数字集成电路复习资料
数字集成电路复习笔记

数字集成电路复习笔记(总34页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数集复习笔记By 潇然名词解释专项摩尔定律:一个芯片上的晶体管数目大约每十八个月增长一倍。
传播延时:一个门的传播延时tp定义了它对输入端信号变化的响应有多快。
它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。
由于一个门对上升和下降输入波形的响应时间不同,所以需定义两个传播延时。
tpLH定义为这个门的输出由低至高翻转的响应时间,而tpHL则为输出由高至低翻转的响应时间。
传播延时tp 定义为这两个时间的平均值:tp=(tpLH+tpHL)/2。
设计规则:设计规则是指导版图掩膜设计的对几何尺寸的一组规定。
它们包括图形允许的最小宽度以及在同一层和不同层上图形之间最小间距的限制与要求。
定义设计规则的目的是为了能够很容易地把一个电路概念转换成硅上的几何图形。
设计规则的作用就是电路设计者和工艺工程师之间的接口,或者说是他们之间的协议。
速度饱和效应:对于长沟MOS管,载流子满足公式:υ = -μξ(x)。
公式表明载流子的速度正比于电场,且这一关系与电场强度值的大小无关。
换言之,载流子的迁移率是一个常数。
然而在(水平方向)电场强度很高的情况下,载流子不再符合这一线性模型。
当沿沟道的电场达到某一临界值ξc时,载流子的速度将由于散射效应(即载流子间的碰撞)而趋于饱和。
时钟抖动:在芯片的某一个给定点上时钟周期发生暂时的变化,即时钟周期在每个不同的周期上可以缩短或加长。
逻辑综合:逻辑综合的任务是产生一个逻辑级模型的结构描述。
这一模型可以用许多不同的方式来说明,如状态转移图、状态图、电路图、布尔表达式、真值表或HDL描述。
噪声容限:为了使一个门的稳定性较好并且对噪声干扰不敏感,应当使“0”和“1”的区间越大越好。
一个门对噪声的灵敏度是由低电平噪声容限NM L 和高电平噪声容限NM H 来度量的,它们分别量化了合法的“0”和“1”的范围,并确定了噪声的最大固定阈值:NM L =V IL - V OL NM H =V OH - V IH沟道长度调制:在理想情况下,处于饱和区的晶体管的漏端与源端的电流是恒定的,并且独立于在这两个端口上外加的电压。
集成电路工艺复习资料

集成电路⼯艺复习资料1.特征尺⼨(Critical Dimension,CD)的概念特征尺⼨是芯⽚上的最⼩物理尺⼨,是衡量⼯艺难度的标志,代表集成电路的⼯艺⽔平。
①在CMOS技术中,特征尺⼨通常指MOS管的沟道长度,也指多晶硅栅的线宽。
②在双极技术中,特征尺⼨通常指接触孔的尺⼨。
2.集成电路制造步骤:①Wafer preparation(硅⽚准备)②Wafer fabrication (硅⽚制造)③Wafer test/sort (硅⽚测试和拣选)④Assembly and packaging (装配和封装)⑤Final test(终测)3.不同晶向的硅⽚,它的化学、电学、和机械性质都不同,这会影响最终的器件性能。
例如迁移率,界⾯态等。
MOS集成电路通常⽤(100)晶⾯或<100>晶向;双极集成电路通常⽤(111)晶⾯或<111>晶向。
4.硅热氧化的概念、氧化的⼯艺⽬的、氧化⽅式及其化学反应式。
氧化的概念:硅热氧化是氧分⼦或⽔分⼦在⾼温下与硅发⽣化学反应,并在硅⽚表⾯⽣长氧化硅的过程。
氧化的⼯艺⽬的:在硅⽚上⽣长⼀层⼆氧化硅层以保护硅⽚表⾯、器件隔离、屏蔽掺杂、形成电介质层等。
