3,2),C(0,2),以原点O为位似中心,将这个矩形按相似比缩小,则顶点B在第一象限对应点的坐标是()A.(9,4)B.(4,9)C.(1,)D.(1,)【分析】根据位似变换的性质解答即可.【解答】解:∵以原点O为位似中心,将矩形OABC按相似比缩小,点B的坐标为(3,2),∴顶点B在第一象限对应点的坐标为(3×,2×),即(1,),故选:D.10.(3分)下列叙述正确的是()A.顺次连接平行四边形各边中点一定能得到一个矩形B.平分弦的直径垂直于弦C.物体在灯泡发出的光照射下形成的影子是中心投影D.相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【分析】选项A根据中点四边形的定义以及矩形的判定方法解答即可;选项B根据垂径定理判断即可;选项C根据中心投影的定义判断即可;选项D根据圆心角、弧、弦、弦心距的关系定理判断即可.【答案】C.11.(3分)如图,四边形ABCD是菱形,CD=5,BD=8,AE⊥BC于点E,则AE的长是()A.B.6C.D.12【解答】解:∵四边形ABCD是菱形,CD=5,BD=8,∴BC=CD=5,BO=DO=4,OA=OC,AC⊥BD,∴∠BOC=90°,在Rt△OBC中,由勾股定理得:OC===3,∴AC=2OC=6,∵菱形ABCD的面积=AE•BC=BD×AC=OB•AC,∴AE===,故选:A.12.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,则下列结论中:①>0;②am2+bm≤a﹣b(m为任意实数);③3a+c<1;④若M(x1,y)、N(x2,y)是抛物线上不同的两个点,则x1+x2≤﹣3.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:由题意,∵抛物线开口向下,∴a<0.又抛物线的对称轴是直线x=﹣=﹣1,∴b=2a<0.又抛物线交y轴正半轴,∴当x=0时,y=c>0.∴<0,故①错误.由题意,当x=﹣1时,y取最大值为y=a﹣b+c,∴对于抛物线上任意的点对应的函数值都≤a﹣b+c.∴对于任意实数m,当x=m时,y=am2+bm+c≤a﹣b+c.∴am2+bm≤a﹣b,故②正确.由图象可得,当x=1时,y=a+b+c<0,又b=2a,∴3a+c<0<1,故③正确.由题意∵抛物线为y=ax2+bx+c,∴x1+x2=﹣=﹣=﹣2>﹣3,故④错误.综上,正确的有②③共2个.故选:B.二、填空题(本题共10个小题,每小题3分,共30分)13.(3分)我国疆域辽阔,其中领水面积约为370000km2,把370000这个数用科学记数法表示为.【解答】解:370000=3.7×105,故答案为:3.7×105.14.(3分)分解因式:2mx2﹣8my2=.【分析】先提取公因式再运用公式法进行因式分解即可得出答案.【解答】解:原式=2m(x2﹣4y2)=2m(x+2y)(x﹣2y).故答案为:2m(x+2y)(x﹣2y).15.(3分)如图,AB∥CD,∠C=33°,OC=OE.则∠A=°.【解答】解:∵OC=OE,∠C=33°,∴∠E=∠C=33°,∴∠DOE=∠E+∠C=66°,∵AB∥CD,∴∠A=∠DOE=66°,故答案为:66.16.(3分)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A测得该楼顶部点C的仰角为60°,测得底部点B的俯角为45°,点A与楼BC的水平距离AD=50m,则这栋楼的高度为m(结果保留根号).【解答】解:由题意得:AD⊥BC,在Rt△ACD中,∠CAD=60°,AD=50m,∴CD=AD•tan60°=50(m),在Rt△ABD中,∠BAD=45°,∴BD=AD•tan45°=50(m),∴BC=BD+CD=(50+50)m,∴这栋楼的高度为(50+50)m,故答案为:(50+50).17.(3分)化简:÷(x﹣)=.【解答】解:原式=÷=•=,故答案为:.18.(3分)用一个圆心角为126°,半径为10cm的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为__cm.【解答】解:扇形的弧长==7π(cm),故圆锥的底面半径为7π÷2π=(cm).故答案为:.19.(3分)如图,已知点A(﹣7,0),B(x,10),C(﹣17,y),在平行四边形ABCO中,它的对角线OB与反比例函数y=(k≠0)的图象相交于点D,且OD:OB=1:4,则k=.【分析】作BE⊥x轴,DG⊥x轴,根据点的坐标及相似三角形性质可求出点D坐标继而求出k值.【解答】解:如图,作BE⊥x轴,DG⊥x轴,垂足分别为E、G,∵点A(﹣7,0),B(x,10),C(﹣17,y),∴BE=10,OF=17,OA=7,∴EF=BC=OA=7,∴OE=17+7=24,∵BE∥DG,∴△ODG∽△OBE,∵OD:OB=1:4,∴=,∴,∴D(﹣,6),∵点D在反比例函数图象上,∴k=﹣=﹣15.故答案为:﹣15.20.(3分)如图,已知∠AOB=50°,点P为∠AOB内部一点,点M为射线OA、点N为射线OB上的两个动点,当△PMN的周长最小时,则∠MPN=.【解答】解:作P点关于OB的对称点E,连接EP,EO,EM;∴EM=MP,∠MPO=∠OEM,∠EOM=∠MOP,作P点关于OA的对称点F,连接NF,PF,OF,∴PN=FN,∠OPN=∠OFN,∠PON=∠NOF,∴PM+PN+MN=EM+NF+MN≥EF,当E,M,N,F共线时,△PMN周长最短,又∵∠EOF=∠EOM+∠MOP+∠PON+∠NOF,∠AOB=∠MOP+∠PON,∴∠EOF=2∠AOB,又∵∠AOB=50°,∴∠EOF=100°,∴在△EOF中,∠OEM+∠OFN+∠EOF=180°,∴∠OEM+∠OFN=180°﹣100°=80°,∵∠MPO=∠OEM,∠OPN=∠OFN,∴∠MPO+∠OPN=80°,∵∠MPN=∠MPO+OPN=80°,故答案为:80°.21.(3分)如图,已知A1(1,﹣),A2(3,﹣),A3(4,0),A4(6,0),A5(7,),A6(9,),A7(10,0),A8(11,﹣)…,依此规律,则点A2024的坐标为.【答案】(2891,).22.(3分)在矩形ABCD中,AB=4cm,BC=8cm,点E在直线AD上,且DE=2cm,则点E到矩形对角线所在直线的距离是或或cm.【解答】解:如图1,过点E作EF⊥BD于点F,∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠ADC=90°,AC=BD,AD=BC,AB=CD,∵AB=4cm,BC=8cm,∴由勾股定理得cm,∴BD=cm,∵∠EFD=∠BAD=90°,∠EDF=∠BDA,∴△DEF∽△DBA,∴,∴,∴EF=cm;如图2,过点E作EM⊥AC于点M,∵AD=BC=8cm,DE=2cm,∴AE=6cm,∵∠AME=∠ADC=90°,∠EAM=∠CAD,∴△AEM∽△ACD,∴,∴∴EM=cm;如图3,过点E作EN⊥BD的延长线于点N,∴∠END=∠BAD=90°,∴∠EDN=∠BDA,∴△END∽△BAD,∴,∴,∴EN=cm;如图4,过点E作EH⊥AC的延长线于点H,∴∠AHE=∠ADC=90°,∴∠EAH=∠CAD,∴△AHE∽△ADC,∴,∵AD=BC=8cm,DE=2cm,∴AE=10cm,∴,∴EH=cm;综上,点E到矩形对角线所在直线的距离是cm或cm或cm,故答案为:或或.三、解答题(本题共6个小题,共54分)23.(7分)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5cm2,则△ABC的面积是cm2.【解答】解:(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N和点M,连接AM和CN,如图所示,点G即为所求作的点.(2)∵点G是△ABC的重心,∴AG=2MG,∵△ABG的面积等于5cm2,∴△BMG的面积等于2.5cm2,∴△ABM的面积等于7.5cm2.又∵AM是△ABC的中线,∴△ABC的面积等于15cm2.故答案为:15.24.(7分)为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动、为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有人;(2)在扇形统计图中,A组所占的百分比是,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示,请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.【解答】解:(1)参加本次问卷调查的学生共有12÷20%=60(人).故答案为:60.(2)A组的人数为60﹣20﹣10﹣12=18(人),∴在扇形统计图中,A组所占的百分比是18÷60×100%=30%.故答案为:30%.补全条形统计图如图所示.(3)列表如下:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共有12种等可能的结果,其中选中的2个社团恰好是B和C的结果有:(B,C),(C,B),共2种,∴选中的2个社团恰好是B和C的概率为=.25.(9分)为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B 种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A、B两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A、B两种电动车200辆,其中A种电动车的数量不多于B种电动车数量的一半.当购买A种电动车多少辆时,所需的总费用最少,最少费用是多少元?(3)该公司将购买的A、B两种电动车投放到出行市场后,发现消费者支付费用y元与骑行时间x min 之间的对应关系如图.其中A种电动车支付费用对应的函数为y1;B种电动车支付费用是10min之内,起步价6元,对应的函数为y2.请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A种电动车或B种电动车去公司上班.已知两种电动车的平均行驶速度均为300m/min(每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km,那么小刘选择B种电动车更省钱(填写A或B).②直接写出两种电动车支付费用相差4元时,x的值5或40.【解答】解:(1)设A、B两种电动车的单价分别为x元、y元,由题意得,,解得:,答:A、B两种电动车的单价分别为1000元、3500元.(2)设购买A种电动车m辆,则购买8种电动车(200﹣m)辆,m(200﹣m),解得:m≤,设所需购买总费用为w元,则w=1000m+3500(200﹣m)=﹣2500m+700000,∵﹣2500<0,∴w随着m的增大而减小,∵m取正整数,∴m=66时,w最少,=700000﹣2500x66=535000(元),∴w最少答:当购买A种电动车66辆时所需的总费用最少,最少费用为535000元.(3)①∵两种电动车的平均行驶速度均为300m/min,小刘家到公司的距离为8km,∴所用时间=26(分钟),根据函数图象可得当x>20时,y2<y1更省钱,∴小刘选择B种电动车更省钱,故答案为:B.②设y1=k1x,将(20,8)代入得,8=20k1,解得:k1=,∴y1=x,当0<x≤10时,y2=6,当x>10时,设y2=k2x+b2,将(10,6)、(20,8)代入得,,解得:,∴y2=x+4,依题意,当0<x<10时,y2﹣y1=4,即6﹣x=4,解得:x=5,当x>10时,|y2﹣y1|=4,即|x+4﹣x|=4,解得:x=0(舍去)或x=40,故答案为:5或40.【点评】本题考查了二元一次方程组的应用,一次函数的应用,找到等量关系是解题的关键.26.(10分)如图1,O是正方形ABCD对角线上一点,以O为圆心,OC长为半径的⊙O与AD相切于点E,与AC相交于点F.(1)求证:AB与⊙O相切;(2)若正方形ABCD的边长为+1,求⊙O的半径;(3)如图2,在(2)的条件下,若点M是半径OC上的一个动点,过点M作MN⊥OC交于点N.当CM:FM=1:4时,求CN的长.【解答】(1)证明:如图,连接OE,过点O作OG⊥AB于点G,∵⊙O与AD相切于点E,∴OE⊥AD,∵四边形ABCD是正方形,AC是正方形的对角线,∴∠BAC=∠DAC=45°,∴OE=OG,∵OE为⊙O的半径,∴OG为⊙O的半径,∵OG⊥AB,∴AB与⊙O相切;(2)解:如图,∵AC为正方形ABCD的对角线,∴∠DAC=45°,∵⊙O与AD相切于点E,∴∠AEO=90°,∴由(1)可知AE=OE,设AE=OE=OC=OF=R,在Rt△AEO中,∵AE2+EO2=AO2,∴AO2=R2+R2,∵R>0,∴,又∵正方形ABCD的边长为+1,在Rt△ADC中,∴,∵OA+OC=AC,∴,∴,∴⊙O的半径为;(3)解:如图,连接FN,ON,设CM=k,∵CM:FM=1:4,∴CF=5k,∴OC=ON=2.5k,∴OM=OC﹣CM=1.5k,在Rt△OMN中,由勾股定理得:MN=2k,在Rt△CMN中,由勾股定理得:,又∵,∴,∴.【点评】本题考查了圆的综合应用,其中掌握圆的相关知识点、正方形的性质、角平分线性质勾股定理的计算等知识点的应用是本题的解题关键.27.(10分)综合与实践问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象.纸片△ABC和△DEF满足∠ACB=∠EDF=90°,AC=BC=DF=DE=2cm.下面是创新小组的探究过程.操作发现(1)如图1,取AB的中点O,将两张纸片放置在同一平面内,使点O与点F重合.当旋转△DEF纸片交AC边于点H、交BC边于点G时,设AH=x(1<x<2),BG=y,请你探究出y与x的函数关系式,并写出解答过程.问题解决(2)如图2,在(1)的条件下连接GH,发现△CGH的周长是一个定值.请你写出这个定值,并说明理由.拓展延伸(3)如图3,当点F在AB边上运动(不包括端点A、B),且始终保持∠AFE=60°.请你直接写出△DEF纸片的斜边EF与△ABC纸片的直角边所夹锐角的正切值2+或2﹣(结果保留根号).【解答】解:(1)如图:∵∠ACB=∠EDF=90°,且AC=BC=DF=DE=2cm,∴∠A=∠B=∠DFE=45°,∴∠AFH+∠BFG=∠BFG+∠FGB=135°,∴∠AFH=∠FGB,∴△AFH∽△BGF,∴,∴AH•BG=AF•BF,在Rt△ACB中,AC=BC=2,∴,∵O是AB的中点,点O与点F重合,∴,∴,∴,∴y与x的函数关系式为;(2)△CGH的周长定值为2,理由如下:∵AC=BC=2,AH=x,BG=y,∴CH=2﹣x,CG=2﹣y,在Rt△HCG中,∴===,将(1)中xy=2代入得:=,∵1<x<2,y=,∴1<y<2,∴x+y>2,∴GH=x+y﹣2,∴△CHG的周长=CH+CG+GH=2﹣x+2﹣y+x+y﹣2=2;(3)①过点F作FN⊥AC于点N,作FH的垂直平分线交FN于点M,连接MH,如图:∵∠AFE=60°,∠A=45°,∴∠AHF=75°,∴FM=MH,∵∠FNH=90°,∴∠NFH=15°,∵FM=MH,∴∠NFH=∠MHF=15°,∴∠NMH=30°,在Rt△MNH中,设NH=k,∴MH=MF=2k,∴MN==k,∴FN=MF+MN=(2+)k,在Rt△FNH中,;②过点F作FN⊥BC于点N,作FG的垂直平分线交BG于点M,连接FM,∵∠AFE=60°,∠B=45°,∴∠FGB=∠AFE﹣∠B=15°,∵GM=MF,∴∠FGB=∠GFM=15°,∴∠FMB=30°,在Rt△FNM中,设FN=k,∴GM=MF=2k,由勾股定理得MN==k,∴GN=GM+MN=(2+)k,在Rt△FNG中,,综上所述,tan或,故答案为:2+或2﹣.【点评】本题考查几何变换综合应用,涉及相似三角形判定与性质,等腰直角三角形性质及应用,锐角三角函数,勾股定理及应用等知识,解题的关键是作辅助线,构造直角三角形解决问题.28.(11分)综合与探究如图,在平面直角坐标系中,已知抛物线y=﹣x2+bx+c与直线相交于A,B两点,其中点A(3,4),B (0,1).(1)求该抛物线的函数解析式;(2)过点B作BC∥x轴交抛物线于点C.连接AC,在抛物线上是否存在点P使tan∠BCP=tan∠ACB.若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到y1=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点D,点E为原抛物线对称轴上的一点,F是平面直角坐标系内的一点,当以点B,D,E,F为顶点的四边形是菱形时,请直接写出点F的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(3,4),B(0,1),∴,解得:,∴该抛物线的函数解析式为y=﹣x2+4x+1;(2)存在.理由如下:∵BC∥x轴,且B(0,1),∴点C的纵坐标为1,∴1=﹣x2+4x+1,解得:x1=0(舍去),x2=4,∴C(4,1),过点A作AQ⊥BC于Q,设直线CP交y轴于点M,如图,在Rt△ACQ中,∵A(3,4),∴Q(3,1),∵tan∠BCP=tan∠ACB,∴tan∠BCP=×=×=,∵BC=4,∠CBM=90°,∴=tan∠BCP=,∴BM=BC=×4=2,∴|y M﹣1|=2,∴y M=3或﹣1,∴M1(0,3),M2(0,﹣1),∴直线CM1的解析式为y=﹣x+3,直线CM2的解析式为y=x﹣1,由,解得,(舍去),由,解得,(舍去),∴P1(,),P2(﹣,﹣),综上所述,满足条件的点P的坐标为P1(,),P2(﹣,﹣);(3)∵y=﹣x2+4x+1=﹣(x﹣2)2+5,∴原抛物线的对称轴为直线x=2,顶点坐标为(2,5),∵将该抛物线向左平移2个单位长度得到新抛物线y′,∴y′=﹣x2+5,联立得,解得:,∴D(1,4),又B(0,1),设E(2,t),F(m,n),当BD、EF为对角线时,则,解得:,∴F(﹣1,3);当BE、DF为对角线时,则,解得:或,∴F(1,4)与点D重合,不符合题意,舍去,或F(1,﹣2);当BF、DE为对角线时,则,解得:或,∴F(3,4﹣)或F(3,4+);综上所述,点F的坐标为(﹣1,3)或(1,﹣2)或(3,4﹣)或(3,4+).。

