四年级奥数之数数图形
四年级奥数第二讲图形的计数问题含答案

四年级奥数第⼆讲图形的计数问题含答案第⼆讲图形的计数问题⼀、知识点:⼏何图形计数问题往往没有显⽽易见的顺序,⽽且要数的对象通常是重叠交错的,要准确计数就需要⼀些智慧了.实际上,图形计数问题,通常采⽤⼀种简单原始的计数⽅法-⼀枚举法.具体⽽⾔,它是指把所要计数的对象⼀⼀列举出来,以保证枚举时⽆⼀重复、.⽆⼀遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.⼆、典例剖析:例(1)数出右图中总共有多少个⾓分析:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个⾓。
练⼀练:数⼀数右图中总共有多少个⾓?答案: 总共有⾓:10+9+8+…+4+3+2+1=55(个)例(2 )数⼀数共有多少条线段?共有多少个三⾓形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三⾓形,先看在△AGH中,在GH上有3个分点,分成基本⼩三⾓形有4个.所以在△AGH中共有三⾓形4+3+2+1=10(个).在△AMN与△ABC中,三⾓形有同样的个数,所以在△ABC中三⾓形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三⾓形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三⾓形30个。
四年级奥数思维训练专题-数数图形

四年级奥数思维训练专题-数数图形专题简析:当线段、角、三角形、长方形等图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,必须注意以下几点:1,弄清被数图形的特征和变化规律.2,要按一定的顺序数,做到不重复,不遗漏.例1:数一数下图中共有多少个三角形.分析:以AD上的线段为底边的三角形也是1+2+3=6个;以EF上的线段为底边的三角形也是1+2+3=6个.所以图中共有6×2=12个三角形.试一试1:数一数下面各图中各有多少个三角形.()个三角形()个三角形例2:数一数下图中有多少个长方形.·分析:数长方形与数线段的方法类似.可以这样思考,图中的长方形的个数取决于AB或CD边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形.试一试2:数一数下面各图中分别有多少个长方形.()个长方形数数图形(二)专题简析:“数图形”时,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来.例1:数一数下图中有多少个长方形?分析:AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形.即:长边线段数×宽边线段数=长方形的个数试一试1:数一数,下图中有( )个长方形.例2:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)分析:图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个.所以图中的正方形总数为:1+4+9=14个.经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.试一试2:数一数下图中有()个正方形.(每个小方格为边长是1的小正方形)例3:数一数右图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)分析:边长是1个长度单位的正方形有6×4=24个;边长是2个长度单位的正方形有(6-1)×(4-1)=15个;边长是3个长度单位的正方形有(6-2)×(4-2)=8个;边长是4个长度单位的正方形有(6-3)×(4-3)=3个;共有:24+15+8+3=50个.如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m -2)(n-2)+…+(m-n+1)·1试一试3:数一数下图中有( )个正方形.。
小学四年级奥数ppt:举一反三数数图形

练习5: 1.一条线段上有21个点(包括两个端点),相邻两
点的距离都是4厘米,所有线段长度的总和是多 少?
2.求下图中所有线段的总和。(单位:米)
3.求下图中所有线段的总和。(单位:厘米)
【例题5】 求下列图中线段长度的总和。(单位:厘米)
可以这样Байду номын сангаас算:AB+AC+AD+AE+BC+BD+BE+CD+CE+DE
=1+(1+4)+(1+4+2)+(1+4+2+3)+4+(4+2)+(4+2+3)+2+(2+3)
=52厘米
发基长如基现本4果本厘规线设线米律段线段的,)线段分算出段上 别式现出的 为中了现长4点a了次11数、(,厘为米3a×2的n、2,基)…本次a线,(n段长-2(厘1把)米。不的能线再段划出现分了的(线2×段3称)次为, 长以3上厘各米线的线段段长出度现的了总(和1×为4)L,次,所以,各线段长度的总和: 1那×么4+L4=×a(13××(2n)-+12)××(12+×a32)×+(3n×-(21)××42)+ =1×(5-1)+4×a(3×5-(n2)-×3)2×+23×+(…5+-a3()n-×13+)3××1(×5-(n4)-×14)
数长方形可以用下面的公式: 长边上的线段×短边上的线段=长方形的个数
练习1: 数一数,下面各图中分别有几个长方形?
【例题2】 数一数,下图中有多少个正方形?(每个小
四年级奥数课后分层作业-第18讲 数数图形(二) 通用版

