四年级奥数_第七讲_数图形

合集下载

四年级《数图形》奥数教案

四年级《数图形》奥数教案

(四年级)备课教员:第1讲数图形一、教学目标:会数线段、角、长方形的数量。

二、教学重点:掌握数图形的方法:先确定数的顺序,再从左往右依次数。

三、教学难点:较大的图形数的时候需要用手比着从左往右依次数,避免漏掉。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)师:同学们,请看,这是什么?生:魔方!师:对啦,这是一个三阶魔方,它的主人是卡尔。

你们想玩吗?生:想。

师:嗯,不仅是你们想玩,卡尔的另外两个小伙伴阿派和欧拉也想玩,但是卡尔很为难,不知道要把魔方借给谁。

于是啊,他就出了一个难题,你们知道是什么难题吗?生:不知道。

师:卡尔出的难题是这样的“你们谁要是说出这个魔方的一面有多少个正方形,我就借给谁。

”你们知道正确答案吗?师:嗯,看来你们也有很多不同的答案嘛。

那我就接着往下讲,阿派听到这个难题后,立马就说了,是9个正方形,但是,欧拉却说是14个,你们猜谁说对了?师:最后啊,卡尔把魔方借给了欧拉,因为欧拉说的是对的。

你们知道为什么是14个正方形吗?怎么数的?生:因为有小的正方形,还有小正方形拼成的大正方形。

师:说的很棒,但是太抽象了,我们最好自己动手数一数。

【课件演示数魔方一面的正方形个数的动画,教师配合学生一步步演示过程。

】师:同学们真棒,都很聪明,所以,卡尔最终把魔方借给了欧拉,是明智的吧。

师:这就是我们今天要学习的《数图形》。

【板书课题:数图形。

】二、探索发现授课(40分)(一)例题1:(13分)你能数出下图中共有多少条线段吗?你是怎样做的?师:请问,题目中,最主要的字眼是什么?数一数下图中有多少条线段?分析:由图可知,端点共有7个,但是按顺序相加只能从6开始加,一直加到1即可。

板书:6+5+4+3+2+1=21(条)答:图中一共有21条线段。

(二)例题2:(13分)你能用数线段的方法数出下图中共有多少个角吗?师:做完了简单的数线段的问题,现在我们来了解一下更深层次的问题。

请看例题二。

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

【例题1】数一数下图中有多少个锐角。
【思路导航】 数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点, 因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得: 1+2+3+4=10(个).
【例题2】 数一数下图中有多少个长方形?
【思路导航】 图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边பைடு நூலகம்的
第12讲 数数图形
小学奥数 四年级
同学们对于图形肯定不陌生,但数学中经常会出现这样的题目: (1)下图中共有几条线段? (2)下图中共有几个长方形?
要正确解答这类问题,就要做到数图形时不重复、不遗漏。这就需要 我们按照一定的顺序去数,并找出它的规律,巧妙地数出图形的个数。数 图形的方法一般有两种:按顺序数和分类数。今天就让我们用数学的方法 巧妙地数图形吧!
实践与应用
【练习5】 P94 数一数,下图中共有多少个长方形?
同学们,图形世界是不是非赏精彩呢?数学的魅力就在于千变万化的图形和数字。通过 这一进,我们对图形有了更深的认识,遇到数图形的问题也能有序、严密地思索,关于数 图形,我们来总结一些最基本的方法吧。
(1)数线段。假设端点有n个(n是整数),那么线段的总条数就是从比n小1的数开始, 一直加到1。
每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有 6×3=18个长方形。 数长方形可以用下面的公式:长边上的线段×短边上的线段=长方形的个数
【例题3】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个 长度单位的正方形)
【思路导航】 边长是1个长度单位的正方形有3×2=6个,边长是2个长度单位的正方形有 2×1=2个。所以,图中正方形的总数为:6+2=8个。 经进一步分析可以发现,一般情况下,如果一个长方形的长被分成m等份, 宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为: mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.