黑龙江省绥化市2020年中考数学试卷

黑龙江省绥化市2020年中考数学试卷

2020年黑龙江省绥化市中考数学试卷一、选择题(共10小题).1.(3分)化简|﹣3|的结果正确的是()A.﹣3B.﹣﹣3C.+3D.3﹣2.(3分)两个长方体按图示方式摆放,其主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.b2•b3=b6B.(a2)3=a6C.﹣a2÷a=a D.(a3)2•a=a6 4.(3分)下列图形是轴对称图形而不是中心对称图形的是()A.B.C.D.5.(3分)下列等式成立的是()A.=±4B.=2C.﹣a=D.﹣=﹣8 6.(3分)“十•一”国庆期间,学校组织466名八年级学生参加社会实践活动,现己准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据题意,得()A.B.C.D.7.(3分)如图,四边形ABCD是菱形,E、F分别是BC、CD两边上的点,不能保证△ABE 和△ADF一定全等的条件是()A.∠BAF=∠DAE B.EC=FC C.AE=AF D.BE=DF8.(3分)在一个不透明的袋子中装有黑球m个、白球n个、红球3个,除颜色外无其它差别,任意摸出一个球是红球的概率是()A.B.C.D.9.(3分)将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是()A.y=2(x﹣6)2B.y=2(x﹣6)2+4C.y=2x2D.y=2x2+410.(3分)如图,在Rt△ABC中,CD为斜边AB的中线,过点D作DE⊥AC于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:①DE=BC;②四边形DBCF是平行四边形;③EF=EG;④BC=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.(3分)数字8500000用科学记数法表示为.12.(3分)甲、乙两位同学在近五次数学测试中,平均成绩均为90分,方差分别为S甲2=0.70,S乙2=0.73,甲、乙两位同学成绩较稳定的是同学.13.(3分)黑龙江省某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y(km)与行驶时间x(h)的函数关系如图所示,2小时后货车的速度是km/h.14.(3分)因式分解:m3n2﹣m=.15.(3分)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是度.16.(3分)在Rt△ABC中,∠C=90°,若AB﹣AC=2,BC=8,则AB的长是.17.(3分)在平面直角坐标系中,△ABC和△A1B1C1的相似比等于,并且是关于原点O 的位似图形,若点A的坐标为(2,4),则其对应点A1的坐标是.18.(3分)在函数y=+中,自变量x的取值范围是.19.(3分)如图,正五边形ABCDE内接于⊙O,点P为上一点(点P与点D,点E不重合),连接PC、PD,DG⊥PC,垂足为G,∠PDG等于度.20.(3分)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.21.(3分)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是.三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)(1)如图,已知线段AB和点O,利用直尺和圆规作△ABC,使点O是△ABC 的内心(不写作法,保留作图痕迹);(2)在所画的△ABC中,若∠C=90°,AC=6,BC=8,则△ABC的内切圆半径是.23.(6分)如图,热气球位于观测塔P的北偏西50°方向,距离观测塔100km的A处,它沿正南方向航行一段时间后,到达位于观测塔P的南偏西37°方向的B处,这时,B处距离观测塔P有多远?(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19.)24.(6分)如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O 均为格点(每个小正方形的顶点叫做格点).(1)作点A关于点O的对称点A1;(2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线段A1B1;(3)连接AB1,求出四边形ABA1B1的面积.25.(6分)为了解本校九年级学生体育测试项目“400米跑”的训练情况,体育教师在2019年1﹣5月份期间,每月随机抽取部分学生进行测试,将测试成绩分为:A,B,C,D四个等级,并绘制如图两幅统计图根据统计图提供的信息解答下列问题:(1)月份测试的学生人数最少,月份测试的学生中男生、女生人数相等;(2)求扇形统计图中D等级人数占5月份测试人数的百分比;(3)若该校2019年5月份九年级在校学生有600名,请你估计出测试成绩是A等级的学生人数.26.(7分)如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若=,求的值.27.(7分)如图,在矩形OABC中,AB=2,BC=4,点D是边AB的中点,反比例函数y1=(x>0)的图象经过点D,交BC边于点E,直线DE的解析式为y2=mx+n(m≠0).(1)求反比例函数y1=(x>0)的解析式和直线DE的解析式;(2)在y轴上找一点P,使△PDE的周长最小,求出此时点P的坐标;(3)在(2)的条件下,△PDE的周长最小值是.28.(9分)如图,在正方形ABCD中,AB=4,点G在边BC上,连接AG,作DE⊥AG于点E,BF⊥AG于点F,连接BE、DF,设∠EDF=α,∠EBF=β,=k.(1)求证:AE=BF;(2)求证:tanα=k•tanβ;(3)若点G从点B沿BC边运动至点C停止,求点E,F所经过的路径与边AB围成的图形的面积.29.(10分)如图1,抛物线y=﹣(x+2)2+6与抛物线y1=﹣x2+tx+t﹣2相交y轴于点C,抛物线y1与x轴交于A、B两点(点B在点A的右侧),直线y2=kx+3交x轴负半轴于点N,交y轴于点M,且OC=ON.(1)求抛物线y1的解析式与k的值;(2)抛物线y1的对称轴交x轴于点D,连接AC,在x轴上方的对称轴上找一点E,使以点A,D,E为顶点的三角形与△AOC相似,求出DE的长;(3)如图2,过抛物线y1上的动点G作GH⊥x轴于点H,交直线y2=kx+3于点Q,若点Q'是点Q关于直线MG的对称点,是否存在点G(不与点C重合),使点Q'落在y轴上?若存在,请直接写出点G的横坐标,若不存在,请说明理由.参考答案1.解:∵,∴|﹣3|==.故选:D.2.解:从正面看有两层,底层是一个矩形,上层是一个长度较小的矩形.故选:C.3.解:A.b2•b3=b5,故本选项不合题意;B.(a2)3=a6,故本选项符合题意;C.﹣a2÷a=﹣a,故本选项不合题意;D.(a3)2•a=a7,故本选项不合题意.故选:B.4.解:A、既是轴对称图形又是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项符合题意;D、既是轴对称图形又是中心对称图形,故本选项不符合题意.故选:C.5.解:A.,故本选项不合题意;B.,故本选项不合题意;C.,故本选项不合题意;D.,故本选项符合题意.故选:D.6.解:依题意,得:.故选:A.7.解:A.∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵∠BAF=∠DAE,∴∠BAE=∠CAF,∴△ABE≌△ADF(AAS),故选项A不符合题意;B..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,BC=BD,∵EC=FC,∴BE=DF,∴△ABE≌△ADF(SAS),故选项B不符合题意;C..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵AE=AF,∴△ABE和△ADF只满足两边和一边的对角相等,两个三角形不一定全等,故选项C符合题意;D..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DE,∴△ABE≌△ADF(SAS),故选项D不符合题意.故选:C.8.解:∵袋子中一共有(m+n+3)个小球,其中红球有3个,∴任意摸出一个球是红球的概率是,故选:B.9.解:将将抛物线y=2(x﹣3)2+2向左平移3个单位长度所得抛物线解析式为:y=2(x ﹣3+3)2+2,即y=2x2+2;再向下平移2个单位为:y=2x2+2﹣2,即y=2x2.故选:C.10.【解答】解;∵CD为斜边AB的中线,∴AD=BD,∵∠ACB=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∴DE是△ABC的中位线,∴AE=CE,DE=BC;①正确;∵EF=DE,∴DF=BC,∴四边形DBCF是平行四边形;②正确;∴CF∥BD,CF=BD,∵∠ACB=90°,CD为斜边AB的中线,∴CD=AB=BD,∴CF=CD,∴∠CFE=∠CDE,∵∠CDE+∠EGC=180°,∠EGF+∠EGC=180°,∴∠CDE=∠EGF,∴∠CFE=∠EGF,∴EF=EG,③正确;作EH⊥FG于H,如图所示:则∠EHF=∠CHE=90°,∠HEF+∠EFH=∠HEF+∠CEH=90°,FH=GH=FG=1,∴∠EFH=∠CEH,CH=GC+GH=3+1=4,∴△EFH∽△CEH,∴=,∴EH2=CH×FH=4×1=4,∴EH=2,∴EF===,∴BC=2DE=2EF=2,④正确;故选:D.11.解:数字8500000用科学记数法表示为8.5×106,故答案为:8.5×106.12.解:∵S甲2=0.70,S乙2=0.73,∴S甲2<S乙2,∴甲、乙两位同学成绩较稳定的是甲同学,故答案为:甲.13.解:由图象可得:货车行驶的路程y(km)与行驶时间x(h)的函数关系为y=78x(x ≤2),和x>2时设其解析式为:y=kx+b,把(2,156)和(3,221)代入解析式,可得:,解得:,所以解析式为:y=65x+26(x>2),所以2小时后货车的速度是65km/h,故答案为:65.14.解:m3n2﹣m=m(m2n2﹣1)=m(mn+1)(mn﹣1).故答案为:m(mn+1)(mn﹣1).15.解:设这个圆锥的侧面展开图的圆心角为n°,根据题意得2π•2.5=,解得n=100,即这个圆锥的侧面展开图的圆心角为100°.故答案为:100.16.解:∵在Rt△ABC中,∠C=90°,AB﹣AC=2,BC=8,∴AC2+BC2=AB2,即(AB﹣2)2+82=AB2,解得AB=17.故答案为:17.17.解:∵△ABC和△A1B1C1的相似比等于,并且是关于原点O的位似图形,而点A的坐标为(2,4),∴点A对应点A1的坐标为(2×2,2×4)或(﹣2×2,﹣2×4),即(4,8)或(﹣4,﹣8).故答案为(4,8)或(﹣4,﹣8).18.解:由题可得,,解得,∴自变量x的取值范围是x≥3且x≠5,故答案为:x≥3且x≠5.19.解:连接OC、OD,如图所示:∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,∵DG⊥PC,∴∠PGD=90°,∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,故答案为:54.20.解:设原计划每天加工零件x个,则实际每天加工零件1.5x个,依题意,得:﹣=2.故答案为:﹣=2.21.解:∵图1中黑点的个数2×1×(1+1)÷2+(1﹣1)=2,图2中黑点的个数2×2×(1+2)÷2+(2﹣1)=7,图3中黑点的个数2×3×(1+3)÷2+(3﹣1)=14,……∴第n个图形中黑点的个数为2n(n+1)÷2+(n﹣1)=n2+2n﹣1,∴第10个图形中黑点的个数为102+2×10﹣1=119.故答案为:119.22.解:(1)如图,△ABC即为所求.(2)设内切圆的半径为r.∵∠C=90°,AC=6,BC=8,∴AB===10,∴•AC•BC=•r•(AB+AC+BC),∴r==2,故答案为2.23.解:由已知得,∠A=50°,∠B=37°,P A=100,在Rt△P AC中,∵sin A=,∴PC=P A•sin50°≈77,在Rt△PBC中,∵sin B=,∴PB=≈128(km),答:这时,B处距离观测塔P有128km.24.解:(1)如图所示,点A1即为所求;(2)如图所示,线段A1B1即为所求;(3)如图,连接BB1,过点A作AE⊥BB1,过点A1作A1F⊥BB1,则四边形ABA1B1的面积=+=×8×2+×8×4=24.25.解:(1)根据折线统计图给出的数据可得:1月份测试的学生人数最少,4月份测试的学生中男生、女生人数相等;故答案为:1,4;(2)D等级人数占5月份测试人数的百分比是:1﹣25%﹣40%﹣=15%;(3)根据题意得:600×25%=150(名),答:测试成绩是A等级的学生人数有150名.26.解:(1)连接OB,如图,∵CD是⊙O的直径,∴∠DBC=90°,∴∠D+∠BCD=90°,∵OB=OC,∴∠OCB=∠OBC,∴∠D+∠OBC=90°,∵∠D=∠BAC,∠BAC=∠CBG,∴∠CBG+∠OBC=90°,即∠OBG=90°,∴直线BG与⊙O相切;(2)∵OA=OC,OH⊥AC,∴∠COH=∠COA,CH=,∵∠ABC=∠AOC,∴∠EBF=∠COH,∵EF⊥BC,OH⊥AC,∴∠BEF=∠OHC=90°,∴△BEF∽△COH,∴,∵=,OC=OD,∴,∵CH=AC,∴,27.解:(1)∵点D是边AB的中点,AB=2,∴AD=1,∵四边形OABC是矩形,BC=4,∴D(1,4),∵反比例函数y1=(x>0)的图象经过点D,∴k=4,∴反比例函数的解析式为y=(x>0),当x=2时,y=2,∴E(2,2),把D(1,4)和E(2,2)代入y2=mx+n(m≠0)得,,∴,∴直线DE的解析式为y=﹣2x+6;(2)作点D关于y轴的对称点D′,连接D′E交y轴于P,连接PD,此时,△PDE的周长最小,∵D点的坐标为(1,4),∴D′的坐标为(﹣1,4),设直线D′E的解析式为y=ax+b,∴,解得:,∴直线D′E的解析式为y=﹣x+,令x=0,得y=,∴点P的坐标为(0,);(3)∵D(1,4),E(2,2),∴BE=2,BD=1,∴DE==,由(2)知,D′的坐标为(﹣1,4),∴BD′=3,∴D′E==,∴△PDE的周长最小值=DE+D′E=+,故答案为:+.28.解:(1)证明:在正方形ABCD中,AB=BC=AD,∠BAD=∠ABC=90°,∵DE⊥AG,BF⊥AG,∴∠AED=∠BF A=90°,∴∠ADE+∠DAE=90°,∵∠BAF+∠DAE=90°,∴∠ADE=∠BAF,∴△ABF≌△DAE(AAS),∴AE=BF;(2)在Rt△DEF和Rt△EFB中,tanα=,tanβ=,∴.由①可知∠ADE=∠BAG,∠AED=∠GBA=90°,∴△AED∽△GBA,∴,由①可知,AE=BF,∴,∴,∵=k,AB=BC,∴=k,∴=k.∴tanα=k tanβ.(3)∵DE⊥AG,BF⊥AG,∴∠AED=∠BF A=90°,∴当点G从点B沿BC边运动至点C停止时,点E经过的路径是以AD为直径,圆心角为90°的圆弧,同理可得点F经过的路径,两弧交于正方形的中心点O,如图.∵AB=AD=4,∴所围成的图形的面积为S=S△AOB=×4×4=4.29.解:(1)当x=0时,得y=﹣(x+2)2+6=﹣2+6=4,∴C(0,4),把C(0,4)代入y1=﹣x2+tx+t﹣2得,t﹣2=4,∴t=6,∴y1=﹣x2+3x+4,∵ON=OC,∴N(﹣4,0),把N(﹣4,0)代入y2=kx+3中,得﹣4k+3=0,解得,k=;∴抛物线y1的解析式为y1=﹣x2+3x+4,k的值为.(2)连接AE,如图1,令y=0,得y1=﹣x2+3x+4=0,解得,x=﹣1或4,∴A(﹣1,0),B(4,0),∴对称轴为:x=,∴D(,0),∴OA=1,OC=4,OD=,AD=,①当△AOC∽△EDA时,,即,∴DE=,②当△AOC∽△ADE时,,即,∴DE=10,综上,DE=或10;(3)点G的横坐标为或或或.如图,点Q'是点Q关于直线MG的对称点,且点Q'在y轴上时,由轴对称性质可知,QM =Q'M,QG=Q'G,∠Q'MG=∠QMG,∵QG⊥x轴,∴QG∥y轴,∴∠Q'MG=∠QGM,∴∠QMG=∠QGM,∴QM=QG,∴QM=Q'M=QG=Q'G,∴四边形QMQ'G为菱形,∴GQ'∥QN,作GP⊥y轴于点P,设G(a,﹣a2+3a+4),则Q(a,a+3),∴PG=|a|,Q'G=GQ=|(a+3)﹣(﹣a2+3a+4)|=|a2﹣a﹣1|,∵GQ'∥QN,∴∠GQ'P=∠NMO,在Rt△NMO中,MN==5,∴sin∠GQ'P=sin∠NMO=,∴.解得a1=,a2=,a3=,a4=.经检验,a1=,a2=,a3=,a4=都是所列方程的解.综合以上可得,点G的横坐标为或或或.。