四年级奥数重点常考第十八讲数数图形(二)
分层作业
基础卷
1、数一数下图中有多少个正方形。
2、下图中有多少个长方形,其中有多少个正方形?
3、从北京到上海的某次列车中途要停靠10个站,北京站要为这次列车准备多少种不同的车票?有多少种不同的票价?
4、从大连到广州的航运线上,中途有8个停靠码头,若干艘客轮来回往返于大连与广州之间,航运公司共要为这条航运线准备多少种不同的船票?
5、求下图中所有线段长度的总和。
(单位:米)
6、一条线段上有10个点(包括两个端点),相邻两点的距离都是5厘米,那么所有线段长度的总和是多少?
答案。
四年级上册奥数(课件)第1讲:数图形

A
B
C
D
从A点出发: AB AC AD 3
从B点出发: BC BD
2
从C点出发: CD
1
例题一
你能数出下图中共有多少条线段吗?你是怎样做的?
A
B
C
D
3 + 2 + 1 = 6(条)
3
答:图中一共有6条线段。 2 1
练习一
数一数下图形中有多少条线段?
从第1个点出发: 可连6条线段; 从第2个点出发: 可连5条线段; 从第3个点出发: 可连4条线段; 从第4个点出发: 可连3条线段; 从第5个点出发: 可连2条线段; 从第6个点出发: 可连1条线段。
小结
求解线段以及角的数量的通用公式: 1+2+3+……+(端点总数或射线总数-1) =线段总数或角的总数
例题三
数一数下图中共有多少个三角形? O 1+2+3 = 6(个)
答:图中共有6个三角形。
AB
C
D
例题三
数一数下图中共有多少个三角形? O 图中1A+D2边+上3 的= 6每(一个条)线段都 能与顶点O构成一个三角形, 也段答就,:是就图说能中,构共A成D有几边6个个上三三有角角几形形条。。线
你们谁能正确说出这个 魔方欧个 为太1方形拉4正什魔简个的,说方么方单这一我得形?借了么面就对嘛为给,多有借,,什欧不啊多给我快么拉就?少他应点是。9个玩该正。把
怎借么我算吧的!?
应该有14个正方 形。
123
10 11 4 154 6
12 13 7 89
数图形
例题一
你能数出下图中共有多少条线段吗?你是怎样做的?
例题四
你能数出下面两幅图中分别有多少个长方形吗?
(完整版)四年级奥数第一讲_图形的计数问题