氧化⽅式及其化学反应式:①⼲氧氧化:Si+O2 →SiO2②湿氧氧化:Si +H2O +O2 →SiO2+H2③⽔汽氧化:Si +H2O →SiO2 +H2硅的氧化温度:750 ℃~1100℃5.SiO2在集成电路中的⽤途①栅氧层:做MOS结构的电介质层(热⽣长)②场氧层:限制带电载流⼦的场区隔离(热⽣长或沉积)③保护层:保护器件以免划伤和离⼦沾污(热⽣长)④注⼊阻挡层:局部离⼦注⼊掺杂时,阻挡注⼊掺杂(热⽣长)⑤垫氧层:减⼩氮化硅与硅之间应⼒(热⽣长)⑥注⼊缓冲层:减⼩离⼦注⼊损伤及沟道效应(热⽣长)⑦层间介质:⽤于导电⾦属之间的绝缘(沉积)6.硅热氧化⼯艺中影响⼆氧化硅⽣长的因素①氧化温度;②氧化时间;③掺杂效应:重掺杂的硅要⽐轻掺杂的氧化速率快④硅⽚晶向:<111>硅单晶的氧化速率⽐<100>稍快⑤反应室的压⼒:压⼒越⾼氧化速率越快⑥氧化⽅式:湿氧氧化⽐⼲氧氧化速度快7.热⽣长氧化层与沉积氧化层的区别①结构及质量:热⽣长的⽐沉积的结构致密,质量好。
数字电路复习题

数字电路复习题(选择、填空、判断)第一章数制与码制选择题1.与十进制数(53)10等值的数为(A )A.(100111)2B.(110101)2C.(25 )16D.(33)162.十进制数25用8421BCD码表示为(B )A.10101B.00100101C.11001D.101010003.在下列一组数中,最大数是(C )A.(258)10B.(100000010)2C.(103)16D.(001001011000)8421BCD4.十----二进制转换:(25.7)10=(C )2A.11011.1011B.11001.1001C.11001.1011D.11011.10015.将十进制数35表示为8421BCD码是(C )A.100011B.100011C.110101D.11010006.将二进制数11001.01转换为十进制数是(B )A.20.25B.25.25C.25.2D.25.17.十——二进制转换:(117)10=(A )2A.1110101B.1110110C.1100101D.110101判断题1.数字信号是离散信号,模拟信号是连续信号。
(√)2.格雷码具有任何相邻码只有一位码元不同的特性。
(√)3.8421码又称BCD码,是十进制代码中最常用的一种。
8421码属于恒权码。
(√)4.直接对模拟量进行处理的电子线路称为数字电路。
(X )填空题1.自然界物理量按其变化规律的特点可分为两类,为模拟量和数字量。
2. 数字信号的特点是在时间上和数量上都是离散变化的。
3.(167)10=(10100111)2 =(000101100111)8421BCD。
4.(193)10=(C1 )16 =(000110010011 )8421BCD。
5.二进制数01011001对应的十六进制数(59 )16 ,表示十进制数是89 。
6.BCD余3码100001011001对应的十进制数526 ,表示成BCD8421码是010********* 。
数字电路(复习)

②C=1、C=0,即C端为高电平(+VDD)、C端为低电平(0V) 时,TN和TP都具备了导通条件,输入和输出之间相当于开关接通 一样,uO=uI 。
2.三态门电路的输出有高阻态、高电平和低电平3种状态
• 三态门逻辑符号控制端电平的约定
A
1
Y
EN
EN
(a)控制端低电平有效
控制端加低电平信号时,三 态门处于工作状态,Y=A, 加高电平信号时禁止,Y=Z
加法器
能对两个1位二进制数进行相加而求得和及进位的逻辑电 路称为半加器。 能对两个1位二进制数进行相加并考虑低位来的进位,即 相当于3个1位二进制数的相加,求得和及进位的逻辑电路称 为全加器。 实现多位二进制数相加的电路称为加法器。按照进位方 式的不同,加法器分为串行进位加法器和超前进位加法器两 种。串行进位加法器电路简单、但速度较慢,超前进位加法 器速度较快、但电路复杂。 加法器除用来实现两个二进制数相加外,还可用来设计 代码转换电路、二进制减法器和十进制加法器等。