黑龙江省绥化市2020中考数学经典试题

黑龙江省绥化市2020中考数学经典试题

2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若55+55+55+55+55=25n ,则n 的值为( )A .10B .6C .5D .32.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29D .193.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为( )A .0.86×104B .8.6×102C .8.6×103D .86×1024.如图,AB ∥CD ,点E 在CA 的延长线上.若∠BAE=40°,则∠ACD 的大小为( )A .150°B .140°C .130°D .120°5.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E 的正方体平移至如图2所示的位置,下列说法中正确的是( )A .左、右两个几何体的主视图相同B .左、右两个几何体的左视图相同C .左、右两个几何体的俯视图不相同D .左、右两个几何体的三视图不相同6.二次函数2y x =的对称轴是( )A .直线y 1=B .直线x 1=C .y 轴D .x 轴7.如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( ).A .25︒B .30︒C .35︒D .40︒8.如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米B .30sinα米C .30tanα米D .30cosα米9.一元二次方程x 2+kx ﹣3=0的一个根是x=1,则另一个根是( )A .3B .﹣1C .﹣3D .﹣210.下列各数中是有理数的是( )A .πB .0C .2D .35二、填空题(本题包括8个小题)11.已知二次函数y=ax 2+bx (a≠0)的最小值是﹣3,若关于x 的一元二次方程ax 2+bx+c=0有实数根,则c 的最大值是_____.12.若方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则x 1+x 2﹣x 1x 2的值为_____.13.如图:图象①②③均是以P 0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P 1P 2P 3,第二次移动后图形①②③的圆心依次为P 4P 5P 6…,依此规律,P 0P 2018=_____个单位长度.14.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是__________.15.因式分解:9a 2﹣12a+4=______.16.因式分解:223x 6xy 3y -+- =17.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.18.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为__________2cm.三、解答题(本题包括8个小题)19.(6分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.20.(6分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.21.(6分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,7,2,求AD的长.22.(8分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.23.(8分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.求AP,BP的长(参考数据:2≈1.4,3≈1.7,5≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?24.(10分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=2,反比例函数y=kx的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=kx图象上时,求点D经过的路径长.25.(10分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.26.(12分)已知关于x 的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.求k 的取值范围;写出一个满足条件的k 的值,并求此时方程的根.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.2.A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为4,9故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.3.C【解析】【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8 600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).4.B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.5.B【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.6.C【解析】【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).7.B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.考点:3.线段垂直平分线性质;3.轴对称作图.8.C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.9.C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【考点】根与系数的关系;一元二次方程的解.10.B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C是无理数,故本选项错误;D故选B.【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.二、填空题(本题包括8个小题)11.3【解析】【分析】由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.【详解】∵一元二次方程ax2+bx+c=0有实数根,∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,∴-c≥-3,即c≤3,∴c的最大值为3.故答案为:3.【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c 有交点是解决问题的关键.12.1【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案为1.13.1【解析】【分析】根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.【详解】由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=1,故答案为1.【点睛】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.14.同位角相等,两直线平行.【解析】试题解析:利用三角板中两个60°相等,可判定平行考点:平行线的判定15.(3a﹣1)1【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.16.﹣3(x﹣y)1【解析】解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案为:﹣3(x﹣y)1.点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.17.60 17.【解析】【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论. 【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC =ADAC,∴x5=12-x12,∴x=6017,故答案为60 17.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.18.16【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、解答题(本题包括8个小题)19.(1)证明见解析;(2)3 2【解析】试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.试题解析:(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD ⊥AB ,∵△ABC 是等腰三角形,∴AD=BD ,∵OB=OC ,∴OD 是△ABC 的中位线,∴OD ∥AC ,∵DE ⊥AC ,∴OD ⊥DE ,∵D 点在⊙O 上,∴DE 为⊙O 的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=12BC=2, ∴,∴S△ABC =12AB•CD=12, ∵DE ⊥AC ,∴DE=12AD=12, AE=AD•cos30°=3,∴S△ODE =12OD•DE=12S △ADE =12AE•DE=12, ∵S△BOD =12S △BCD =12×12S △ABC =14,∴S△OEC =S △ABC -S △BOD -S △ODE -S △ADE 2=2. 20. (1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A 型电脑每台利润×A 电脑数量+B 型电脑每台利润×B 电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.21.(1)证明见解析;(2)【解析】【分析】(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:AB AC,FB=12BC,根据勾股定理计算AF、OB、AD的长即可.【详解】(1)如图,连接OA ,交BC 于F ,则OA=OB ,∴∠D=∠DAO ,∵∠D=∠C ,∴∠C=∠DAO ,∵∠BAE=∠C ,∴∠BAE=∠DAO ,∵BD 是⊙O 的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE ⊥OA ,∴AE 与⊙O 相切于点A ;(2)∵AE ∥BC ,AE ⊥OA , ∴OA ⊥BC ,∴AB AC =,FB=12BC , ∴AB=AC ,∵72,∴7,2,在Rt △ABF 中,()()22227-,在Rt △OFB 中,OB 2=BF 2+(OB ﹣AF )2,∴OB=4,∴BD=8,∴在Rt △ABD 中,22648214BD AB --=【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.22.(1)13;(2)13.【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:1 3(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=1 3.考点:概率的计算.23.(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时【解析】【分析】(1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.【详解】(1)如图,过点P作PE⊥MN,垂足为E,由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,∵PE=30海里,∴AP=60海里,∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里,在Rt△PEB中,BP22PE EB=2≈42海里,故AP=60海里,BP=42(海里);(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据题意,得604224 1.260x x-=,解得x=20,经检验,x=20是原方程的解,甲船的速度为1.2x=1.2×20=24(海里/时).,答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点睛】本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.24.(1)k=2;(2)点D6.【解析】【分析】(1)根据题意求得点B的坐标,再代入kyx=求得k值即可;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC 于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.【详解】(1)∵△AOB和△COD为全等三的等腰直角三角形,2,∴2,∴点B22),代入kyx=得k=2;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,∵OC=OD=2,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函数图象上,∴t(t+2)=2,解得t=31-或t=﹣3﹣1(舍去),∴D′(3﹣1,3+1),∴DD′=22-+++-=,(311)(311)6即点D经过的路径长为6.【点睛】本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.25.(1);(2),见解析.【解析】【分析】(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【详解】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种,∴拿出两只,恰好为一双的概率为=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.26.方程的根120=2x x =-或【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【详解】(1)∵关于x 的一元二次方程x 1﹣1(k ﹣a )x+k (k+1)=0有两个不相等的实数根,∴△=[﹣1(k ﹣1)]1﹣4k (k ﹣1)=﹣16k+4>0, 解得:k <14. (1)当k=0时,原方程为x 1+1x=x (x+1)=0,解得:x 1=0,x 1=﹣1.∴当k=0时,方程的根为0和﹣1.【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个2.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°3.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是().A.AD AEDB EC=B.AB ACAD AE=C.AC ECAB DB=D.AD DEDB BC=4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=5.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.86.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)7.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°8.4的算术平方根为()A.2±B.2C.2±D.29.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.60050x-=450xB.60050x+=450xC.600x=45050x+D.600x=45050x-10.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )A.B.C.D.二、填空题(本题包括8个小题)11.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).13.如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB=10,AC=6,则DF 的长为__.14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____. 15.若点(),2P m -与点()3,Q n 关于原点对称,则2018()m n +=______.16.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于 .17.如图,在ABCD 中,AB=6cm ,AD=9cm ,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=42cm ,则EF +CF 的长为 cm .18.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为_____.三、解答题(本题包括8个小题)19.(6分)2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A 、B 、C 、D 四份听力材料,它们的难易程度分别是易、中、难、难;a ,b 是两份口语材料,它们的难易程度分别是易、难.从四份听力材料中,任选一份是难的听力材料的概率是 .用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,20.(6分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元)。

2020年绥化市中考数学试题、试卷(解析版)

2020年绥化市中考数学试题、试卷(解析版)