第一讲图形的计数问题一、知识点:几何图形计数问题常常没有不言而喻的次序,并且要数的对象往常是重叠交织的,要正确计数就需要一些智慧了.实质上,图形计数问题,往常采纳一种简单原始的计数方法-一列举法.详细而言,它是指把所要计数的对象一一列举出来,以保证列举时无一重复、.无一遗漏,而后计算其总和.正确地解答较复杂的图形个数问题,有助于培育同学们思想的有序性和优秀的学习习惯.二、典例解析:例( 1)数出右图中总合有多少个角解析:在∠ AOB内有三条角分线 OC1、OC2、OC3,∠ AOB被这三条角分线分红 4 个基本角,那么∠ AOB内总合有多少个角呢?第一有这 4 个基本角,其次是包括有 2 个基本角构成的角有 3 个(即∠ AOC2、∠ C1OC3、∠ C2OB),而后是包括有 3 个基本角构成的角有 2 个(即∠ AOC3、∠C1OB),最后是包括有 4 个基本角构成的角有 1 个(即∠ AOB),因此∠ AOB内总合有角:4+3+2+1=10(个)解:4+3+ 2+ 1=10(个)答:图中总合有10 个角。
方法 2:用公式计算:边数×(边数—1)÷ 25 ×( 5-1 )÷ 2=10练一练:数一数右图中总合有多少个角?例( 2 )数一数共有多少条线段?共有多少个三角形?解析:①要数多少条线段:先看线段 AB、AD、AE、AF、AC纵向线段,再看 BC、MN、 GH 这 3 条横向线段:(4×3÷2)×5+(5×4÷2)×3=60(条)②要数有多少个三角形,先看在△ ABC中,被 GH和 MN分红了三层,每一层的三角形同样多,因此只需算出一层三角形个数就能够了。
(5 ×4÷2)×3=30(个)答:在△ ABC中共有线段60 条,共有三角形30 个。
练一练:图中共有多少个三角形?例( 3)数一数图中长方形的个数解析:长边线段有:6× 5÷ 2=15宽边线段有: 4 ×3÷2=6共有长方形: 15×6 = 90(个)答:共有长方形90 个。
四年级奥数举一反三第1718周之数数图形(可编辑修改word版)

四年级奥数举一反三第1718 周之数数图形第 17 讲数数图形(一)一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。
要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。
要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。
2.要按一定的顺序数,做到不重复,不遗漏。
二、精讲精练【例题 1】数出下面图中有多少条线段。
【思路导航】要正确解答这类问题,需要我们按照一定的顺序来数,做到不重复,不遗漏。
从图中可以看出,从 A 点出发的不同线段有 3 条:AB、AC、AD;从 B 点出发的不同线段有 2 条:BC、BD;从 C 点出发的不同线段有 1 条:CD。
因此,图中共有3+2+1=6 条线段。
练习 1::数出下列图中有多少条线段。
(2)(3)【例题 2】数一数下图中有多少个锐角。
【思路导航】数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点,因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数- 1)求得:1+2+3+4=10(个).练习 2::下列各图中各有多少个锐角?【例题 3】数一数下图中共有多少个三角形。
【思路导航】图中AD 边上的每一条线段与顶点O 构成一个三角形,也就是说,AD 边上有几条线段,就构成了几个三角形,因为 AD 上有4 个点,共有 1+2+3=6条线段,所以图中有 6 个三角形。
练习 3::数一数下面图中各有多少个三角形。
【例题 4】数一数下图中共有多少个三角形。
【思路导航】与前一个例子相比,图中多了一条线段 EF,因此三角形的个数应是 AD 和 EF 上面的线段与点 O 所围成的三角形个数的和。
显然,以 AD 上的线段为底边的三角形也是 1+2+3=6 个,所以图中共有6×2=12个三角形。
小学四年级奥数课件:数数图形

下图中共有多少个正方形?多少个三角形?
11/20/2019
下图中共有多少个正方形?多少个三角形?
由2个小三角形组合的三角形共有4×4=16个
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
由8个小三角形组合的三角形共有4个
11/20/2019
下图中共有多少个正方形?多少个三角形?
图中共有小三角形4×4=16个
由2个小三角形组合的三角形共有4×4=16个 由4个小三角形组合的三角形共有4×2=8个 由8个小三角形组合的三角形共有4个
图中共有16+16+8+4=44个
11/20/2019
下图中共有多少个正方形?多少个三角形?
由4个小三角形组合的三角形共有4×2=8个
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
下图中共有多少个正方形?多少个三角形?
11/20/2019
下图中
下图中共有多少个正方形?多少个三角形?
下图中一共有多少个三角形?
11/20/2019
下图中一共有多少个三角形?
11/20/2019
下图中一共有多少个三角形?
11/20/2019
11/20/2019
图中共有小三角形5个。
2个图形组合的三角形有6个。
3个图形组合的三角形有2个。 4个图形组合的三角形有1个。 图中共有5+6+2+1=14个三角形。
11/20/2019
11/20/2019
11/20/2019