四年级奥数数数图形

合集下载

四年级奥数第二讲图形的计数问题含答案

四年级奥数第二讲图形的计数问题含答案

四年级奥数第⼆讲图形的计数问题含答案第⼆讲图形的计数问题⼀、知识点:⼏何图形计数问题往往没有显⽽易见的顺序,⽽且要数的对象通常是重叠交错的,要准确计数就需要⼀些智慧了.实际上,图形计数问题,通常采⽤⼀种简单原始的计数⽅法-⼀枚举法.具体⽽⾔,它是指把所要计数的对象⼀⼀列举出来,以保证枚举时⽆⼀重复、.⽆⼀遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.⼆、典例剖析:例(1)数出右图中总共有多少个⾓分析:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个⾓。

练⼀练:数⼀数右图中总共有多少个⾓?答案: 总共有⾓:10+9+8+…+4+3+2+1=55(个)例(2 )数⼀数共有多少条线段?共有多少个三⾓形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三⾓形,先看在△AGH中,在GH上有3个分点,分成基本⼩三⾓形有4个.所以在△AGH中共有三⾓形4+3+2+1=10(个).在△AMN与△ABC中,三⾓形有同样的个数,所以在△ABC中三⾓形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三⾓形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三⾓形30个。

四年级奥数思维训练专题-数数图形

四年级奥数思维训练专题-数数图形

四年级奥数思维训练专题-数数图形专题简析:当线段、角、三角形、长方形等图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,必须注意以下几点:1,弄清被数图形的特征和变化规律.2,要按一定的顺序数,做到不重复,不遗漏.例1:数一数下图中共有多少个三角形.分析:以AD上的线段为底边的三角形也是1+2+3=6个;以EF上的线段为底边的三角形也是1+2+3=6个.所以图中共有6×2=12个三角形.试一试1:数一数下面各图中各有多少个三角形.()个三角形()个三角形例2:数一数下图中有多少个长方形.·分析:数长方形与数线段的方法类似.可以这样思考,图中的长方形的个数取决于AB或CD边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形.试一试2:数一数下面各图中分别有多少个长方形.()个长方形数数图形(二)专题简析:“数图形”时,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来.例1:数一数下图中有多少个长方形?分析:AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形.即:长边线段数×宽边线段数=长方形的个数试一试1:数一数,下图中有( )个长方形.例2:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)分析:图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个.所以图中的正方形总数为:1+4+9=14个.经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.试一试2:数一数下图中有()个正方形.(每个小方格为边长是1的小正方形)例3:数一数右图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)分析:边长是1个长度单位的正方形有6×4=24个;边长是2个长度单位的正方形有(6-1)×(4-1)=15个;边长是3个长度单位的正方形有(6-2)×(4-2)=8个;边长是4个长度单位的正方形有(6-3)×(4-3)=3个;共有:24+15+8+3=50个.如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m -2)(n-2)+…+(m-n+1)·1试一试3:数一数下图中有( )个正方形.。

四年级奥数举一反三第十八周数数图形(二)

四年级奥数举一反三第十八周数数图形(二)

四年级奥数举一反三第十八周数数图形[二]专题简析;在解决数图形问题时’首先要认真分析图形的组成规律’根据图形特点选择适当的方法’既可以逐个计数’也可以把图形分成若干个部分’先对每部分按照各自构成的规律数出图形的个数’再把他们的个数合起来。

例1;数一数下图中有多少个长方形?C D BA分析与解答;图中的AB 边上有线段1+2+3=6条’把AB 边上的每一条线段作为长’AD 边上的每一条线段作为宽’每一个长配一个宽’就组成一个长方形’所以’图中共有6×3=18个长方形。

数长方形可以用下面的公式;长边上的线段×短边上的线段=长方形的个数练习一;数一数’下面各图中分别有几个长方形?(1)(2)(3)例2;数一数’下图中有多少个正方形?[每个小方格是边长为1的正方形]分析与解答;图中边长为1个长度单位的正方形有3×3=9个’边长为2个长度单位的正方形有2×2=4个’边长为3个长度单位的正方形有1×1=1个。