2020年绥化市中考数学试题、试卷(解析版)一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B 铅笔将你的选项所对应的大写字母涂黑1.(3分)化简|√2−3|的结果正确的是( )A .√2−3B .−√2−3C .√2+3D .3−√22.(3分)两个长方体按图示方式摆放,其主视图是( )A .B .C .D .3.(3分)下列计算正确的是( )A .b 2•b 3=b 6B .(a 2)3=a 6C .﹣a 2÷a =aD .(a 3)2•a =a 64.(3分)下列图形是轴对称图形而不是中心对称图形的是( )A .B .C .D .5.(3分)下列等式成立的是( )A .√16=±4B .√−83=2C .﹣a √1a =√−aD .−√64=−86.(3分)“十•一”国庆期间,学校组织466名八年级学生参加社会实践活动,现己准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x 辆,37座客车y 辆.根据题意,得( )A .{x +y =1049x +37y =466B .{x +y =1037x +49y =466C .{x +y =46649x +37y =10D .{x +y =46637x +49y =10 7.(3分)如图,四边形ABCD 是菱形,E 、F 分别是BC 、CD 两边上的点,不能保证△ABE和△ADF 一定全等的条件是( )A .∠BAF =∠DAEB .EC =FC C .AE =AFD .BE =DF8.(3分)在一个不透明的袋子中装有黑球m 个、白球n 个、红球3个,除颜色外无其它差别,任意摸出一个球是红球的概率是( )A .3m+nB .3m+n+3C .m+n m+n+3D .m+n 39.(3分)将抛物线y =2(x ﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是( )A .y =2(x ﹣6)2B .y =2(x ﹣6)2+4C .y =2x 2D .y =2x 2+410.(3分)如图,在Rt △ABC 中,CD 为斜边AB 的中线,过点D 作DE ⊥AC 于点E ,延长DE 至点F ,使EF =DE ,连接AF ,CF ,点G 在线段CF 上,连接EG ,且∠CDE +∠EGC =180°,FG =2,GC =3.下列结论:①DE =12BC ;②四边形DBCF 是平行四边形;③EF =EG ;④BC =2√5.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.(3分)新型冠状病毒蔓延全球,截至北京时间2020年6月20日,全球新冠肺炎累计确诊病例超过8500000例,数字8500000用科学记数法表示为 .12.(3分)甲、乙两位同学在近五次数学测试中,平均成绩均为90分,方差分别为S甲2=0.70,S 乙2=0.73,甲、乙两位同学成绩较稳定的是 同学.13.(3分)黑龙江省某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y (km )与行驶时间x (h )的函数关系如图所示,2小时后货车的速度是 km /h .14.(3分)因式分解:m 3n 2﹣m = .15.(3分)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是 度.16.(3分)在Rt △ABC 中,∠C =90°,若AB ﹣AC =2,BC =8,则AB 的长是 .17.(3分)在平面直角坐标系中,△ABC 和△A 1B 1C 1的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为(2,4),则其对应点A 1的坐标是 .18.(3分)在函数y =√x−3√x+11x−5中,自变量x 的取值范围是 . 19.(3分)如图,正五边形ABCDE 内接于⊙O ,点P 为DÊ上一点(点P 与点D ,点E 不重合),连接PC 、PD ,DG ⊥PC ,垂足为G ,∠PDG 等于 度.20.(3分)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x 个,可列方程 .21.(3分)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是.三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)(1)如图,已知线段AB和点O,利用直尺和圆规作△ABC,使点O是△ABC 的内心(不写作法,保留作图痕迹);(2)在所画的△ABC中,若∠C=90°,AC=6,BC=8,则△ABC的内切圆半径是.23.(6分)如图,热气球位于观测塔P的北偏西50°方向,距离观测塔100km的A处,它沿正南方向航行一段时间后,到达位于观测塔P的南偏西37°方向的B处,这时,B处距离观测塔P有多远?(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19.)24.(6分)如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O 均为格点(每个小正方形的顶点叫做格点).(1)作点A关于点O的对称点A1;(2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线段A1B1;(3)连接AB1,求出四边形ABA1B1的面积.25.(6分)为了解本校九年级学生体育测试项目“400米跑”的训练情况,体育教师在2019年1﹣5月份期间,每月随机抽取部分学生进行测试,将测试成绩分为:A,B,C,D四个等级,并绘制如图两幅统计图根据统计图提供的信息解答下列问题:(1)月份测试的学生人数最少,月份测试的学生中男生、女生人数相等;(2)求扇形统计图中D等级人数占5月份测试人数的百分比;(3)若该校2019年5月份九年级在校学生有600名,请你估计出测试成绩是A等级的学生人数.26.(7分)如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD =54,求EFAC的值.27.(7分)如图,在矩形OABC 中,AB =2,BC =4,点D 是边AB 的中点,反比例函数y 1=k x(x >0)的图象经过点D ,交BC 边于点E ,直线DE 的解析式为y 2=mx +n (m ≠0). (1)求反比例函数y 1=k x (x >0)的解析式和直线DE 的解析式;(2)在y 轴上找一点P ,使△PDE 的周长最小,求出此时点P 的坐标;(3)在(2)的条件下,△PDE 的周长最小值是 .28.(9分)如图,在正方形ABCD 中,AB =4,点G 在边BC 上,连接AG ,作DE ⊥AG 于点E ,BF ⊥AG 于点F ,连接BE 、DF ,设∠EDF =α,∠EBF =β,BG BC =k .(1)求证:AE =BF ;(2)求证:tan α=k •tan β;(3)若点G 从点B 沿BC 边运动至点C 停止,求点E ,F 所经过的路径与边AB 围成的图形的面积.29.(10分)如图1,抛物线y=−12(x+2)2+6与抛物线y1=﹣x2+12tx+t﹣2相交y轴于点C,抛物线y1与x轴交于A、B两点(点B在点A的右侧),直线y2=kx+3交x轴负半轴于点N,交y轴于点M,且OC=ON.(1)求抛物线y1的解析式与k的值;(2)抛物线y1的对称轴交x轴于点D,连接AC,在x轴上方的对称轴上找一点E,使以点A,D,E为顶点的三角形与△AOC相似,求出DE的长;(3)如图2,过抛物线y1上的动点G作GH⊥x轴于点H,交直线y2=kx+3于点Q,若点Q'是点Q关于直线MG的对称点,是否存在点G(不与点C重合),使点Q'落在y轴上?若存在,请直接写出点G的横坐标,若不存在,请说明理由.2020年黑龙江省绥化市中考数学试卷参考答案与试题解析一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑1.(3分)化简|√2−3|的结果正确的是()A.√2−3B.−√2−3C.√2+3D.3−√2【解答】解:∵√2−3<0,∴|√2−3|=−(√2−3)=3−√2.故选:D.2.(3分)两个长方体按图示方式摆放,其主视图是()A.B.C.D.【解答】解:从正面看有两层,底层是一个矩形,上层是一个长度较小的矩形.故选:C.3.(3分)下列计算正确的是()A.b2•b3=b6B.(a2)3=a6C.﹣a2÷a=a D.(a3)2•a=a6【解答】解:A.b2•b3=b5,故本选项不合题意;B.(a2)3=a6,故本选项符合题意;C.﹣a2÷a=﹣a,故本选项不合题意;D.(a3)2•a=a7,故本选项不合题意.故选:B.4.(3分)下列图形是轴对称图形而不是中心对称图形的是()A .B .C .D .【解答】解:A 、既是轴对称图形又是中心对称图形,故本选项不符合题意;B 、既是轴对称图形又是中心对称图形,故本选项不符合题意;C 、是轴对称图形,不是中心对称图形,故本选项符合题意;D 、既是轴对称图形又是中心对称图形,故本选项不符合题意.故选:C .5.(3分)下列等式成立的是( )A .√16=±4B .√−83=2C .﹣a √1a =√−aD .−√64=−8【解答】解:A .√16=4,故本选项不合题意;B .√−83=−2,故本选项不合题意;C .−a √1a =−√a ,故本选项不合题意;D .−√64=−8,故本选项符合题意.故选:D .6.(3分)“十•一”国庆期间,学校组织466名八年级学生参加社会实践活动,现己准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x 辆,37座客车y 辆.根据题意,得( )A .{x +y =1049x +37y =466B .{x +y =1037x +49y =466C .{x +y =46649x +37y =10D .{x +y =46637x +49y =10 【解答】解:依题意,得:{x +y =1049x +37y =466. 故选:A .7.(3分)如图,四边形ABCD 是菱形,E 、F 分别是BC 、CD 两边上的点,不能保证△ABE和△ADF 一定全等的条件是( )A.∠BAF=∠DAE B.EC=FC C.AE=AF D.BE=DF【解答】解:A.∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵∠BAF=∠DAE,∴∠BAE=∠CAF,∴△ABE≌△ADF(AAS),故选项A不符合题意;B..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,BC=BD,∵EC=FC,∴BE=DF,∴△ABE≌△ADF(SAS),故选项B不符合题意;C..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵AE=AF,∴△ABE和△ADF只满足两边和一边的对角相等,两个三角形不一定全等,故选项C符合题意;D..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DE,∴△ABE≌△ADF(SAS),故选项D不符合题意.故选:C.8.(3分)在一个不透明的袋子中装有黑球m个、白球n个、红球3个,除颜色外无其它差别,任意摸出一个球是红球的概率是()A.3m+n B.3m+n+3C.m+nm+n+3D.m+n3【解答】解:∵袋子中一共有(m+n+3)个小球,其中红球有3个,∴任意摸出一个球是红球的概率是3m+n+3,故选:B.9.(3分)将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是()A.y=2(x﹣6)2B.y=2(x﹣6)2+4C.y=2x2D.y=2x2+4【解答】解:将将抛物线y=2(x﹣3)2+2向左平移3个单位长度所得抛物线解析式为:y=2(x﹣3+3)2+2,即y=2x2+2;再向下平移2个单位为:y=2x2+2﹣2,即y=2x2.故选:C.10.(3分)如图,在Rt△ABC中,CD为斜边AB的中线,过点D作DE⊥AC于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:①DE=12BC;②四边形DBCF是平行四边形;③EF=EG;④BC=2√5.其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解;∵CD为斜边AB的中线,∴AD=BD,∵∠ACB=90°,∴BC⊥AC,∵DE ⊥AC , ∴DE ∥BC ,∴DE 是△ABC 的中位线, ∴AE =CE ,DE =12BC ;①正确; ∵EF =DE , ∴DF =BC ,∴四边形DBCF 是平行四边形;②正确; ∴CF ∥BD ,CF =BD ,∵∠ACB =90°,CD 为斜边AB 的中线, ∴CD =12AB =BD , ∴CF =CD , ∴∠CFE =∠CDE ,∵∠CDE +∠EGC =180°,∠EGF +∠EGC =180°, ∴∠CDE =∠EGF , ∴∠CFE =∠EGF , ∴EF =EG ,③正确; 作EH ⊥FG 于H ,如图所示:则∠EHF =∠CHE =90°,∠HEF +∠EFH =∠HEF +∠CEH =90°,FH =GH =12FG =1, ∴∠EFH =∠CEH ,CH =GC +GH =3+1=4, ∴△EFH ∽△CEH , ∴EH CH=FH EH,∴EH 2=CH ×FH =4×1=4, ∴EH =2,∴EF =√FH 2+EH 2=√12+22=√5,∴BC =2DE =2EF =2√5,④正确; 故选:D .二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.(3分)新型冠状病毒蔓延全球,截至北京时间2020年6月20日,全球新冠肺炎累计确诊病例超过8500000例,数字8500000用科学记数法表示为 8.5×106 . 【解答】解:数字8500000用科学记数法表示为8.5×106, 故答案为:8.5×106.12.(3分)甲、乙两位同学在近五次数学测试中,平均成绩均为90分,方差分别为S 甲2=0.70,S 乙2=0.73,甲、乙两位同学成绩较稳定的是 甲 同学. 【解答】解:∵S 甲2=0.70,S 乙2=0.73, ∴S 甲2<S 乙2,∴甲、乙两位同学成绩较稳定的是甲同学, 故答案为:甲.13.(3分)黑龙江省某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y (km )与行驶时间x (h )的函数关系如图所示,2小时后货车的速度是 65 km /h .【解答】解:由图象可得:货车行驶的路程y (km )与行驶时间x (h )的函数关系为y =78x (x ≤2),和x >2时设其解析式为:y =kx +b ,把(2,156)和(3,221)代入解析式,可得:{2k +b =1563k +b =221,解得:{k =65b =26,所以解析式为:y =65x +26(x >2), 所以2小时后货车的速度是65km /h , 故答案为:65.14.(3分)因式分解:m 3n 2﹣m = m (mn +1)(mn ﹣1) . 【解答】解:m 3n 2﹣m =m (m 2n 2﹣1) =m (mn +1)(mn ﹣1). 故答案为:m (mn +1)(mn ﹣1).15.(3分)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是 100 度.【解答】解:设这个圆锥的侧面展开图的圆心角为n °, 根据题意得2π•2.5=nπ×9180,解得n =100, 即这个圆锥的侧面展开图的圆心角为100°. 故答案为:100.16.(3分)在Rt △ABC 中,∠C =90°,若AB ﹣AC =2,BC =8,则AB 的长是 17 . 【解答】解:∵在Rt △ABC 中,∠C =90°,AB ﹣AC =2,BC =8, ∴AC 2+BC 2=AB 2, 即(AB ﹣2)2+82=AB 2, 解得AB =17. 故答案为:17.17.(3分)在平面直角坐标系中,△ABC 和△A 1B 1C 1的相似比等于12,并且是关于原点O的位似图形,若点A 的坐标为(2,4),则其对应点A 1的坐标是 (4,8)或(﹣4,﹣8) .【解答】解:∵△ABC 和△A 1B 1C 1的相似比等于12,并且是关于原点O 的位似图形,而点A 的坐标为(2,4),∴点A 对应点A 1的坐标为(2×2,2×4)或(﹣2×2,﹣2×4), 即(4,8)或(﹣4,﹣8). 故答案为(4,8)或(﹣4,﹣8). 18.(3分)在函数y =√x−3√x+11x−5中,自变量x 的取值范围是 x ≥3且x ≠5 . 【解答】解:由题可得,{x −3≥0x +1>0x −5≠0,解得{x ≥3x >−1x ≠5,∴自变量x 的取值范围是x ≥3且x ≠5, 故答案为:x ≥3且x ≠5.19.(3分)如图,正五边形ABCDE 内接于⊙O ,点P 为DE ̂上一点(点P 与点D ,点E 不重合),连接PC 、PD ,DG ⊥PC ,垂足为G ,∠PDG 等于 54 度.【解答】解:连接OC 、OD ,如图所示: ∵ABCDE 是正五边形, ∴∠COD =360°5=72°, ∴∠CPD =12∠COD =36°, ∵DG ⊥PC , ∴∠PGD =90°,∴∠PDG =90°﹣∠CPD =90°﹣36°=54°, 故答案为:54.20.(3分)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x 个,可列方程240x−2401.5x=2 .【解答】解:设原计划每天加工零件x 个,则实际每天加工零件1.5x 个, 依题意,得:240x−2401.5x=2.故答案为:240x−2401.5x=2.21.(3分)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是 119 .【解答】解:∵图1中黑点的个数2×1×(1+1)÷2+(1﹣1)=2, 图2中黑点的个数2×2×(1+2)÷2+(2﹣1)=7, 图3中黑点的个数2×3×(1+3)÷2+(3﹣1)=14, ……∴第n 个图形中黑点的个数为2n (n +1)÷2+(n ﹣1)=n 2+2n ﹣1, ∴第10个图形中黑点的个数为102+2×10﹣1=119. 故答案为:119.三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)(1)如图,已知线段AB 和点O ,利用直尺和圆规作△ABC ,使点O 是△ABC 的内心(不写作法,保留作图痕迹);(2)在所画的△ABC 中,若∠C =90°,AC =6,BC =8,则△ABC 的内切圆半径是 2 .【解答】解:(1)如图,△ABC 即为所求.(2)设内切圆的半径为r . ∵∠C =90°,AC =6,BC =8,∴AB =√AC 2+BC 2=√62+82=10, ∴12•AC •BC =12•r •(AB +AC +BC ),∴r =4824=2, 故答案为2.23.(6分)如图,热气球位于观测塔P 的北偏西50°方向,距离观测塔100km 的A 处,它沿正南方向航行一段时间后,到达位于观测塔P 的南偏西37°方向的B 处,这时,B 处距离观测塔P 有多远?(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19.)【解答】解:由已知得,∠A =50°,∠B =37°,P A =100, 在Rt △P AC 中,∵sin A =PCPA , ∴PC =P A •sin50°≈77, 在Rt △PBC 中,∵sin B =PCPB , ∴PB =PCsin37°≈128(km ),答:这时,B 处距离观测塔P 有128km .24.(6分)如图,在边长均为1个单位长度的小正方形组成的网格中,点A ,点B ,点O 均为格点(每个小正方形的顶点叫做格点). (1)作点A 关于点O 的对称点A 1;(2)连接A 1B ,将线段A 1B 绕点A 1顺时针旋转90°得点B 对应点B 1,画出旋转后的线段A 1B 1;(3)连接AB 1,求出四边形ABA 1B 1的面积.【解答】解:(1)如图所示,点A1即为所求;(2)如图所示,线段A1B1即为所求;(3)如图,连接BB1,过点A作AE⊥BB1,过点A1作A1F⊥BB1,则四边形ABA1B1的面积=S△ABB1+S△A1BB1=12×8×2+12×8×4=24.25.(6分)为了解本校九年级学生体育测试项目“400米跑”的训练情况,体育教师在2019年1﹣5月份期间,每月随机抽取部分学生进行测试,将测试成绩分为:A,B,C,D四个等级,并绘制如图两幅统计图根据统计图提供的信息解答下列问题:(1)1月份测试的学生人数最少,4月份测试的学生中男生、女生人数相等;(2)求扇形统计图中D等级人数占5月份测试人数的百分比;(3)若该校2019年5月份九年级在校学生有600名,请你估计出测试成绩是A等级的学生人数.【解答】解:(1)根据折线统计图给出的数据可得:1月份测试的学生人数最少,4月份测试的学生中男生、女生人数相等;故答案为:1,4;(2)D等级人数占5月份测试人数的百分比是:1﹣25%﹣40%−72°360°=15%;(3)根据题意得:600×25%=150(名),答:测试成绩是A等级的学生人数有150名.26.(7分)如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD =54,求EFAC的值.【解答】解:(1)连接OB,如图,∵CD是⊙O的直径,∴∠DBC=90°,∴∠D+∠BCD=90°,∵OB=OC,∴∠OCB =∠OBC , ∴∠D +∠OBC =90°,∵∠D =∠BAC ,∠BAC =∠CBG , ∴∠CBG +∠OBC =90°, 即∠OBG =90°, ∴直线BG 与⊙O 相切;(2)∵OA =OC ,OH ⊥AC , ∴∠COH =12∠COA ,CH =12CA , ∵∠ABC =12∠AOC , ∴∠EBF =∠COH , ∵EF ⊥BC ,OH ⊥AC , ∴∠BEF =∠OHC =90°, ∴△BEF ∽△COH , ∴EF CH =BE OC ,∵BE OD =54,OC =OD , ∴EF CH=54,∵CH =12AC , ∴EF AC=58,27.(7分)如图,在矩形OABC 中,AB =2,BC =4,点D 是边AB 的中点,反比例函数y 1=k x(x >0)的图象经过点D ,交BC 边于点E ,直线DE 的解析式为y 2=mx +n (m ≠0). (1)求反比例函数y 1=k x (x >0)的解析式和直线DE 的解析式;(2)在y 轴上找一点P ,使△PDE 的周长最小,求出此时点P 的坐标;(3)在(2)的条件下,△PDE 的周长最小值是 √5+√13 .【解答】解:(1)∵点D 是边AB 的中点,AB =2,∴AD =1,∵四边形OABC 是矩形,BC =4,∴D (1,4),∵反比例函数y 1=k x (x >0)的图象经过点D ,∴k =4,∴反比例函数的解析式为y =4x (x >0),当x =2时,y =2,∴E (2,2),把D (1,4)和E (2,2)代入y 2=mx +n (m ≠0)得,{2m +n =2m +n =4, ∴{m =−2n =6, ∴直线DE 的解析式为y =﹣2x +6;(2)作点D 关于y 轴的对称点D ′,连接D ′E 交y 轴于P ,连接PD ,此时,△PDE 的周长最小,∵D 点的坐标为(1,4),∴D ′的坐标为(﹣1,4),设直线D ′E 的解析式为y =ax +b ,∴{4=−a +b 2=2a +b, 解得:{a =−23b =103, ∴直线D ′E 的解析式为y =−23x +103,令x =0,得y =103, ∴点P 的坐标为(0,103);(3)∵D (1,4),E (2,2),∴BE =2,BD =1,∴DE =√12+22=√5,由(2)知,D ′的坐标为(﹣1,4),∴BD ′=3,∴D ′E =√22+32=√13,∴△PDE 的周长最小值=DE +D ′E =√5+√13,故答案为:√5+√13.28.(9分)如图,在正方形ABCD 中,AB =4,点G 在边BC 上,连接AG ,作DE ⊥AG 于点E ,BF ⊥AG 于点F ,连接BE 、DF ,设∠EDF =α,∠EBF =β,BG BC =k .(1)求证:AE =BF ;(2)求证:tan α=k •tan β;(3)若点G 从点B 沿BC 边运动至点C 停止,求点E ,F 所经过的路径与边AB 围成的图形的面积.【解答】解:(1)证明:在正方形ABCD 中,AB =BC =AD ,∠BAD =∠ABC =90°, ∵DE ⊥AG ,BF ⊥AG ,∴∠AED =∠BF A =90°,∴∠ADE +∠DAE =90°,∵∠BAF +∠DAE =90°,∴∠ADE =∠BAF ,∴△ABF ≌△DAE (AAS ),∴AE =BF ;(2)在Rt △DEF 和Rt △EFB 中,tan α=EF DE ,tan β=EF BF ,∴tanαtanβ=EF DE ⋅BF EF =BF DE .由①可知∠ADE =∠BAG ,∠AED =∠GBA =90°,∴△AED ∽△GBA ,∴AE GB =DE AB ,由①可知,AE =BF ,∴BF GB =DE AB , ∴BF DE =GB AB , ∵BG BC =k ,AB =BC , ∴BF DE =BG AB =BG BC =k , ∴tanαtanβ=k .∴tan α=k tan β.(3)∵DE ⊥AG ,BF ⊥AG ,∴∠AED=∠BF A=90°,∴当点G从点B沿BC边运动至点C停止时,点E经过的路径是以AD为直径,圆心角为90°的圆弧,同理可得点F经过的路径,两弧交于正方形的中心点O,如图.∵AB=AD=4,∴所围成的图形的面积为S=S△AOB=14×4×4=4.29.(10分)如图1,抛物线y=−12(x+2)2+6与抛物线y1=﹣x2+12tx+t﹣2相交y轴于点C,抛物线y1与x轴交于A、B两点(点B在点A的右侧),直线y2=kx+3交x轴负半轴于点N,交y轴于点M,且OC=ON.(1)求抛物线y1的解析式与k的值;(2)抛物线y1的对称轴交x轴于点D,连接AC,在x轴上方的对称轴上找一点E,使以点A,D,E为顶点的三角形与△AOC相似,求出DE的长;(3)如图2,过抛物线y1上的动点G作GH⊥x轴于点H,交直线y2=kx+3于点Q,若点Q'是点Q关于直线MG的对称点,是否存在点G(不与点C重合),使点Q'落在y轴上?若存在,请直接写出点G的横坐标,若不存在,请说明理由.【解答】解:(1)当x=0时,得y=−12(x+2)2+6=﹣2+6=4,∴C(0,4),把C (0,4)代入y 1=﹣x 2+12tx +t ﹣2得,t ﹣2=4,∴t =6,∴y 1=﹣x 2+3x +4,∵ON =OC ,∴N (﹣4,0),把N (﹣4,0)代入y 2=kx +3中,得﹣4k +3=0,解得,k =34;∴抛物线y 1的解析式为y 1=﹣x 2+3x +4,k 的值为34.(2)连接AE ,如图1,令y =0,得y 1=﹣x 2+3x +4=0,解得,x =﹣1或4,∴A (﹣1,0),B (4,0),∴对称轴为:x =−1+42=32, ∴D (32,0), ∴OA =1,OC =4,OD =32,AD =52,①当△AOC ∽△EDA 时,OA DE =OC DA,即1DE =452, ∴DE =58,②当△AOC ∽△ADE 时,AO AD =OC DE ,即152=4DE ,∴DE =10,综上,DE =58或10;(3)点G 的横坐标为7+√654或7−√654或1+√52或1−√52. 如图,点Q '是点Q 关于直线MG 的对称点,且点Q '在y 轴上时,由轴对称性质可知,QM =Q 'M ,QG =Q 'G ,∠Q 'MG =∠QMG ,∵QG ⊥x 轴,∴QG ∥y 轴,∴∠Q 'MG =∠QGM ,∴∠QMG =∠QGM ,∴QM =QG ,∴QM =Q 'M =QG =Q 'G ,∴四边形QMQ 'G 为菱形,∴GQ '∥QN ,作GP ⊥y 轴于点P ,设G (a ,﹣a 2+3a +4),则Q (a ,34a +3), ∴PG =|a |,Q 'G =GQ =|(34a +3)﹣(﹣a 2+3a +4)|=|a 2−94a ﹣1|, ∵GQ '∥QN ,∴∠GQ 'P =∠NMO ,在Rt △NMO 中,MN =√NO 2+MO 2=5,∴sin ∠GQ 'P =sin ∠NMO =NO MN =PG GQ′=45,∴|a||a 2−94a−1|=45. 解得a 1=7+√654,a 2=7−√654,a 3=1+√52,a 4=1−√52. 经检验,a 1=7+√654,a 2=7−√654,a 3=1+√52,a 4=1−√52都是所列方程的解. 综合以上可得,点G 的横坐标为7+√654或7−√654或1+√52或1−√52.。