【免费下载】石头老师四年级奥数竞赛班图形计数专题

【免费下载】石头老师四年级奥数竞赛班图形计数专题

C
B
练一练: 数一数图中三角形的个数
例(6)数一数图中一共有多少个三角形?
练一练:
数一数图中一共有多
模拟测试( 2 ) 一、填空题 (每小题 5 分)
1、.下列图形各有几条线段
( )条
( )条
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

四年级上册奥数教材

四年级上册奥数教材

四年级上册奥数教材目录第一讲简单推理第二讲应用题第三讲变化规律(一)第四讲变化规律(二)第五讲错中求解第六讲图形问题第七讲求平均数问题第八讲还原问题第一讲简单推理例1:一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重量等于一包巧克力的重量,一袋饼干等于几袋牛肉干的重量?1、一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨的重量等于几根香蕉的重量?2、3包巧克力的重量等于2袋糖的重量,12袋牛肉干的重量等于3包巧克力的重量,1袋糖的重量等于几袋牛肉干的重量?3、1只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,1只小猪的重量等于几只鸭的重量?例2:1头象的重量等于4头牛的重量,1头牛的重量等于3匹小马的重量,1匹小马的重量等于3头小猪的重量,1头象的重量等于几头小猪的重量?1、1只西瓜的重量等于2个菠萝的重量,1个菠萝的重量等于4个苹果的重量,1个苹果的重量等于2个橘子的重量,1只西瓜的重量等于几个橘子的重量?2、1头牛1天吃草的重量和1只兔子9天吃草的重量相等,也和6只羊1天吃草的重量相等。

已知1头牛每天吃青草18千克,1只兔子和1只羊1天一共吃青草多少千克?3、1只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,两只鸭的重量等于6条鱼的重量,问2只小猪的重量等于几条鱼的重量?例3:根据下面两个算式,求○和□各代表多少?○+○+○=18○+□=101、根据下面两个算式,求○和□各代表多少?○+○+○=15○+○+□+□+□=402、根据下面两个算式,求○和□各代表多少?□-○=8○+○+○=□例4:根据下面两个算式,求○和△各代表多少?△-○=2○+○+△+△+△=561、根据下面两个算式,求○和△各代表多少?△+△+△+○+○=78△+△+○+○+○=722根据下面两个算式,求△和□各代表多少?△+△+△-□-□=12□+□+□-△-△=2第二讲应用题例1:某玩具厂把630件玩具分别装在5个塑料箱和6个纸箱里,1个塑料箱与3个纸箱装的玩具同样多,每个塑料箱和纸箱各装多少件玩具?1、百货商店运来300双球鞋分别装在2个木箱和6个纸箱里。

小学四年级奥数课件:数数图形

小学四年级奥数课件:数数图形
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
下图中共有多少个正方形?多少个三角形?
由2个小三角形组合的三角形共有4×4=16个
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
由8个小三角形组合的三角形共有4个
11/20/2019
下图中共有多少个正方形?多少个三角形?
图中共有小三角形4×4=16个
由2个小三角形组合的三角形共有4×4=16个 由4个小三角形组合的三角形共有4×2=8个 由8个小三角形组合的三角形共有4个
图中共有16+16+8+4=44个
11/20/2019
下图中共有多少个正方形?多少个三角形?
由4个小三角形组合的三角形共有4×2=8个
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
下图中
下图中共有多少个正方形?多少个三角形?
下图中一共有多少个三角形?
11/20/2019
下图中一共有多少个三角形?
11/20/2019
下图中一共有多少个三角形?
11/20/2019
11/20/2019
图中共有小三角形5个。
2个图形组合的三角形有6个。
3个图形组合的三角形有2个。 4个图形组合的三角形有1个。 图中共有5+6+2+1=14个三角形。
11/20/2019
11/20/2019
11/20/2019

四年级下册数学一课一练数图形通用版例题含解析

四年级下册数学一课一练数图形通用版例题含解析

四升五第七讲数图形一、知识要点在解决数图形问题时,首先要认真分析图形的组成规律,根据图形特点选择适当的方法,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来。

二、精讲精练【例题1】数一数下图中有多少个长方形?【思路导航】图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形。

数长方形可以用下面的公式:长边上的线段×短边上的线段=长方形的个数练习1::数一数,下面各图中分别有几个长方形?【例题2】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)【思路导航】图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个。