所以图中的正方形总数为;1+4+9=14个。

经进一步分析可以发现’由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为;1×1+2×2+…+n×n。

练习二;数一数下列各图中分别有多少个正方形?[每个小方格为边长是1的小正方形](1)(2)(3)例3;数一数下图中有多少个正方形?[其中每个小方格都是边长为1个长度单位的正方形]分析与解答;边长是1个长度单位的正方形有3×2=6个’边长是2个长度单位的正方形有2×1=2个。

所以’图中正方形的总数为;6+2=8个。

经进一步分析可以发现’一般情况下’如果一个长方形的长被分成m等份’宽被分成n等份[长和宽的每一份都是相等的]那么正方形的总数为;mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n练习三1.数一数下列各图中分别有多少个正方形。

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

【例题1】数一数下图中有多少个锐角。
【思路导航】 数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点, 因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得: 1+2+3+4=10(个).
【例题2】 数一数下图中有多少个长方形?
【思路导航】 图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边பைடு நூலகம்的
第12讲 数数图形
小学奥数 四年级
同学们对于图形肯定不陌生,但数学中经常会出现这样的题目: (1)下图中共有几条线段? (2)下图中共有几个长方形?
要正确解答这类问题,就要做到数图形时不重复、不遗漏。这就需要 我们按照一定的顺序去数,并找出它的规律,巧妙地数出图形的个数。数 图形的方法一般有两种:按顺序数和分类数。今天就让我们用数学的方法 巧妙地数图形吧!
实践与应用
【练习5】 P94 数一数,下图中共有多少个长方形?
同学们,图形世界是不是非赏精彩呢?数学的魅力就在于千变万化的图形和数字。通过 这一进,我们对图形有了更深的认识,遇到数图形的问题也能有序、严密地思索,关于数 图形,我们来总结一些最基本的方法吧。
(1)数线段。假设端点有n个(n是整数),那么线段的总条数就是从比n小1的数开始, 一直加到1。
每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有 6×3=18个长方形。 数长方形可以用下面的公式:长边上的线段×短边上的线段=长方形的个数
【例题3】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个 长度单位的正方形)
【思路导航】 边长是1个长度单位的正方形有3×2=6个,边长是2个长度单位的正方形有 2×1=2个。所以,图中正方形的总数为:6+2=8个。 经进一步分析可以发现,一般情况下,如果一个长方形的长被分成m等份, 宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为: mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.

(完整版)四年级奥数第一讲_图形的计数问题

(完整版)四年级奥数第一讲_图形的计数问题

第一讲图形的计数问题一、知识点:几何图形计数问题常常没有不言而喻的次序,并且要数的对象往常是重叠交织的,要正确计数就需要一些智慧了.实质上,图形计数问题,往常采纳一种简单原始的计数方法-一列举法.详细而言,它是指把所要计数的对象一一列举出来,以保证列举时无一重复、.无一遗漏,而后计算其总和.正确地解答较复杂的图形个数问题,有助于培育同学们思想的有序性和优秀的学习习惯.二、典例解析:例( 1)数出右图中总合有多少个角解析:在∠ AOB内有三条角分线 OC1、OC2、OC3,∠ AOB被这三条角分线分红 4 个基本角,那么∠ AOB内总合有多少个角呢?第一有这 4 个基本角,其次是包括有 2 个基本角构成的角有 3 个(即∠ AOC2、∠ C1OC3、∠ C2OB),而后是包括有 3 个基本角构成的角有 2 个(即∠ AOC3、∠C1OB),最后是包括有 4 个基本角构成的角有 1 个(即∠ AOB),因此∠ AOB内总合有角:4+3+2+1=10(个)解:4+3+ 2+ 1=10(个)答:图中总合有10 个角。

方法 2:用公式计算:边数×(边数—1)÷ 25 ×( 5-1 )÷ 2=10练一练:数一数右图中总合有多少个角?例( 2 )数一数共有多少条线段?共有多少个三角形?解析:①要数多少条线段:先看线段 AB、AD、AE、AF、AC纵向线段,再看 BC、MN、 GH 这 3 条横向线段:(4×3÷2)×5+(5×4÷2)×3=60(条)②要数有多少个三角形,先看在△ ABC中,被 GH和 MN分红了三层,每一层的三角形同样多,因此只需算出一层三角形个数就能够了。