2020年黑龙江省绥化中考数学试题(word版答案扫描)

2020年黑龙江省绥化中考数学试题(word版答案扫描)

二0二零年绥化市初巾毕业学业考试数学试卷一.填空题(每题3分.满分33分)1.2020年l0月31日.上海世博会闭幕.累计参观者突破7308万人次.创造了世博会历史上新的纪录。

用科学记数法表示为_____________人次.(结果保留两个有效数字) 2.函数2x y +=中.白变量x 的取值范围是____________。

3.如图.点B ,F 、C .E 在同一条直线上.点A ,D 在直线BE 的两侧.AB ∥DE .BF=CE .请添加一个适当的条件;____________.使得AC=DF . 4.因式分解:22363x xy y -+-=_____________________.5.中田象棋红方棋子按兵种不同分布如下:l 个帅.5个兵.“士、象、马、车,炮”各两个.将所有棋子反面朝上放在棋盘中,任取一个不是..士,象,帅的概率是___________.6.将一个半径为6cm .母线长为l5cm 的圆锥形纸筒沿一条母线剪开并展平.所得的侧面展开图的圆心角是___________度.7. '一元二次方程2470a a --=的解为___________.8.如图,A 、B 、C 、D 处⊙O 上的四个点.AB=AC .AD 交BC 于点E .AE=3,ED=4.则 AB 的长为___________.9.某班级为筹备运动会,准备用365元购买两种运动服.其中甲种运动服20元/套,乙种运动服35元/套.在钱都用尽的条件下.有___________种购买方案. 10.已知三角形相邻两边长分别为20cm 和30cm .第三边上的高为10cm ,则此三角形的面积为___________2cm 。

11.如图.△ABC 是边长为1的等边三角形.取BC 边中点E ,作ED ∥AB .EF ∥AC .得到四边形EDAF .它的面积记作1S ;取BE 中点1E .作11E D ∥FB ,11E F ∥EF .得到四边形111E D FF .它的面积记作2S .照此规律作下去,2011S =________________。

2020年黑龙江省绥化市中考数学一模试卷(解析版)

2020年黑龙江省绥化市中考数学一模试卷(解析版)