所以图中的正方形总数为:1+4+9=14个。

经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。

练习2::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题3】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)【思路导航】边长是1个长度单位的正方形有3×2=6个,边长是2个长度单位的正方形有2×1=2个。

所以,图中正方形的总数为:6+2=8个。

经进一步分析可以发现,一般情况下,如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.练习3:1.数一数下列各图中分别有多少个正方形。

2.下图中有多少个长方形,其中有多少个是正方形?【例题4】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?【思路导航】这道题是数线段的方法在实际生活中的应用,连同广州、北京在内,这条铁路上共有10个站,共有1+2+3+…+9=45条线段,因此要准备45种不同的车票。

四年级下册数学试题-奥数专题讲练:7 数表与幻方 精英篇(解析版)全国通用

四年级下册数学试题-奥数专题讲练:7 数表与幻方 精英篇(解析版)全国通用

第七讲 数表与幻方幻方问题千变万化,幻方的填法虽然单一,但组合起来却也是千变万化.1.三阶、四阶幻方与奇数阶幻方的填法;2.三阶幻方的主要性质;3.利用幻方的主要性质补填幻方图;数表一类的问题与幻方问题往往有结合和相近的内容,但数表问题更考验学生对数字规律的发现和运用能力.分析:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方…… 如图为三阶幻方、四阶幻方的标准式样,三阶幻方的中心位置上的数等于所有所填数的平均数,也等于横行、竖列、对角线上数和的三分之一.解决数表类问题中,首先要找出数填写的规律,再从规律中找到数表的数量关系,从而找出解决问题的关键.专题精讲教学目标98765432114115106213169711548312 想 挑 战 吗?将1到9这9个数字填入3×3的正方形表格内,使表格中横、竖、对角线上三个数的和相等,你能有多少种填法?(一)幻方[小故事](教师导入)同学们是否知道我国古代有关“洛书”的神话传说?传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987653421【例1】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等.分析:第一步:求幻和:2+3+4+…+9+10=54第二步:求中心数:我们把幻方中对角线交点的数叫“中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的4倍,即18×4=72,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:(72-54)÷3=6第三步:确定四个角上的数:用尝试法,不难推知,四个角只能是奇数.第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,共八解,如图:[巩固]3×3的正方形中,在每个格子里分别填入1~9的9个数字,要求每行每列对角线上的三个数的和相等,请给出至少一种填法分析:除了运用例题中的方法,还有两种方法:(方法一)罗伯法:把1(或最小的数)放在第一行正中,按以下规律排列剩下的数:(1)每一个数放在前一个数的右上一格(2)如果这个数所要放的格已经超出了最顶行,那么就把它放在最底行,仍然要放在右一列(3)如果这个数所要放的格已经超出了最右列,那么就把它放在最左列,仍然要放在上一行(4)如果这个数所要放的格已经填好了其它的数,或者同时超出了最顶行和最右列,那么就把它放在前一个数的下面,具体如下图:1213213421563421563742156387421563987421(方法二)对易法:先把1到9九个数字按顺序斜着排列,再把上下的数字1和9对调,左右的数字7和3对调,最后把4个不在边上也不在最中心的数字拉到角上,一个三阶幻方就形成了.563987421563987421563987421[说明]南宋数学家杨辉曾概括幻方为:“九子斜排,上下对易,左右相更,四维挺出.”这就是我们现在所学的对易法.