(5 ×4÷2)×3=30(个)答:在△ ABC中共有线段60 条,共有三角形30 个。

练一练:图中共有多少个三角形?例( 3)数一数图中长方形的个数解析:长边线段有:6× 5÷ 2=15宽边线段有: 4 ×3÷2=6共有长方形: 15×6 = 90(个)答:共有长方形90 个。

小学数学4年级培优奥数讲义 第13讲-数数图形(学生版)

小学数学4年级培优奥数讲义 第13讲-数数图形(学生版)

第13讲数数图形①认识了解线段、角、三角形、长方形等基本图形;①学会数基本图形的个数;①掌握数图形的规律。

一、学会数图形同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。

要正确数出图形的个数,关键是要从基本图形入手。

首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。

当我们识了线段、角、三角形、长方形等基本图形后,这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。

要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。

二、解题策略要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。

2.要按一定的顺序数,做到不重复,不遗漏。

考点一:基本图形例1、数出下图中有多少条线段?例2、数出图中有几个角?教学目标知识梳理典例分析例3、数出右图中共有多少个三角形?例4、数出下图中有多少个长方形?例5、数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)考点二:较复杂的问题例1、有5个同学,每两个人握手一次,一共要握手多少次?例2、从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?例3、求下列图中线段长度的总和。

(单位:厘米)例4、下图中共有多少个三角形?例5、数出下图中所有三角形的个数。

例6、如下图,平面上有12个点,可任意取其中四个点围成一个正方形,这样的正方形有多少个?例7、数一数,下图中共有多少个三角形?➢课堂狙击 实战演练1、数出下图中有多少条线段?2、数出图中有几个角?3、数出图中共有多少个三角形?4、数出下图中有多少个长方形?5、银海学校三年级有9个班,每两个班要比赛拔河一次,这样一共要拔河几次?6、从上海到武汉的航运线途中,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?7、数一数,图中共有多少个三角形。

四年级奥数举一反三第十七周数数图形

四年级奥数举一反三第十七周数数图形

四年级奥数举一反三第十七周数数图形专题简析;我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。

要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。

要准确、迅速地计数图形必须注意以下几点;1,弄清被数图形的特征和变化规律。

2,要按一定的顺序数,做到不重复,不遗漏。

例1;数出下面图中有多少条线段。

DCBA分析与解答;要正确解答这类问题,需要我们按照一定的顺序来数,做到不重复,不遗漏。

从图中可以看出,从A点出发的不同线段有3条;AB、AC、AD;从B点出发的不同线段有2条;BC、BD;从C点出发的不同线段有1条;CD。

因此,图中共有3+2+1=6条线段。

练习一;数出下列图中有多少条线段。

(1)EDCBA(2)(3)例2;数一数下图中有多少个锐角。

EDCBAO分析与解答;数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点,因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得;1+2+3+4=10(个)练习二;下列各图中各有多少个锐角?(1)(2)(3)例3;数一数下图中共有多少个三角形。

D C BA分析与解答;图中AD 边上的每一条线段与顶点O 构成一个三角形,也就是说,AD 边上有几条线段,就构成了几个三角形,因为AD 上有4个点,共有1+2+3=6条线段,所以图中有6个三角形。

练习三;数一数下面图中各有多少个三角形。

例4;数一数下图中共有多少个三角形。

C分析与解答;与前一个例子相比,图中多了一条线段EF,因此三角形的个数应是AD和EF上面的线段与点O所围成的三角形个数的和。

显然,以AD上的线段为底边的三角形也是1+2+3=6个,所以图中共有6×2=12个三角形。

练习四;数一数下面各图中各有多少个三角形。

例5;数一数下图中有多少个长方形。

小学四年级奥数第17讲 数数图形(含答案分析)

小学四年级奥数第17讲 数数图形(含答案分析)