2020年黑龙江省绥化市中考数学一模试卷一.选择题(共10小题)1.如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1B.0C.3D.42.下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.(a﹣1)2=a2﹣1D.a3÷a=a23.首届中国国际进口博览会于2018年11月5日至10日在上海国家会展中心举行.据新华社电,此次进博会交易采购成果丰硕,按一年计累计,意向成交57830000000美元,其中57830000000用科学记数法表示应为()A.5783×107B.57.83×109C.5.783×1010D.5.783×1011 4.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是()A.9B.8C.7D.65.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.B.C.D.6.如图,在平行四边形ABCD中,E为AD的中点,△BCF的面积为4,则△DEF的面积为()A.1B.2C.3D.47.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1.有下列结论:①b2=4ac②abc>0 ③a>c④4a+c>2b.其中结论正确的个数是()A.1个B.2个C.3个D.4个8.如图,矩形ABCD的边AB=4,BC=8,点P从A出发,以每秒2个单位沿A﹣B﹣C﹣D运动,同时点Q也从A出发,以每秒1个单位沿A﹣D运动,△APQ的面积为y,运动的时间为x秒,则y关于x的函数图象为()A.B.C.D.9.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上找到一点P,使PD+PE的和最小,则这个和的最小值是()A.B.C.3D.10.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+4;⑤S△AOC+S△AOB=6+,其中正确的结论是()A.①③④⑤B.①②③④C.①②④⑤D.①②③④⑤二.填空题(共6小题)11.分解因式:x3﹣6x2+9x=.12.不等式组的解集是.13.若分式方程的解为正数,则a的取值范围是.14.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是.15.如图,点A,B分别是反比例函数y=与y=的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k的值为.16.如图,矩形ABCD的顶点A、C在平面直角坐标系的坐标轴上,AB=4,CB=3,点D 与点A关于y轴对称,点E、F分别是线段DA、AC上的动点(点E不与A、D重合),且∠CEF=∠ACB,若△EFC为等腰三角形,则点E的坐标为.三.解答题(共8小题)17.先化简,再求值:,其中x=2sin45°+1.18.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.19.为了了解鼎城区2018年初中毕业生毕业后的去向,我区教育部门对部分初三学生进行了抽样调查,就初三学生的四种去向(A,读普通高中;B,读职业高中;C,直接进入社会就业;D,其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:(1)此次共调查了多少名初中毕业生?(2)将两幅统计图中不完整的部分补充完整;(3)若我区2018年初三毕业生共有3500人,请估计我区2019年初三毕业生中读普通高中的学生人数.20.如图所示,A、B为两个村庄,AB、BC、CD为公路,BD为田地,AD为河流,且CD 与AD互相垂直.现在要从E处开始铺设通往村庄A、村庄B的一条电缆,共有如下两种铺设方案:方案一:E⇒D⇒A⇒B;方案二:E⇒C⇒B⇒A.经测量得AB=4千米,BC=10千米,CE=6千米,∠BDC=45°,∠ABD=15度.已知:地下电缆的修建费为2万元/千米,水下电缆的修建费为4万元/千米.(1)求出河宽AD(结果保留根号);(2)求出公路CD的长;(3)哪种方案铺设电缆的费用低?请说明你的理由.21.已知关于x的一元二次方程kx2﹣2(k+1)x+k﹣1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使+=1成立?若存在,请求出k的值;若不存在,请说明理由.22.某企业接到一批产品的生产任务,按要求必须在15天内完成.已知每件产品的售价为65元,工人甲第x天生产的产品数量为y件,y与x满足如下关系:y=(1)工人甲第几天生产的产品数量为80件?(2)设第x天(0≤x≤15)生产的产品成本为P元/件,P与x的函数图象如图,工人甲第x天创造的利润为W元.①求P与x的函数关系式;②求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?23.如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.(1)求tan∠ADF的值;(2)证明:DE是⊙O的切线;(3)若⊙O的半径R=5,求EF的长.24.如图,已知抛物线y=﹣x2+bx+c经过点A(5,)、点B(9,﹣10),与y轴交于点C,点P是直线AC上方抛物线上的一个动点;(1)求抛物线对应的函数解析式;(2)过点P且与y轴平行的直线l与直线BC交于点E,当四边形AECP的面积最大时,求点P的坐标;(3)当∠PCB=90°时,作∠PCB的角平分线,交抛物线于点F.①求点P和点F的坐标;②在直线CF上是否存在点Q,使得以F、P、Q为顶点的三角形与△BCF相似,若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1B.0C.3D.4【分析】根据数轴的单位长度为1,点B在点A的右侧距离点A5个单位长度,直接计算即可.【解答】解:点B在点A的右侧距离点A有5个单位长度,∴点B表示的数为:﹣2+5=3,故选:C.2.下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.(a﹣1)2=a2﹣1D.a3÷a=a2【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.【解答】解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选:D.3.首届中国国际进口博览会于2018年11月5日至10日在上海国家会展中心举行.据新华社电,此次进博会交易采购成果丰硕,按一年计累计,意向成交57830000000美元,其中57830000000用科学记数法表示应为()A.5783×107B.57.83×109C.5.783×1010D.5.783×1011【分析】用科学记数法表示一个数,是把一个数写成a×10n形式,其中a为整数,1≤|a|<10,n为整数.【解答】解:57830000000=5.783×1010.故选:C.4.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是()A.9B.8C.7D.6【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有6个正方体,第二层有2个正方体,那么共有6+2=8个正方体组成,故选:B.5.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.B.C.D.【分析】根据题意列出图表,即可表示(a,b)所有可能出现的结果,从中找到点落在第一象限的结果数,继而根据概率公式求解可得.【解答】解:用列表法表示(a,b)所有可能出现的结果如下:﹣213﹣2(﹣2,﹣2)(1,﹣2)(3,﹣2)1(﹣2,1)(1,1)(3,1)3(﹣2,3)(1,3)(3,3)由树状图知,共有9种等可能结果,其中点(a,b)在第一象限的有4种结果,所以点(a,b)在第一象限的概率为,故选:D.6.如图,在平行四边形ABCD中,E为AD的中点,△BCF的面积为4,则△DEF的面积为()A.1B.2C.3D.4【分析】由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,即可证得△DEF∽△BCF,又由E为AD的中点,△BCF的面积为4,然后根据相似三角形面积的比等于相似比的平方,即可求得△DEF的面积.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∵E为AD的中点,∴DE=AD,∴DE:BC=1:2,∴S△DEF:S△BCF=1:4,∵△BCF的面积为4,∴△DEF的面积为1.故选:A.7.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1.有下列结论:①b2=4ac②abc>0 ③a>c④4a+c>2b.其中结论正确的个数是()A.1个B.2个C.3个D.4个【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,∴b2>4ac所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,所以④正确.所以本题正确的有:②③④,三个,故选:C.8.如图,矩形ABCD的边AB=4,BC=8,点P从A出发,以每秒2个单位沿A﹣B﹣C﹣D运动,同时点Q也从A出发,以每秒1个单位沿A﹣D运动,△APQ的面积为y,运动的时间为x秒,则y关于x的函数图象为()A.B.C.D.【分析】分情况探讨:当0≤x≤2时,P点在AB上,Q点在AD上;当2<x≤6时,P 点在CB上,Q点在AD上;当6<x≤8时,P点在CD上,Q点在AD上;利用三角形面积进行计算得出函数解析式;进一步利用函数解析式选择答案即可.【解答】解:当0≤x≤2时,y=•x•2x=x2;当2<x≤6时,y=×x×4=2x;当6<x≤8时,S=×x×(16﹣2x)=﹣x2+8x.符合题意的图象是A.故选:A.9.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上找到一点P,使PD+PE的和最小,则这个和的最小值是()A.B.C.3D.【分析】由于点B与D关于AC对称,BE与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选:A.10.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+4;⑤S△AOC+S△AOB=6+,其中正确的结论是()A.①③④⑤B.①②③④C.①②④⑤D.①②③④⑤【分析】由题意可得△BOC≌△BAO',△BOO'是等边三角形,可得AO'=CO=5,OO'=4,可判断△AOO'是直角三角形.可判断①②③,由S四边形AOBO′=S△AOO'+S△OO'B=S△BOC+S△AOC,可判定④⑤【解答】解;连接OO',如图1∵BO=BO',∠OBO'=60°∴△BO'O'是等边三角形∴OO'=BO=4,故②正确∵∠OBO'=∠ABC=60°∴∠ABO'=∠ABC且OB=OB',AB=AC,∴△ABO'≌△BOC故①正确∴AO'=CO=5,∵O'A2=25,AO2+O'O2=25∴O'A2=AO2+O'O2∴∠AOO'=90°∴∠AOB=150°故③正确∵△OO'B是等边三角形,AO=3,OO'=4∴S△BOO'=4,S△AOO'=6∴S四边形AOBO′=6+4故④正确如图2将△AOC绕A点顺时针旋转60°到△ABO'位置同理可得S△AOC+S△AOB=6+故⑤正确故选:D.二.填空题(共6小题)11.分解因式:x3﹣6x2+9x=x(x﹣3)2.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣6x2+9x,=x(x2﹣6x+9),=x(x﹣3)2.故答案为:x(x﹣3)2.12.不等式组的解集是0.8<x≤8.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤8,解不等式②得:x>0.8,∴不等式组的解集为0.8<x≤8,故答案为:0.8<x≤8.13.若分式方程的解为正数,则a的取值范围是a<8,且a≠4.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可.【解答】解:分式方程去分母得:x=2x﹣8+a,解得:x=8﹣a,根据题意得:8﹣a>0,8﹣a≠4,解得:a<8,且a≠4.故答案为:a<8,且a≠4.14.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是6﹣π.【分析】分别求出DC=BC=CE=2,BD=BF=2,求出∠DCE=90°,∠DBF,分别求出△BCD、△BEF、扇形DBF、扇形DCE的面积,即可得出答案.【解答】解:过F作FM⊥BE于M,则∠FME=∠FMB=90°,∵四边形ABCD是正方形,AB=2,∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,由勾股定理得:BD=2,∵将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,∴∠DCE=90°,BF=BD=2,∠FBE=90°﹣45°=45°,∴BM=FM=2,ME=2,∴阴影部分的面积S=S△BCD+S△BFE+S扇形DCE﹣S扇形DBF=++﹣=6﹣π,故答案为:6﹣π.15.如图,点A,B分别是反比例函数y=与y=的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k的值为2.【分析】设A(m,﹣),则B(﹣mk,﹣),设AB交y轴于M.由EM∥BC,推出AM:MB=AE:EC=1:2,可得﹣m:(﹣mk)=1:2,即可解决问题;【解答】解:设A(m,﹣),则B(﹣mk,﹣),设AB交y轴于M.∵EM∥BC,∴AM:MB=AE:EC=1:2,∴﹣m:(﹣mk)=1:2,∴k=2,故答案为2.16.如图,矩形ABCD的顶点A、C在平面直角坐标系的坐标轴上,AB=4,CB=3,点D 与点A关于y轴对称,点E、F分别是线段DA、AC上的动点(点E不与A、D重合),且∠CEF=∠ACB,若△EFC为等腰三角形,则点E的坐标为(﹣2,0)或(﹣,0).【分析】由对称性得到∠CDE=∠CAO,利用等式的性质得到一对角相等,利用两角相等的三角形相似即可得证,当△EFC为等腰三角形时,有以下三种情况:当CE=EF;当EF=FC;当CE=CF时,利用相似三角形的判定与性质分别求出E坐标即可.【解答】解:∵四边形ABCO是矩形,∴∠B=90°,∴AC==5,∵点D与点A关于y轴对称,∴∠CDE=∠CAO,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE(三角形外角性质),∴∠AEF=∠DCE,则在△AEF与△DCE中,∠CDE=∠CAO,∠AEF=∠DCE,∴△AEF∽△DCE;当△EFC为等腰三角形时,有以下三种情况:①当CE=EF时,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=AC=5,∴OE=AE﹣OA=5﹣3=2,∴E(﹣2,0).②当EF=FC时,如图所示,过点F作FM⊥CE于M,则点M为CE中点.∴CE=2ME=EF,∵点D与点A关于y轴对称,∴CD=AC=5,∵△AEF∽△DCE,∴=,即解得AE=,∴OE=AE﹣OA=,∴E(﹣,0).③当CE=CF时,则有∠CFE=∠CEF,∵∠CEF=∠ACB=∠CAO,∴∠CFE=∠CAO.即此时F点与A点重合,这与已知条件矛盾.综上所述,当△EFC为等腰三角形时,点E的坐标为(﹣2,0)或(﹣,0),故答案为:(﹣2,0)或(﹣,0).三.解答题(共8小题)17.先化简,再求值:,其中x=2sin45°+1.【分析】先根据分式的运算法则化简原式,然后将x的值代入原式即可求出答案.【解答】解:原式=•=,当x=2×+1=+1时,原式==.18.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.【分析】(1)首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.(2)解:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°﹣∠2,∠4=90°﹣∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=BC=5.19.为了了解鼎城区2018年初中毕业生毕业后的去向,我区教育部门对部分初三学生进行了抽样调查,就初三学生的四种去向(A,读普通高中;B,读职业高中;C,直接进入社会就业;D,其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:(1)此次共调查了多少名初中毕业生?(2)将两幅统计图中不完整的部分补充完整;(3)若我区2018年初三毕业生共有3500人,请估计我区2019年初三毕业生中读普通高中的学生人数.【分析】(1)根据A组的人数是40,所占的百分比是40%,据此即可求得总人数;(2)利用百分比的意义即可求得B组的人数以及C所占的百分比,从而补全统计图;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)根据题意得:40÷40%=100(人),答:此次共调查了100名初中毕业生;(2)B组的人数是100×30%=30(人),C组所占的百分比是=25%,补图如下:(3)根据题意得:3500×40%=1400(人).答:我区2019年初三毕业生中读普通高中的学生人数是1400人.20.如图所示,A、B为两个村庄,AB、BC、CD为公路,BD为田地,AD为河流,且CD 与AD互相垂直.现在要从E处开始铺设通往村庄A、村庄B的一条电缆,共有如下两种铺设方案:方案一:E⇒D⇒A⇒B;方案二:E⇒C⇒B⇒A.经测量得AB=4千米,BC=10千米,CE=6千米,∠BDC=45°,∠ABD=15度.已知:地下电缆的修建费为2万元/千米,水下电缆的修建费为4万元/千米.(1)求出河宽AD(结果保留根号);(2)求出公路CD的长;(3)哪种方案铺设电缆的费用低?请说明你的理由.【分析】(1)如图所示,过点B作BF⊥AD,交DA的延长线于点F.由于∠BDC=45°,∠ABD=15°,故利用三角形外角等于不相邻两个内角和知∠BAF=60°,即在直角三角形中,知道斜边求邻边用余弦得AF=AB cos60°=4×=2(千米),又BF=AB sin60°=4×=6(千米)=DF所以可求出AD的值;(2)过点B作BG⊥CD于G后,由矩形知BG=DF=6,由勾股定理知CG=8千米,有CD=CG+GD=14千米;(3)由(2)得DE=CD﹣CE=8.方案一的铺设费用为:2(DE+AB)+4AD=40万元,方案二的铺设费用为:2(CE+BC+AB)=(32+8)万元.故方案一的铺设电缆费用低.【解答】解:(1)过点B作BF⊥AD,交DA的延长线于点F.由题意得:∠BAF=∠ABD+∠ADB=15°+45°=60°,在Rt△BF A中,BF=AB sin60°=4×=6(千米),AF=AB cos60°=4×=2(千米).∵CD⊥AD,∠BDC=45°,∴∠BDF=45°,在Rt△BFD中,∵∠BDF=45°,∴DF=BF=6千米.∴AD=DF﹣AF=6﹣2(千米).即河宽AD为(6﹣2)千米;(2)过点B作BG⊥CD于G,易证四边形BFDG是正方形,∴BG=BF=6千米.在Rt△BGC中,=8(千米),∴CD=CG+GD=14千米.即公路CD的长为14千米;(3)方案一的铺设电缆费用低.由(2)得DE=CD﹣CE=8千米.∴方案一的铺设费用为:2(DE+AB)+4AD=40万元,方案二的铺设费用为:2(CE+BC+AB)=(32+8)万元.∵40<32+8,∴方案一的铺设电缆费用低.21.已知关于x的一元二次方程kx2﹣2(k+1)x+k﹣1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使+=1成立?若存在,请求出k的值;若不存在,请说明理由.【分析】(1)根据一元二次方程的根的判别式,建立关于k的不等式,求得k的取值范围.(2)利用根与系数的关系,根据+=,即可求出k的值,看是否满足(1)中k的取值范围,从而确定k的值是否存在.【解答】解:(1)由题意知,k≠0且△=b2﹣4ac>0∴b2﹣4ac=[﹣2(k+1)]2﹣4k(k﹣1)>0,即4k2+8k+4﹣4k2+4k>0,∴12k>﹣4解得:k>﹣且k≠0(2)不存在.∵x1+x2=,x1•x2=,又有+==1,可求得k=﹣3,而﹣3<﹣∴满足条件的k值不存在.22.某企业接到一批产品的生产任务,按要求必须在15天内完成.已知每件产品的售价为65元,工人甲第x天生产的产品数量为y件,y与x满足如下关系:y=(1)工人甲第几天生产的产品数量为80件?(2)设第x天(0≤x≤15)生产的产品成本为P元/件,P与x的函数图象如图,工人甲第x天创造的利润为W元.①求P与x的函数关系式;②求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?【分析】(1)根据y=80求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.【解答】解:(1)根据题意,得:∵若8x=80,得:x=10>5,不符合题意;若5x+10=80,解得:x=14.答:工人甲第14天生产的产品数量为80件;(2)①由图象知:当0≤x≤5时,P=40;当5<x≤15时,设P=kx+b,将(5,40),(15,50)代入得:,∴,∴P=x+35,综上,P与x的函数关系式为:P=;②当0≤x≤5时,W=(65﹣40)×8x=200x,当5<x≤15时,W=(65﹣x﹣35)(5x+10)=﹣5x2+140x+300,综上,W与x的函数关系式为:W=;当0≤x≤5时,W=200x,∵200>0,∴W随x的增大而增大,∴当x=5时,W最大为1000元;当5<x≤15时,W=﹣5(x﹣14)2+1280,当x=14时,W最大值为1280元,综上,第14天时,利润最大,最大利润为1280元.23.如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.(1)求tan∠ADF的值;(2)证明:DE是⊙O的切线;(3)若⊙O的半径R=5,求EF的长.【分析】(1)证明∠ADF=∠B,根据∠B的正切求结论;(2)连接OD,证明AC∥OD,由DE⊥AC,可得结论;(3)设AD=x,则BD=2x,求得AD=2,证明△AFE∽△ODE,列比例式可得结论.【解答】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==;(2)连接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(3)设AD=x,则BD=2x,∴AB=x=10,∴x=2,∴AD=2,同理得:AF=2,DF=4,∵AF∥OD,∴△AFE∽△ODE,∴,∴=,∴EF=.24.如图,已知抛物线y=﹣x2+bx+c经过点A(5,)、点B(9,﹣10),与y轴交于点C,点P是直线AC上方抛物线上的一个动点;(1)求抛物线对应的函数解析式;(2)过点P且与y轴平行的直线l与直线BC交于点E,当四边形AECP的面积最大时,求点P的坐标;(3)当∠PCB=90°时,作∠PCB的角平分线,交抛物线于点F.①求点P和点F的坐标;②在直线CF上是否存在点Q,使得以F、P、Q为顶点的三角形与△BCF相似,若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据抛物线y=﹣x2+bx+c经过点A(5,)、点B(9,﹣10),运用待定系数法即可求得抛物线对应的函数表达式;(2)根据直线BC为:y=﹣x﹣1,可设点P的坐标为(m,﹣m2+2m﹣1),则E(m,﹣m﹣1),进而得到PE=﹣m2+2m﹣1﹣(﹣m﹣1)=﹣m2+3m,最后根据四边形AECP的面积=△APE面积+△CPE面积,求得点P坐标为(,);(3)①根据∠PCB=90°,CF平分∠PCB,可得∠BCF=45°,进而得出CF∥x轴,则当y=﹣1时,﹣1=﹣x2+2x﹣1,解得F(6,﹣1),再根据直线CP为:y=x﹣1,可得当x﹣1=﹣x2+2x﹣1时,可得P(3,2);②根据直线CB:y=﹣x﹣1,直线PF:﹣x+5,可得CB∥PF,即可得到∠BCF=∠PFC =45°,故在直线CF上存在满足条件的点Q,再设Q(t,﹣1),由题可得CF=6,CB =9,PF=3,最后分两种情况进行讨论:当△PFQ1∽△BCF时,当△PFQ∽△FCB 时,分别求得t的值,即可得出点Q的坐标为(4,﹣1)或(﹣3,﹣1).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(5,)、点B(9,﹣10),∴,解得,∴抛物线对应的函数表达式为y=﹣x2+2x﹣1;(2)由抛物线可得,C(0,﹣1),B(9,﹣10),∴直线BC为:y=﹣x﹣1,设点P的坐标为(m,﹣m2+2m﹣1),则E(m,﹣m﹣1),∴PE=﹣m2+2m﹣1﹣(﹣m﹣1)=﹣m2+3m,∴四边形AECP的面积=△APE面积+△CPE面积=×(﹣m2+3m)×m+×(﹣m2+3m)×(5﹣m)=(﹣m2+3m)=﹣m2+m,=﹣(m﹣)2+,∴当m=时,﹣m2+2m﹣1=,∴点P坐标为(,);(3)①过点B作BH⊥y轴于H,∵C(0,﹣1),B(9,﹣10),∴CH=BH=9,∴∠BCH=45°,∵∠PCB=90°,CF平分∠PCB,∴∠BCF=45°,∴∠FCH=90°,即CF∥x轴,当y=﹣1时,﹣1=﹣x2+2x﹣1,解得x1=0,x2=6,∴F(6,﹣1),∵CP⊥CB,C(0,﹣1),∴直线CP为:y=x﹣1,当x﹣1=﹣x2+2x﹣1时,解得x1=0,x2=3,当x=3时,y=2,∴P(3,2);②∵直线CB:y=﹣x﹣1,直线PF:y=﹣x+5,∴CB∥PF,∴∠BCF=∠PFC=45°,∴在直线CF上存在满足条件的点Q,设Q(t,﹣1),由题可得CF=6,CB=9,PF=3,(ⅰ)如图所示,当△PFQ1∽△BCF时,=,即=,解得t=4,∴Q1(4,﹣1);(ⅱ)如图所示,当△PFQ∽△FCB时,=,即=,解得t=﹣3,∴Q2(﹣3,﹣1).综上所述,点Q的坐标为(4,﹣1)或(﹣3,﹣1).。