[小知识] 我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久,三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”【例2】请你将1~25这二十五个自然数填入图中的空格内每行、每列、每条对角线上的五数之和相等.[亮点设计](1)提问:三阶幻方的我们可以通过算的方法填出,五阶的呢?算算看,累死.七阶呢?更累死.同学们想不想在一分钟之内写出五阶幻方呢?看老师的:(2)示范:边写边说口诀:“一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样”.见第二个图.这是法国人罗伯特总结出的“罗伯法”,它对于构造连续自然数幻方是最简单易行的.(3)练习:写个七阶的看看(大家一起来练)注意强调细节.上出框与右出框的处理有时不容易把握,老师隆重推荐大家一种方法——“卷纸筒”,即把上下边重合在一线,则上出框后往右上填的位置正好在下边的对应点上.强调这种方法适用于任意奇数阶幻方.(4)亮化:大家现在感到是不是很好玩?美国的有个小孩子写出了105阶的幻方,被记在一本数学课本上.我们现在知道,这里的方法其实不算难吧?其实我们也不妨跟美国小朋友PK一下,来构造一个比较大的幻方,也可以是或者就是做一份数学作品,跟书法作品一样装裱得非常漂亮地挂在你家客厅的墙上,客人到你家作客时,一看是一头雾水,你就简单地问一问他,横行的所有数之和是多少?所有横行的每个和怎么样呢?都相等吧?竖列所有数之和是多少?跟横行的和相等吧!还有,看看两条对角线上,每条对角线上所有数之和呢?轻轻而清晰地告诉他,这就是57阶幻方或者**阶幻方!厉害吧,这就是奥数研究生的作品.(研究奥数的学生简称奥数研究生嘛)当然,别忘了,十几阶的奇数幻方奖一个章,二十几阶的奖励三个章,三十几阶的奖励五个章,四十几阶的奖励七个章,如果六十几阶应该奖励几个章呢?【例3】将九个数填入左下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k,则中心方格中的数必为k÷3证明:因为每行的三数之和都等于k,共有三行,所以九个数之和等于3k.如右上图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k,四条虚线上的所有数之和等于4k,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次.所以有:九数之和+中心方格中的数×3=4k,3k+中心方格中的数×3=4k,中心方格的数=k÷3注意:例题中对九个数及定数k都没有特殊要求.这个结论对求解3×3方格中的数阵问题很实用. [拓展]如图是一个三阶幻方,那么标有*的方格中所填的数是多少?110 8*分析:首先确定左下角的数为17,这样才能保证第一行和第一列的和相等,如此可以得出,这个三阶幻方中围绕中心的相对位置上的两个数和为17+10=27,接着确定底边和右边上的数,通过设左上角标有*的方格中所填的数未知数为X,列式为(18+x)÷3+27=18+x,最后求出标有*的方格中所填的数为22.5.【例4】在下图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.分析:中间方格中的数为7.再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x).因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10.考虑到5,7,9已填好,所以x只能取4,6,8或10.经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图).这两个解实际上一样,只是方向不同而已.[巩固]如图所示,在3×3方格表内已填好了两个数19和95,在其余的空格中填上适当的数,可以使得每行、每列以及两条对角线上的三个数之和都相等.(1)求x;(2)如果中间的空格内填入100,试在上一小题的基础上,完成填图.x19 95100951918124171291761051009519分析:(1)设中间的数为Y,则各行各列的和为3Y,求出各个方格中每个数的代数式,左上角为Y-X+95,右上角为2Y-95,右下角为:Y+X-95,最下面一行中间的数为:2Y-X,根据每行每列的和相等,最左面的一列等于最右面的一列,可列出方程:X+3Y-190+19=3Y-X+190-19,解得X=171.(由此引出三阶幻方性质:角上的数等于不相邻边上数的平均数)(2)根据(1)所得的每个方格中的代数式可得右上图.【例5】将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.