数据分配器
数据分配器的逻辑功能是将1个输入数据传送到 多个输出端中的1个输出端,具体传送到哪一个输出 端,也是由一组选择控制(地址)信号确定。 数据分配器就是带选通控制端即使能端的二进 制译码器。只要在使用中,把二进制译码器的选通 控制端当作数据输入端,二进制代码输入端当作选 择控制端就可以了。 数据分配器经常和数据选择器一起构成数据传 送系统。其主要特点是可以用很少几根线实现多路 数字信息的分时传送。
八进制数
0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
十六进制数
0 1 2 3 4 5 6 7 8 9 A B C D E F
门电路 国标符号 曾用符号 美国符号 表达式
集成电路设计方法--复习提纲

集成电路设计⽅法--复习提纲1.什么叫IC 的集成度?⽬前先进的IC规模有多⼤?集成度就是⼀块集成电路芯⽚中包含晶体管的数⽬,或者等效逻辑门数2012年5⽉ 71亿晶体管的NVIDIA的GPU 28nm2.什么叫特征尺⼨?特征尺⼨通常是指是⼀条⼯艺线中能加⼯的最⼩尺⼨,反映了集成电路版图图形的精细程度,如MOS晶体管的沟道长度,DRAM结构⾥第⼀层⾦属的⾦属间距(pitch)的⼀半。
3.⽬前主流的硅圆⽚直径是多少?12英⼨4.什么叫NRE(non-recurring engineering)成本?⽀付给研究、开发、设计和测试某项新产品的单次成本。
在集成电路领域主要是指研发⼈⼒成本、硬件设施成本、CAD⼯具成本以及掩膜、封装⼯具、测试装置的成本,产量⼩,费⽤就⾼。
5.什么叫recurring costs?重复性成本,每⼀块芯⽚都要付出的成本,包括流⽚费、封装费、测试费。
也称可变成本,指直接⽤于制造产品的费⽤,因此与产品的产量成正⽐。
包括:产品所⽤部件的成本、组装费⽤以及测试费⽤。
6.什么叫有⽐电路?靠两个导通管的宽长⽐不同,从⽽呈现的电阻不同来决定输出电压,它是两个管⼦分压的结果,电压摆幅由管⼦的尺⼨决定。
7.IC制造⼯艺有哪⼏种?双极型模拟集成电路⼯艺、CMOS⼯艺、BiCMOS⼯艺8.什么叫摩尔定律?摩尔定律⾯临什么样的挑战?当价格不变时,积体电路上可容纳的电晶体数⽬,约每隔24个⽉(现在普遍流⾏的说法是“每18个⽉增加⼀倍”)便会增加⼀倍,性能也将提升⼀倍;或者说,每⼀美元所能买到的电脑性能,将每隔18个⽉翻两倍以上。
⾯临⾯积、速度和功耗的挑战。
9.什么叫后摩尔定律?后摩尔定律下IC设计⾯临哪些挑战?解决⽅案?多重技术创新应⽤向前发展,即在产品多功能化(功耗、带宽等)需求下,将硅基CMOS和⾮硅基等技术相结合,以提供完整的解决⽅案来应对和满⾜层出不穷的新市场发展。
挑战:a单芯⽚的处理速度越来越快,主频越来越⾼,热量越来越多b.互联线延迟增⼤解决⽅案:1.多核、低功耗设计2.3D互联、⽆线互联、光互连延续摩尔定律“尺⼨更⼩、速度更快、成本更低”,还会利⽤更多的技术创新:节能、环保、舒适以及安全性架构:多核散热:研发新型散热器更薄的材料:⽤碳纳⽶管组装⽽成的晶体管速度更快的晶体管:超薄⽯墨烯做的晶体管纳⽶交叉线电路元件:忆阻器光学互联器件分⼦电路、分⼦计算、光⼦计算、量⼦计算、⽣物计算10. IC按设计制造⽅法不同可以分为哪⼏类?全定制IC:硅⽚各掩膜层都要按特定电路的要求进⾏专门设计半定制IC:全部逻辑单元是预先设计好的,可以从单元苦衷调⽤所需单元来掩模图形,可使⽤相应的EDA软件,⾃动布局布线可编程IC :全部逻辑单元都已预先制成,不需要任何掩膜,利⽤开发⼯具对器件进⾏编程,以实现特定的逻辑功能。
集成电路原理及应用期末复习资料..