2020年中考数学模拟试卷(黑龙江绥化)(三)(解析版)

2020年中考数学模拟试卷(黑龙江绥化)(三)(解析版)

2020年中考数学全真模拟试卷(绥化专用)(三)一、选择题(本大题共10个小题,每小题3分,共30分。

下列各小题均有四个答案,其2020年河南省中考数学仿真试卷01及其答案与解析中只有一个是正确的)1.地球上的海洋面积为361 000 000平方千米,数字361 000 000用科学记数法表示为()A.36.1×107 B.0.361×109 C.3.61×108 D.3.61×107【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.361 000 000用科学记数法表示为3.61×1082.(2018河南)如图所示的正六棱柱的主视图是()A.B.C.D.【答案】A.【解析】根据主视图是从正面看到的图象判定则可.从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.3.下列图形中,是轴对称图形但不是中心对称图形的是()A B C D【答案】A.【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.A.是轴对称图形但不是中心对称图形,故本选项正确;B.是轴对称图形,也是中心对称图形,故本选项错误;C.不是轴对称图形,是中心对称图形,故本选项错误;D.是轴对称图形,也是中心对称图形,故本选项错误.4.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)【答案】C.【解析】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.根据关于原点对称的点的坐标特点解答.点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5)5.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【答案】C.【解析】根据加权平均数的定义列式计算可得.这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元)6.关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3C.x1=1,x2=3 D.x1=﹣1,x2=﹣3【答案】C.【解析】x2﹣4x+3=0,分解因式得:(x﹣1)(x﹣3)=0,解得:x1=1,x2=3。

2020年黑龙江绥化中考数学试卷(解析版)

2020年黑龙江绥化中考数学试卷(解析版)