分析:题目要求相邻的两个自然数在图中的位置也相邻,所以这9个自然数按照大小顺序在图中应能连成一条不相交的折线.经试验有下图所示的三种情况:按照从1到9和从9到1逐一对这三种情况进行验算,只有第二种情况得到下图的两个解.因为第二种情况是螺旋形,故本题的解称为螺旋反幻方.[前铺]用11,13,15,17,19,21,23,25,27编制成一个三阶幻方.分析:给出的九个数形成一个等差数列,1~9也是一个等差数列.不难发现:中间方格里的数字应填等差数列的第五个数,即应填19;填在四个角上方格中的数是位于偶数项的数,即13,17,21,25,而且对角两数的和相等,即13+25=17+21;余下各数就不难填写了(见下图).与幻方相反的问题是反幻方.将九个数填入3×3(三行三列)的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方.【例6】将1、2、3、4、5、6、7、8、9这九个数字,分别填入3×3阵列中的九个方格,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍.分析:这一例题较复杂些,但如果我们充分利用题目的要求和1至9这九个数的特性(五奇四偶),那么也能缩小每格中所应填的数的范围,直至完全确定每格中应填的数.为了方便起见,把九个格中的数字用A至I这九个英文字母代替.这样,例如C=2,则F=4,I=6.因而其余六格应包含全部奇数(1、3、5、7、9)和偶数8,由于DEF=2×ABC,GHI=3×ABC,所以GHI=ABC+DEF,因此又可把3×3方格中的数看作一个加式:前两行之和等于第三行.这对于我们用奇偶性去分析加式成立的可能性是有用的.由于个位上的加法没有进位,因此十位上的三个数字不能都为奇数(否则将出现奇数+奇数=奇数的矛盾等式),即8一定是其中的一个十位数字,显然B≠8(否则E=6,与I=6矛盾).又H≠8(否则,B≤8/3,只有B=1.而当B=1时,H至多为5).因此E=8,这样,B=9,H=7.最后,由于A<D<G必有A=1,D=3,G=5.由于192×2=384,192×3=576,所以所填的数满足题目要求.又如,C=4,则F=8,I=2.个位上的加式向十位进1,因此十位上的三个数字都是奇数,因此6是一个百位数字.显然A≠6.如果D=6,则必有A=3,G=9.而B、E、H是1、5、7这三个数,要满足B+E+1=H,只能B=1,E=5,H=7或B=5,E=1,H=7.由于314×2≠658,354×2≠618,所以此时不满足题目要求.如果G=6,显然A<3,此时只有A=1,但当A=1时,G<(1+1)×3=6.因而当C=4时,不可能有满足题目要求的填法.其他的情形可以类似地加以讨论,分别给出肯定的或否定的结论.由分析,下左图是一种符合要求的填法.由于作为一个加法算式(上两行的和等于第三行),上图只是在十位上的加式向百位进了1,其他两个数位上都没有进位,因此把它的个位移到百位的位置上加式仍然成立,所以上右图也是一种符合要求的填法.还有两种符合要求的填法,希望同学们利用分析中的方法把它们找出来.【例7】 在一个3×3的网格中填入9个数使得每一横行、竖行、对角线上三个数的乘积相等.分析:先填出一个普通幻方,任意取一个自然数n ,然后将幻方中的数改成以n 为底,原来的数为指数的形式即可,取n=2,如果取2,则九个数字为:2、4、8、16、64、128、256、512,如图.563987421512256128641684232[拓展]把1,2,3,4,6,9,12,18,36这9个数分别填入3×3方格表的各方格内,使每一行、每一列及两条对角线上的3个数的乘积都是216.求位于正中间的方格中所填的数.分析:1=2030,2=2130,3=2031,4=2230,6=2131,9=2032,12=2231,18=2132,36=2232,只要将这些数填入空格保证每行每列以及对角线上的2和3上的指数和相等.943122183616【例8】已知如图是一个四阶幻方,那么标有*的方格中所填的数是多少?分析:对角线上的和为34,由此可以确定第四行第三列的数为2,右下角的数为13,于是便可以确定标有*的方格中所填的数为6.3811165*49712(二)数表【例9】如下图,在方格中填入一些数以后使得无论横行、竖行相邻三个数的和都为20,那么“*”所代表的数是多少?分析:设左上角方格中的数为x,由相邻三个数的和为20,可知横行、竖行都以3为循环,那么左上角的数为14-x,左下角方格中的数为12-x,由此还能求到右下角的数为6+x,“*”所代表的数为20-(14-x)-(6+x)=0.