1.什么是差动放大电路?什么是差模信号?什么是共模信号?差动放大器对差模信号和共模信号分别起什么作用?差动放大电路是把两个输入信号分别输入到运算放大器的同相和反相输入端,然后在输出端取出两个信号的差模成分,而尽量抑制两个信号的共模成分的电路。
共模信号:双端输入时,两个大小相同,极性相同的信号。
差模信号:双端输入时,两个大小相等,极性相反的信号。
对差模输入信号的放大作用、对共模输入信号的抑制作用2.集成运放有哪几部分组成?各部分的典型电路分别是什么?输入级、中间级、输出级、偏置电路四大部分组成输入级的典型电路是差动放大电路, 利用它的电路对称性可提高整个电路的性能,减小温漂;中间级的典型电路是电平位移电路, 将电平移动到地电平,满足零输入时零输出的要求;输出级的典型电路是互补推挽输出放大电路,使输出级输出以零电平为中心,并能与中间电压放大级和负载进行匹配;偏置电路典型电路是电流源电路,给各级电路提供合适的静态工作点、所需的电压3.共模抑制比的定义?集成运放工作于线性区时,其差模电压增益Aud与共模电压增益Auc之比4.集成运放的主要直流参数:输入失调电压Uos、输入失调电压的温度系数△Uos/△T、输入偏置电流、输入失调电流、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰--峰电压、最大共模输入电压、最大差模输入电压5.集成运放主要交流参数:开环带宽、单位增益带宽、转换速率、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。
6.理想集成运放的基本条件。
1.差模电压增益为无穷大2.输入电阻为无穷大3.输出电阻为04.共模抑制比CMRR为无穷大5.转换速率为无穷大即Sr=006.具有无限宽的频带7.失调电压·失调电流极其温漂均为08.干扰和噪声均为07.理想集成运放的两个基本特性:虚短和虚断。
代表的实际物理意义。
其实,虚短和虚断的原因只有一个,那就是:输入端输入电阻无穷大。
数字集成电路复习必备知识点总结

1. 集成电路是指通过一系列特定的加工工艺,将晶体管、二极管、MOS管等有源器件和阻、电容、电感等无源器件,按一定电路互连,“集成”在一块半导体晶片(硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。
2.集成电路的规模大小是以它所包含的晶体管数目或等效的逻辑门数目来衡量。
等效逻辑门通常是指两输入与非门,对于CMOS集成电路来说,一个两输入与非门由四个晶体管组成,因此一个CMOS电路的晶体管数除以四,就可以得到该电路的等效逻辑门的数目,以此确定一个集成电路的集成度。
3.摩尔定律”其主要内容如下:集成电路的集成度每18个月翻一番/每三年翻两番。
摩尔分析了集成电路迅速发展的原因,他指出集成度的提高主要是三方面的贡献:(1)特征尺寸不断缩小,大约每3年缩小 1.41倍;(2)芯片面积不断增大,大约每3年增大 1.5倍;(3)器件和电路结构的改进。
4.反标注是指将版图参数提取得到的分布电阻和分布电容迭加到相对应节点的参数上去,实际上是修改了对应节点的参数值。
5.CMOS反相器的直流噪声容限:为了反映逻辑电路的抗干扰能力,引入了直流噪声容限作为电路性能参数。
直流噪声容限反映了电流能承受的实际输入电平与理想逻辑电平的偏离范围。
6. 根据实际工作确定所允许的最低输出高电平,它所对应的输入电平定义为关门电平;给定允许的最高输出低电平,它所对应的输入电平为开门电平7. 单位增益点.在增益为0和增益很大的输入电平的区域之间必然存在单位增益点,即dVout/dVin=1的点8. “闩锁”现象在正常工作状态下,PNPN四层结构之间的电压不会超过Vtg,因此它处于截止状态。