2020年黑龙江绥化中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)A. B. C. D.1.化简的结果正确的是( ).A.B. C. D.2.两个长方体按图示方式摆放,其主视图是( ).A. B. C. D.3.下列计算正确的是( ).4.下列图形是轴对称图形而不是中心对称图形的是( ).A.B.C.D.5.下列等式成立的是( ).A.B.C.D.6.“十一”国庆期间,学校组织名八年级学生参加社会实践活动,现已准备了座和座两种客车共辆,刚好坐满,设座客车辆,座客车辆.根据题意,得( ).A.B.C.D.7.如图,四边形是菱形,、分别是、两边上的点,和一定全等的条件是( ).A.B.C.D.不.能.保.证.8.在一个不透明的袋子中装有黑球个、白球个、红球个,除颜色外无其它差别,任意摸出一个球是红球的概率是( ).A.B.C.D.9.将抛物线向左平移个单位长度,再向下平移个单位长度,得到抛物线的解析式是( ).A.B.C.D.10.如图,在中,为斜边的中线,过点作于点,延长至点,使,连接,,点在线段上,连接,且,,.下列结论:①;②四边形是平行四边形;③;④.其中正确结论的个数是( ).A.个B.个C.个D.个二、填空题(本大题共11小题,每小题3分,共33分)11.新型蔓延全球,截至北京时间年月日,全球累计确诊病例超过例,数字用科学记数法表示为 .12.甲、乙两位同学在近五次数学测试中,平均成绩均为分,方差分别,.甲、乙两位同学成绩较稳定的是 同学.甲乙13.黑龙江省某企业用货车向乡镇运送农用物资,行驶小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程与行驶时间的函数关系如图所示,小时后货车的速度是.()()()()14.因式分解:.15.已知圆锥的底面圆的半径是,母线长是,其侧面展开图的圆心角是 度.16.在中,,若,,则的长是 .17.在平面直角坐标系中,和的相似比等于,并且是关于原点的位似图形,若点的坐标为,则其对应点的坐标是 .18.在函数中,自变量的取值范围是 .19.如图,正五边形内接于⊙,点为上一点(点与点,点不重合),连接、,,垂足为,等于 度.20.某工厂计划加工一批零件个,实际每天加工零件的个数是原计划的倍,结果比原计划少用天.设原计划每天加工零件个,可列方程 .21.下面各图形是由大小相同的黑点组成,图中有个点,图中有个点,图中有个点,,按此规律,第个图中黑点的个数是 .图图图图三、解答题(本大题共8小题,共57分)(1)(2)22.解答题.如图,已知线段和点,利用直尺和圆规作,使点是的内心(不写作法,保留作图痕迹).在所画的中,若,,,则的内切圆半径是 .23.如图,热气球位于观测塔的北偏西方向,距离观测塔的处,它沿正南方向航行一段时间后,到达位于观测塔的南偏西方向的处,这时,处距离观测塔有多远?(结果保留整数,参考数据:,,,,,)北24.如图,在边长均为个单位长度的小正方形组成的网格中,点,点,点均为格点(每个小正方形的顶点叫做格点).(1)(2)(3)作点关于点的对称点.连接.将线段绕点顺时针旋转得点对应点,画出旋转后的线段.连接,求出四边形的面积.(1)(2)(3)25.为了解本校九年级学生体育测试项目“米跑”的训练情况,体育教师在年月份期间,每月随机抽取部分学生进行测试,将测试成绩分为:,,,四个等级,并绘制如下两幅统计图.根据统计图提供的信息解答下列问题:每月抽取测试的学生中男、女学生人数折线统计图五月份抽取的学生米跑测试成绩情况扇形统计图x12345678yO人数月份男生女生月份测试的学生人数最少, 月份测试的学生中男生、女生人数相等.求扇形统计图中等级人数占月份测试人数的百分比.若该校年月份九年级在校学生有名,请你估计出测试成绩是等级的学生人数.26.如图,内接于⊙,是直径,,与相交于点,过点作,垂足为,过点作,垂足为,连接、.(1)(2)求证:直线与⊙相切.若,求的值.xyO(1)(2)(3)27.如图,在矩形中,,,点是边的中点,反比例函数的图象经过点,交边于点,直线的解析式为.求反比例函数的解析式和直线的解析式.在轴上找一点,使的周长最小,求出此时点的坐标.在()的条件下,的周长最小值是 .(1)(2)28.如图,在正方形中,,点在边上,连接.作于点,于点,连接、.设,,.求证:.求证:.【答案】解析:∵,∴.故选.(3)若点从点沿边运动至点停止,求点,所经过的路径与边围成的图形的面积.(1)(2)(3)29.如图,抛物线与抛物线相交轴于点,抛物线与轴交于、两点(点在点的右侧),直线交轴负半轴于点,交轴于点,且.图求抛物线的解析式与的值.抛物线的对称轴交轴于点,连接,在轴上方的对称轴上找一点,使以点,,为顶点的三角形与相似,求出的长.如图,过抛物线上的动点作轴于点,交直线于点,若点是点关于直线的对称点,是否存在点(不与点重合),使点落在轴上?若存在,请直接写出点的横坐标,若不存在,请说明理由.图D 1.解析:由已知几何体可知其主视图为:故选:.解析:由题意得:,故选.解析:∵有黑球个,白球个,红球个,∴共有()个球,则任意摸出一球为红球的概率为.故选.解析:抛物线向左平移个单位,再向下平移个单位得到,故得到抛物线的解析式为.故选.解析:C 2.B 3.C 4.D 5.A 6.C 7.B 8.C 9.D 10.∵,是的中线,∴,∵,∴,∵,∴四边形是平行四边形,∴,,∵,∴,∴四边形是平行四边形,故②正确;∵,,∴,故①正确;∵,,∴,∵,∴,∴,∵,,∴,∴,∴,∴,,∴,故④正确;过点作于,∴,∴,∴,∴,∴,∴,故③正确.∴正确的是①②③④,一共个,故选.解析:.故答案为:.解析:∵,∴,∴甲比较稳定,故答案为:甲.解析:由函数关系图可知,货车行驶小时,行驶了,改变车速后又行驶了小时,共行驶了,则小时后汽车的速度为:.故答案为:.11.甲12.甲乙甲乙13.解析:原式.故答案为:.解析:设圆锥侧面积展开图的圆心角为,则,解得:.故答案为:.解析:设为,∵在中,,,∵,,∴.解得:.解析:∵和的相似比等于,并且是关于原点的位似图形,∴点的坐标为,则其对应点的坐标是或,即为或.故答案为:或.14.15.16.或17.解析:根据题意可得,解得且,故自变量的取值范围是且.故答案为:且.解析:连接,,∵五边形为正五边形,∴,∵,∵,∴,∴.故答案为:.解析:设原计划每天加工零件件,则实际每天加工零件件,根据题意可得:.故答案为:.解析:且18.19.20.21.(1)(2)图含有个点,图含有个点,图含有个点,图含有个点,图含有个点,图含有个点.故答案为:.解析:作,作,则即为所求.如图,作于点,于点,于点,连接,,,∵为的内心,∴,∵,,,∴在中,,∵,∴,(1)画图见解析.(2)22.(1)(2),.故答案为:.解析:由已知,得,,,在中,∵,∴,在中,∵,∴(千米),答:这时,处距离观测塔约为千米.解析:点关于的对称点如图所示.连接,将线段绕点顺时针旋转得点对应点,旋转后的线段如图所示.千米.23.(1)画图见解析.(2)画图见解析.(3).24.(3)(1)(2)连接,过点作于点,过点作于点;.∴四边形的面积是.解析:由折线统计图可知:月份测试的学生人数最少;月份测试的学生中男生、女生人数相等,均为人.由题意得:等级人数所占五月份抽取学生的百分比为:,则等级人数占月份测试人数的百分比为:.答:等级人数占月份测试人数的百分比是.四边形(1) ;(2).(3)名.25.(3)(1)(2)由题意得:(名).故答案为:.解析:连接,∵是圆的直径,∴.∴.∵,∴.∵,∴,∴,∵,∴.∴.∴.∴.∵是圆半径,∴直线与圆相切.∵,,∴,,(1)证明见解析.(2).26.(1)∵,∴,∴.∵,,∴.∴,∴,∵,,∴.∵,∴,∴的值是.解析:∵为的中点,,∴,∵四边形是矩形,,∴点坐标为,∵在的图象上,∴,∴反比例函数解析式为,当时,,∴点坐标为,∵直线过点和点,∴,解得,∴直线的解析式为,(1),.(2).(3)27.(2)(3)∴反比例函数解析式为,直线的解析式为.作点关于轴的对称点,连接,交轴于点,连接,xyO此时的周长最小,∵点的坐标为,∴点的坐标为,设直线的解析式为,∵直线经过,∴,解得,∴直线的解析式为,令,得,∴点坐标为.∵,,,∴,,∴.解析:(1)证明见解析.(2)证明见解析.(3).28.(1)(2)(3)在正方形中,,.∵,,∴.∴.∵,∴,在和中,,∴≌,∴.在和中,,,∴,由()可知,,∴.∴,由()可知,,∴,∴,∵,,∴,∴,∴.∵,.∴,(1)(2)∴当点从点沿边运动至点停止时,点经过的路径是以为直径,圆心角为的圆弧,同理可得点经过的路径,两弧交于正方形的中心点.(如图所示)∵,∴所围成图形的面积.解析:当时,,∴点的坐标为.∵点在抛物线的图象上,∴.∴.∴抛物线的解析式为.∵,,∴.∵直线过,∴.解得.∴抛物线的解析式为,的值为.连接,令,则.(1),.(2)或.(3)存在,点的横坐标为或或或.29.(3)解得,,∴,,∴抛物线的对称轴为直线.∴,∵,∴,,.①当时,,∴,∴.②当时,,∴,∴.综上,的长为或.点的横坐标为或或或.如图,点是点关于直线的对称点,且点在轴上时,由轴对称性质可知,,,.∵轴,∴轴,∴.∴.∴.∴.∴四边形为菱形.∴.作轴于点.设,则.∴,.∵,∴.在中,.∴.∴.解得,,,.经检验,,,都是所列方程的解.综上,点的横坐标为或或或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年黑龙江绥化中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)A. B. C. D.1.化简的结果正确的是( ).A.B. C. D.2.两个长方体按图示方式摆放,其主视图是( ).A. B. C. D.3.下列计算正确的是( ).4.下列图形是轴对称图形而不是中心对称图形的是( ).A.B.C.D.5.下列等式成立的是( ).A.B.C.D.6.“十一”国庆期间,学校组织名八年级学生参加社会实践活动,现已准备了座和座两种客车共辆,刚好坐满,设座客车辆,座客车辆.根据题意,得( ).A.B.C.D.7.如图,四边形是菱形,、分别是、两边上的点,和一定全等的条件是( ).A.B.C.D.不.能.保.证.8.在一个不透明的袋子中装有黑球个、白球个、红球个,除颜色外无其它差别,任意摸出一个球是红球的概率是( ).A.B.C.D.9.将抛物线向左平移个单位长度,再向下平移个单位长度,得到抛物线的解析式是( ).A.B.C.D.10.如图,在中,为斜边的中线,过点作于点,延长至点,使,连接,,点在线段上,连接,且,,.下列结论:①;②四边形是平行四边形;③;④.其中正确结论的个数是( ).A.个B.个C.个D.个二、填空题(本大题共11小题,每小题3分,共33分)11.新型蔓延全球,截至北京时间年月日,全球累计确诊病例超过例,数字用科学记数法表示为 .12.甲、乙两位同学在近五次数学测试中,平均成绩均为分,方差分别,.甲、乙两位同学成绩较稳定的是 同学.甲乙13.黑龙江省某企业用货车向乡镇运送农用物资,行驶小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程与行驶时间的函数关系如图所示,小时后货车的速度是.()()()()14.因式分解:.15.已知圆锥的底面圆的半径是,母线长是,其侧面展开图的圆心角是 度.16.在中,,若,,则的长是 .17.在平面直角坐标系中,和的相似比等于,并且是关于原点的位似图形,若点的坐标为,则其对应点的坐标是 .18.在函数中,自变量的取值范围是 .19.如图,正五边形内接于⊙,点为上一点(点与点,点不重合),连接、,,垂足为,等于 度.20.某工厂计划加工一批零件个,实际每天加工零件的个数是原计划的倍,结果比原计划少用天.设原计划每天加工零件个,可列方程 .21.下面各图形是由大小相同的黑点组成,图中有个点,图中有个点,图中有个点,,按此规律,第个图中黑点的个数是 .图图图图三、解答题(本大题共8小题,共57分)(1)(2)22.解答题.如图,已知线段和点,利用直尺和圆规作,使点是的内心(不写作法,保留作图痕迹).在所画的中,若,,,则的内切圆半径是 .23.如图,热气球位于观测塔的北偏西方向,距离观测塔的处,它沿正南方向航行一段时间后,到达位于观测塔的南偏西方向的处,这时,处距离观测塔有多远?(结果保留整数,参考数据:,,,,,)北24.如图,在边长均为个单位长度的小正方形组成的网格中,点,点,点均为格点(每个小正方形的顶点叫做格点).(1)(2)(3)作点关于点的对称点.连接.将线段绕点顺时针旋转得点对应点,画出旋转后的线段.连接,求出四边形的面积.(1)(2)(3)25.为了解本校九年级学生体育测试项目“米跑”的训练情况,体育教师在年月份期间,每月随机抽取部分学生进行测试,将测试成绩分为:,,,四个等级,并绘制如下两幅统计图.根据统计图提供的信息解答下列问题:每月抽取测试的学生中男、女学生人数折线统计图五月份抽取的学生米跑测试成绩情况扇形统计图x12345678yO人数月份男生女生月份测试的学生人数最少, 月份测试的学生中男生、女生人数相等.求扇形统计图中等级人数占月份测试人数的百分比.若该校年月份九年级在校学生有名,请你估计出测试成绩是等级的学生人数.26.如图,内接于⊙,是直径,,与相交于点,过点作,垂足为,过点作,垂足为,连接、.(1)(2)求证:直线与⊙相切.若,求的值.xyO(1)(2)(3)27.如图,在矩形中,,,点是边的中点,反比例函数的图象经过点,交边于点,直线的解析式为.求反比例函数的解析式和直线的解析式.在轴上找一点,使的周长最小,求出此时点的坐标.在()的条件下,的周长最小值是 .(1)(2)28.如图,在正方形中,,点在边上,连接.作于点,于点,连接、.设,,.求证:.求证:.【答案】解析:∵,∴.故选.(3)若点从点沿边运动至点停止,求点,所经过的路径与边围成的图形的面积.(1)(2)(3)29.如图,抛物线与抛物线相交轴于点,抛物线与轴交于、两点(点在点的右侧),直线交轴负半轴于点,交轴于点,且.图求抛物线的解析式与的值.抛物线的对称轴交轴于点,连接,在轴上方的对称轴上找一点,使以点,,为顶点的三角形与相似,求出的长.如图,过抛物线上的动点作轴于点,交直线于点,若点是点关于直线的对称点,是否存在点(不与点重合),使点落在轴上?若存在,请直接写出点的横坐标,若不存在,请说明理由.图D 1.解析:由已知几何体可知其主视图为:故选:.解析:由题意得:,故选.解析:∵有黑球个,白球个,红球个,∴共有()个球,则任意摸出一球为红球的概率为.故选.解析:抛物线向左平移个单位,再向下平移个单位得到,故得到抛物线的解析式为.故选.解析:C 2.B 3.C 4.D 5.A 6.C 7.B 8.C 9.D 10.∵,是的中线,∴,∵,∴,∵,∴四边形是平行四边形,∴,,∵,∴,∴四边形是平行四边形,故②正确;∵,,∴,故①正确;∵,,∴,∵,∴,∴,∵,,∴,∴,∴,∴,,∴,故④正确;过点作于,∴,∴,∴,∴,∴,∴,故③正确.∴正确的是①②③④,一共个,故选.解析:.故答案为:.解析:∵,∴,∴甲比较稳定,故答案为:甲.解析:由函数关系图可知,货车行驶小时,行驶了,改变车速后又行驶了小时,共行驶了,则小时后汽车的速度为:.故答案为:.11.甲12.甲乙甲乙13.解析:原式.故答案为:.解析:设圆锥侧面积展开图的圆心角为,则,解得:.故答案为:.解析:设为,∵在中,,,∵,,∴.解得:.解析:∵和的相似比等于,并且是关于原点的位似图形,∴点的坐标为,则其对应点的坐标是或,即为或.故答案为:或.14.15.16.或17.解析:根据题意可得,解得且,故自变量的取值范围是且.故答案为:且.解析:连接,,∵五边形为正五边形,∴,∵,∵,∴,∴.故答案为:.解析:设原计划每天加工零件件,则实际每天加工零件件,根据题意可得:.故答案为:.解析:且18.19.20.21.(1)(2)图含有个点,图含有个点,图含有个点,图含有个点,图含有个点,图含有个点.故答案为:.解析:作,作,则即为所求.如图,作于点,于点,于点,连接,,,∵为的内心,∴,∵,,,∴在中,,∵,∴,(1)画图见解析.(2)22.(1)(2),.故答案为:.解析:由已知,得,,,在中,∵,∴,在中,∵,∴(千米),答:这时,处距离观测塔约为千米.解析:点关于的对称点如图所示.连接,将线段绕点顺时针旋转得点对应点,旋转后的线段如图所示.千米.23.(1)画图见解析.(2)画图见解析.(3).24.(3)(1)(2)连接,过点作于点,过点作于点;.∴四边形的面积是.解析:由折线统计图可知:月份测试的学生人数最少;月份测试的学生中男生、女生人数相等,均为人.由题意得:等级人数所占五月份抽取学生的百分比为:,则等级人数占月份测试人数的百分比为:.答:等级人数占月份测试人数的百分比是.四边形(1) ;(2).(3)名.25.(3)(1)(2)由题意得:(名).故答案为:.解析:连接,∵是圆的直径,∴.∴.∵,∴.∵,∴,∴,∵,∴.∴.∴.∴.∵是圆半径,∴直线与圆相切.∵,,∴,,(1)证明见解析.(2).26.(1)∵,∴,∴.∵,,∴.∴,∴,∵,,∴.∵,∴,∴的值是.解析:∵为的中点,,∴,∵四边形是矩形,,∴点坐标为,∵在的图象上,∴,∴反比例函数解析式为,当时,,∴点坐标为,∵直线过点和点,∴,解得,∴直线的解析式为,(1),.(2).(3)27.(2)(3)∴反比例函数解析式为,直线的解析式为.作点关于轴的对称点,连接,交轴于点,连接,xyO此时的周长最小,∵点的坐标为,∴点的坐标为,设直线的解析式为,∵直线经过,∴,解得,∴直线的解析式为,令,得,∴点坐标为.∵,,,∴,,∴.解析:(1)证明见解析.(2)证明见解析.(3).28.(1)(2)(3)在正方形中,,.∵,,∴.∴.∵,∴,在和中,,∴≌,∴.在和中,,,∴,由()可知,,∴.∴,由()可知,,∴,∴,∵,,∴,∴,∴.∵,.∴,(1)(2)∴当点从点沿边运动至点停止时,点经过的路径是以为直径,圆心角为的圆弧,同理可得点经过的路径,两弧交于正方形的中心点.(如图所示)∵,∴所围成图形的面积.解析:当时,,∴点的坐标为.∵点在抛物线的图象上,∴.∴.∴抛物线的解析式为.∵,,∴.∵直线过,∴.解得.∴抛物线的解析式为,的值为.连接,令,则.(1),.(2)或.(3)存在,点的横坐标为或或或.29.(3)解得,,∴,,∴抛物线的对称轴为直线.∴,∵,∴,,.①当时,,∴,∴.②当时,,∴,∴.综上,的长为或.点的横坐标为或或或.如图,点是点关于直线的对称点,且点在轴上时,由轴对称性质可知,,,.∵轴,∴轴,∴.∴.∴.∴.∴四边形为菱形.∴.作轴于点.设,则.∴,.∵,∴.在中,.∴.∴.解得,,,.经检验,,,都是所列方程的解.综上,点的横坐标为或或或.。

相关文档
最新文档