[巩固]如图,横、竖各有12个方格,每个方格内都有一个数.已知横行上任意3个相邻数之和为20,竖列上任意3个相邻数之和为2l,并且其中4个方格内的数分别是3,5,8和x.那么x所代表的数是多少?分析:先分析竖直方向的数字出现规律,都是以3为周期循环出现相同数字,求得交叉点上数字为10,同理可求得x=5.【例10】请在4×8方格表的每个方格内填入数1,2或3,使得任何排列如图所示形状的4个方格中所填数的和都是7.11121132113211321133232132113211分析:这个图形如中间图所示打上斜线,那么这四个格子都在不同的斜线上,将4×8的方格网也打上斜线,填数的时候,只要保证同一条斜线上的数相同,并且从最上边的斜线向下,线上对应的数以4为周期依次出现两个1,一个2,一个3.[拓展] 请在4×8方格表的每个方格内填入数1、2、3、4,使得任何排列如例10图所示形状的4个方格中所填数的和都是10.分析:只需将图中的部分斜线上的1替换成4.[前铺]请在4×8方格表的每个方格内填人数1,2或3,使得任何排列如图所示形状的4个方格中所填数的和都是7.*26883x511121132113211321133232132113211分析,首先考虑一个横排,要使横排任意四个数包含3、2、1、1,那么每个横排上的数都应该以4为一个周期,将这样的一个横排向左错位一格作为它的下一排,向左错位两格作为它的下边第二排,……,那么在竖直方向,数表也将符合题目条件的性质.[巩固]在如左图6×6的方格网中填入1、2、3这三个数,使得用右图任意一种图形覆盖方格网,盖住的数和为12.分析:12=1+1+2+2+3+3,由例10得到灵感:将1、2、3如图排列后能保证符合条件211333222211111333333222221111333221[拓展]用一个九宫格盖住下边表中9个数,已知这个九宫格中间一个数是86,你能否用这被盖住的9个数构成一个幻方,使得每一横行,每一竖行还有对角线上三个数的相等.1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 1819 20 21 22 23 24 25 26 2728 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45…………………………………………………………分析:表中对于任何一个数,它的左邻比它小1,右邻比它大1,上邻比它小9,下邻比他大9,由此可知,九宫格盖住的9个数分别为76、77、78、85、86、87、94、95、96,将它们填成幻方如图,86当然放在最中间.969594878685787776【例11】 如图表中所示的顺序,将正整数1、2、3、4、5……按顺序依次填入,求2007在第几行第几列?第一列 第二列 第三列 第四列……第一行 1 2 5 10 17 第二行 4 3 6 11 第三行 9 8 7 12 第四行 16 15 14 13 ……分析:按照填写顺序,所有的完全平方数都出现在数表的第一列,所有小于等于2n 的正整数数都能够组成一个边长为n 的正方形,442<2007<452,所以2007处在边长为45的正方形的边缘,边长为四十五的正方形边缘第一个数是442+1=1937,位于第一行、第四十五列,最后一个数是452=2025,位于第四十五行,第一列,所以第四十五行,第四十五列的数是(2025+1937)÷2=1981,2007>1981,所以2007在第四十五行上,2025-2007=18,所以2007在第十九列上.[拓展]如图表中所示的顺序,将正整数1、2、3、4、5……按顺序依次填入,求2007在第几行第几列?第1列 第2列 第3列 第4列 第5列 第6列……第1行 1 2 6 7 15 16 第2行 3 5 8 14 17 第3行 4 9 13 18 第4行 10 12 19 第5行 11 20 第6行 21 ……分析:每当所填的数能表示成n n+12()时(n 为正整数),所有已经填的数就构成一个直角边长为n 个数的直角三角形,n 为奇数时,2n (n+1)在第一行,n 为偶数时,n n+12()在第一列,因为6262+12⨯()<2007<6363+12⨯(),所以2007在边长为63个数的直角三角形的斜边上,6363+12⨯()=2016位于第1行第63列,2016-2007=9,所以2007在第10行,第54列.【例12】在有大小六个正方形的方框下左图中的圆圈内,填入1~9这九个自然数,使每一个正方形角上四个数字之和相等.a1+a2+b1+b2=S,a2+b2+a3+b3=S,b1+b2+c1+b2=S,a2+b3+b2+b1=S,b2+b2+b3+c3=S,a1+a3+c3+c1=S.