但在一定的外界因素触发下,例如由电源或输出端引入一个大的脉冲干扰,或受r射线的瞬态辐照,使PNPN四层结构之间的电压瞬间超过Vtg,这时,该寄生结构中就会出现很大的导通电流。
只要外部信号源或者Vdd和Vss能够提供大于维持电流Ih的输出,即使外界干扰信号已经消失,在PNPN四层结构之间的导通电流仍然会维持,这就是所谓的“闩锁”现象9. 延迟时间:T pdo ——晶体管本征延迟时间;UL ——最大逻辑摆幅,即最大电源电压;Cg ——扇出栅电容(负载电容);Cw ——内连线电容;Ip ——晶体管峰值电流。
(完整版)集成电路设计复习题及解答

集成电路设计复习题绪论1.画出集成电路设计与制造的主要流程框架。
2.集成电路分类情况如何?集成电路设计1.层次化、结构化设计概念,集成电路设计域和设计层次2.什么是集成电路设计?集成电路设计流程。
(三个设计步骤:系统功能设计逻辑和电路设计版图设计)3.模拟电路和数字电路设计各自的特点和流程4.版图验证和检查包括哪些内容?如何实现?5.版图设计规则的概念,主要内容以及表示方法。
为什么需要指定版图设计规则?6.集成电路设计方法分类?(全定制、半定制、PLD)7.标准单元/门阵列的概念,优点/缺点,设计流程8.PLD设计方法的特点,FPGA/CPLD的概念9.试述门阵列和标准单元设计方法的概念和它们之间的异同点。
10.标准单元库中的单元的主要描述形式有哪些?分别在IC设计的什么阶段应用?11.集成电路的可测性设计是指什么?Soc设计复习题1.什么是SoC?2.SoC设计的发展趋势及面临的挑战?3.SoC设计的特点?4.SoC设计与传统的ASIC设计最大的不同是什么?5.什么是软硬件协同设计?6.常用的可测性设计方法有哪些?7. IP的基本概念和IP分类8.什么是可综合RTL代码?9.么是同步电路,什么是异步电路,各有什么特点?10.逻辑综合的概念。
11.什么是触发器的建立时间(Setup Time),试画图进行说明。
12.什么是触发器的保持时间(Hold Time),试画图进行说明。
13. 什么是验证,什么是测试,两者有何区别?14.试画图简要说明扫描测试原理。
绪论1、 画出集成电路设计与制造的主要流程框架。
2、集成电路分类情况如何?集成电路设计1. 层次化、结构化设计概念,集成电路设计域和设计层次分层分级设计和模块化设计.将一个复杂的集成电路系统的设计问题分解为复杂性较低的设计级别,⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧按应用领域分类数字模拟混合电路非线性电路线性电路模拟电路时序逻辑电路组合逻辑电路数字电路按功能分类GSI ULSI VLSI LSI MSI SSI 按规模分类薄膜混合集成电路厚膜混合集成电路混合集成电路B iCMOS B iMOS 型B iMOS CMOS NMOS PMOS 型MOS双极型单片集成电路按结构分类集成电路这个级别可以再分解到复杂性更低的设计级别;这样的分解一直继续到使最终的设计级别的复杂性足够低,也就是说,能相当容易地由这一级设计出的单元逐级组织起复杂的系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 数字集成电路介绍第一个晶体管,Bell 实验室,1947第一个集成电路,Jack Kilby ,德州仪器,1958 摩尔定律:1965年,Gordon Moore 预言单个芯片上晶体管的数目每18到24个月翻一番。