第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。

要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。

要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段的条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角的个数为n+(n-1)+(n-2)+…+3+2+13. 由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。

4. 如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段。

练习1:数出下列图中有多少条线段。

(2)【例题2】数一数下图中有多少个锐角。

练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形。

练习3::数一数下面图中各有多少个三角形。

【例题4】数一数下图中共有多少个三角形。

练习4::数一数下面各图中各有多少个三角形。

【例题5】数一数下图中有多少个长方形。

练习5::数一数下面各图中分别有多少个长方形。

【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)练习8:数一数下列各图中分别有多少个正方形。

【例题9】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?练习9:1.从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2.从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京的快车,中途要停靠9个站,有几种不同的票价?【例题10】求下列图中线段长度的总和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17讲数数图形
一、知识要点
要准确、迅速地计数图形必须注意以下几点:
1.弄清被数图形的特征和变化规律。

2.要按一定的顺序数,做到不重复,不遗漏。

二、精讲精练
【例题1】数出下面图中有多少条线段。

练习1::数出下列图中有多少条线段。

(2)
(3)
【例题2】数一数下图中有多少个锐角。

练习2::下列各图中各有多少个锐角
【例题3】数一数下图中共有多少个三角形。

练习3::数一数下面图中各有多少个三角形。

【例题4】数一数下图中共有多少个三角形。

练习4::数一数下面各图中各有多少个三角形。

【例题5】数一数下图中有多少个长方形。

练习5::数一数下面各图中分别有多少个长方形。

第18讲数数图形
一、知识要点
在解决数图形问题时,首先要认真分析图形的组成规律,根据图形特点选择适当的方法,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来。

二、精讲精练
【例题1】数一数下图中有多少个长方形
练习1::数一数,下面各图中分别有几个长方形
【例题2】数一数,下图中有多少个正方形(每
个小方格是边长为1的正方形)
【思路导航】图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个。

所以图中的正方形总数为:1+4+9=14个。

经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。

练习2::数一数下列各图中分别有多少个正方形(每个小方格为边长是1的小正方形)
【例题3】数一数下图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形)
【思路导航】边长是1个长度单位的正方形有3×2=6个,边长是2个长度单位的正方形有2×1=2个。

所以,图中正方形的总数为:6+2=8个。

经进一步分析可以发现,一般情况下,如果一个长方形的长被分成m 等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.
练习3:
1.数一数下列各图中分别有多少个正方形。

2.下图中有多少个长方形,其中有多少个是正方形
【例题4】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票这些车票中有多少种不同的票价练习4:
从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票
2.从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价
3.从成都到南京的快车,中途要停靠9个站,有几种不同的票价【例题5】求下列图中线段长度的总和。

(单位:厘米)
【思路导航】要求图中的线段长度总和,可以这样计算:
AB+AC+AD+AE+BC+BD+BE+CD+CE+DE
=1+(1+4)+(1+4+2)+(1+4+2+3)+4+(4+2)+(4+2+3)+2+(2+3)
=352厘米
从上面的计算中可以发现这样一个规律,算式中长1厘米的基本线
段(我们把不能再划分的线段称为基本线段)出现了4次,长4厘
米的线段出现了(3×2)次,长2厘米的线段出现了(2×3)次,
长3厘米的线段出现了(1×4)次,所以,各线段长度的总和还可
3.求下图中所有线段的总和。

(单位:厘米)以这样算:1×4+4×(3×2)+2×(2×3)+3×(1×4)
=1×(5-1)+4×(5-2)×2+2×(5-3)×3+3×(5-4)×4=52
厘米
上式中的5是线段上的5个点,如果设线段上的点数为n,基本线段
分别为a1、a2、…a(n-1)。

以上各线段长度的总和为L,那么L= a1
×(n-1)×1+ a2×(n-2)×2+ a3×(n-3)×3+…+ a(n-1)×1×(n-
1)。

练习5:
1.一条线段上有21个点(包括两个端点),相邻两点的距离都是4
厘米,所有线段长度的总和是多少
2.求下图中所有线段的总和。

(单位:米)。

相关文档
最新文档