将上面的六个等式相加可得到:2(a1+a3+c3+c1)+3(a2+b3+b2+b1)+4b2=6S.则4b2=S4(a1+a3+c3+c1)+4(a2+b3+b2+b1)+4b2=9S.于是有:4(a1+a2+a3+b1+b2+b3+c1+b2+c3)=4×45=9S. 9S=4×45 S=20.这就说明每个正方形角上四个数字之和为20. 所以:b2=5. 从而得到:a1+a2+b1=a2+a3+b3=15,b1+c1+b2=b2+c3+b3=15.由上面两式可得:a1+b1=a3+b3,b1+c1=b3+c3.如果a2为奇数,则a1+b1和a3+b3均为偶数.①若a1为奇数,a3为偶数,则b1为奇数,b3为偶数.因为a2+b3+b2+b1=20,所以b2为偶数,则c1为偶数,c3为奇数.但是a1+a2+5+b1=20,而奇数1、3、5、7、9中含有5的任意四个奇数的和不等于20,有矛盾.②若a1为偶数,a3为偶数,则b1也为偶数,b3也为偶数.因为a2+b3+b2+b1=20,所以b2为奇数,则c1为偶数,c3为偶数,但1~9中只有4个偶数,有矛盾.③若a1为奇数,a3为奇数,则b1、b3也为奇数,这样1~9中有六个奇数,有矛盾.④若a1为偶数,a3为奇数,情况与①相同.综合上述,a2必为偶数.由对称性易知:b2、b2、b1也为偶数.因此a1、a3、c3、c1全为奇数..这样,就比较容易找到此解专题展望幻方、数表类题目虽然变化不多,但这一类题目与数学很多分支包括:组合数学、数论等都有结合,今后同学们接触到更多的数学知识后会对幻方有更深入的了解.1. (例4)在图中的每个空格内填入一个数,使得每行、每列及两条对角线上的3个方格中的各数之和都等于19.95.那么,标有*的格内所填的数是多少?分析:设中间的数为X ,可以此确定上边、右上角、右下角、左下角、左边、右边所填数的代数式,由于3X=19.95,X=6.65,最后得到,标有*的格内所填的数是11.12.*8.804.332. (例6)将自然数1至9分别填在如图所示的3×3方格表内,使得每行、每列及两条对角线上的数满足:两端的两个数之和减去中间的数,结果都等于5.分析:中间的数只能为5,这样才能保证有4组数对分别填写于方格四周,相对位置两数和相等并且比中心所填的数大5.9876432153. (例9)如图,有一个11位数,它的每3个相邻数字之和都是20.问标有*的那个数位上的数字应是几?分析:这个数的各个数位上的数字以3为周期循环出现,这个数为97497497497,标有*的那个数位上的数字应是7.7*9练习七4.(例11)如图表中数的排列顺序,2007在第几行第几列?2007的下边是哪个数?第一列第二列第三列第四列第五行第一行 1 2 3 4第二行8 7 6 5第三行9 10 11 12第四行16 15 14 13……分析:各个自然数的列号以8为循环,行号每4个数加一行,2007=8×250+7,所以2007在第3列,第502行,它下边的数比2007大4,所以2007下边是2011.5.(例12)将1~8填入下图中的○内,要求按照自然数顺序相邻的两个数不能填入有直线段连接的相邻的两个○内.分析:因为中间两个○分别只与一个○不相邻,只能填1和8,其余数的填法见右上图.许多名人喜欢用数学比喻,往往出语幽默、诙谐,好比深山闻钟,使人记忆久远.古希腊哲学家芝诺号称"悖论之父",他有四个数学悖论一直传到今天.他曾讲过一句名言:"大圆圈比小圆圈掌握的知识要多一点,但因为大圆圈的圆周比小圆圈的长,所以它与外界空白的接触面也就比小圆圈大,因此更感到知识的不足,需要努力去学习".人民教育家陶行知先生曾经说,他有八位好朋友做帮手,使他少犯错误,甚至可以不犯错误.他编了一首歌,读起来非常动听:我有八位好朋友,肯把万事指嘉摇?你若想问真姓名,名字不同都姓何. 何事、何故、何人、何如、何时、何来、何去,好像弟弟与哥哥.还有一个西洋派,姓名颠倒叫几何.若向八贤常请教,虽是笨人少错误. 美国作家杰克·伦敦成名后,曾收到过一位女士的求爱信;"你有一个出众的名声,我有一个高贵的地位.这两者加起来,再乘上万能的黄金,足以使我们建立起一个天堂都不能比拟的美满家庭."杰克·伦敦连忙回信,他答得很妙:"根据你列出的那道爱情公式,我看还要开平方!不过这个平方根却是负数".古希腊哲学家芝诺对他的学生说:“如果用小圆代表你们学到的知识,用大圆代表我学到的知识,那么大圆的面积大一点;但两圆之外的空白,都是我们的无知面,圆越大其圆周接触的无知面就越多.”毛泽东曾经批评个人主义严重的人说:“有的人总是以‘我'为‘圆心'、‘个人主义'为‘半径',在这个圆圈里转来转去,总是不能跳出这个圆圈.”数学知识。

四年级奥数-巧数图形个数

四年级奥数-巧数图形个数

姓名:巧数图形个数“数图形的个数”是趣味图形问题的一种,由于几何图形千变万化,错综复杂,要想准确地数出图形中所包含的某一个几何图形的个数,关键是要掌握有条理有次序地数图形的方法。

数图形的个数时,既不能同一图形数两次,又不能把有的图形漏掉不数,常用的计算方法有按顺序和分类数两种。

下面举例介绍两种方法的运用规律:例:数一数下面图中有多少条线段。

第一:按含基本线段的顺序去数。

上图一共有5条小线段,这每条小线段就是基本线段,有5条基本线段,包含有两条基本线段的有4条……第二:按端点进行分类去数。

以线段最左边的点为第一个端点,第二个点为第二个端点……为了方便同学们计数,向大家介绍数线段、三角形、角数量的公式:1+2+…+(n-2)+(n-1)=2)1(nn一、试一试,看谁数得又对又快。

一共有()个三角形。

一共有()个角。

二、填空。

1. 算式中有乘法和加、减法,应先算();算式中有除法和加、减法,应先算();算式中有括号的,应先算()。

2. 在计算25+13×2时,先算( )法,再算( )法。

3. 在计算78÷16×3时,先算()法,再算()法。

4. 在算式50-20÷5里,如果要先算减法,那么算式应该是:()。

里填上“<”“>”或“=”。

20×5+×(5+3)48÷6÷÷(6×8)280-37-280-(37+163)60-24÷60-24)÷12小故事明明和沉沉都十分喜欢数学。

一天明明问沉沉:“你最喜欢几?”“我最喜欢9。

”“那你说说从1数到100,要说几次‘9’?”“啊!……这”沉沉被难住了,“这要数一数才能知道,一分钟时间。

”同学们,请你在一分钟内说出从1到100有多少个9?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。

要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。

要准确、迅速地计数图形必须注意以下几点:
1.弄清被数图形的特征和变化规律。

2.要按一定的顺序数,做到不重复,不遗漏。

【例1】数出下面图中有多少条线段。

【巩固】数出下列图中有多少条线段。

(2)
(3)
【例2】数一数下图中共有多少个三角形。

例题精讲
知识点睛
第七讲数图形
【巩固】数一数下面图中各有多少个三角形。

【例3】数一数下图中共有多少个三角形。

【巩固】数一数下面各图中各有多少个三角形。

【例4】数一数下图中有多少个长方形?
【巩固】数一数,下面各图中分别有几个长方形?
【例5】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)
【巩固】数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)
【例6】从到的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?
【巩固】1.从到的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?
2.从至的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?
【例7】求下列图中线段长度的总和。

(单位:厘米)
【巩固】1.求下图中所有线段的总和。

(单位:厘米)
8 4 6 8
2.求下图中所有线段的总和。

(单位:米)
1、数一数下图中有多少个锐角。

2、数一数下图中有多少个长方形。

3、数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)
4、下图中有多少个长方形,其中有多少个是正方形?
1
、数一数下面各图中分别有多少个长方形。

2、下列各图中各有多少个锐角?
家庭作业
当堂过关
3、求下图中所有线段的总和。

(单位:厘米)
4、数一数下列各图中分别有多少个正方形。

5、从到的快车,中途要停靠9个站,有几种不同的票价?
开心一刻
老人读完一本关于如何增强记忆力的书,便大肆吹嘘他的记忆力提高了一大截,还要老妻试试他。

妻子说:“明天咱们外出旅行,你把应带的东西背一遍。


老人精心抄了一份清单,认真地背起来。

第二天,两人上路了。

在汽车里,妻子问他:“你能背下咱们带的东西了吗?”
老人一字一句地背得滚瓜烂熟,一件不少。

妻子很高兴:“东西放在哪儿了?”。

相关文档
最新文档