(随时间呈指数增长)抽象层次:器件、电路、门、功能模块和系统 抽象即在每一个设计层次上,一个复杂模块的内部细节可以被抽象化并用一个黑匣子或模型来代替。
这一模型含有用来在下一层次上处理这一模块所需要的所有信息。
固定成本(非重复性费用)与销售量无关;设计所花费的时间和人工;受设计复杂性、设计技术难度以及设计人员产出率的影响;对于小批量产品,起主导作用。
可变成本 (重复性费用)与产品的产量成正比;直接用于制造产品的费用;包括产品所用部件的成本、组装费用以及测试费用。
每个集成电路的成本=每个集成电路的可变成本+固定成本/产量。
可变成本=(芯片成本+芯片测试成本+封装成本)/最终测试的成品率。
一个门对噪声的灵敏度是由噪声容限NM L (低电平噪声容限)和NM H (高电平噪声容限)来度量的。
为使一个数字电路能工作,噪声容限应当大于零,并且越大越好。
NM H = V OH - V IH NM L = V IL - V OL 再生性保证一个受干扰的信号在通过若干逻辑级后逐渐收敛回到额定电平中的一个。
一个门的VTC 应当具有一个增益绝对值大于1的过渡区(即不确定区),该过渡区以两个有效的区域为界,合法区域的增益应当小于1。
理想数字门 特性:在过渡区有无限大的增益;门的阈值位于逻辑摆幅的中点;高电平和低电平噪声容限均等于这一摆幅的一半;输入和输出阻抗分别为无穷大和零。
传播延时、上升和下降时间的定义传播延时tp 定义了它对输入端信号变化的响应有多快。
它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。
上升和下降时间定义为在波形的10%和90%之间。
对于给定的工艺和门的拓扑结构,功耗和延时的乘积一般为一常数。
功耗-延时积(PDP)----门的每次开关事件所消耗的能量。
一个理想的门应当快速且几乎不消耗能量,所以最后的质量评价为。
能量-延时积(EDP) = 功耗-延时积2。
第三章、第四章CMOS 器件 手工分析模型()0 12'≥⎪⎪⎭⎫ ⎝⎛=V V V V V LW K I 若+-λ()DSAT DS GT V V V V ,,m in min =寄生简化:当导线很短,导线的截面很大时或当所采用的互连材料电阻率很低时,电感的影响可以忽略:如果导线的电阻很大(例如截面很小的长铝导线的情形);外加信号的上升和下降时间很慢。
当导线很短,导线的截面很大时或当所采用的互连材料电阻率很低时,采用只含电容的模型。
当相邻导线间的间距很大时或当导线只在一段很短的距离上靠近在一起时:导线相互间的电容可以被忽略,并且所有的寄生电容都可以模拟成接地电容。
平行板电容:导线的宽度明显大于绝缘材料的厚度。
边缘场电容:这一模型把导线电容分成两部分:一个平板电容以及一个边缘电容,后者模拟成一条圆柱形导线,其直径等于该导线的厚度。
多层互连结构:每条导线并不只是与接地的衬底耦合(接地电容),而且也与处在同一层及处在相邻层上的邻近导线耦合(连线间电容)。
总之,再多层互连结构中导线间的电容已成为主要因素。
这一效应对于在较高互连层中的导线尤为显著,因为这些导线离衬底更远。
例4.5与4.8表格电压范围 集总RC 网络 分布RC 网络0 → 50%(t p) 0.69 RC 0.38 RC0 → 63%(τ) RC 0.5 RC10% → 90%(t r) 2.2 RC 0.9 RC0 → 90% 2.3 RC 1.0 RC例4.1 金属导线电容考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线,计算总的电容值。
平面(平行板)电容: ( 0.1×106μm2 )×30a F/μm2 = 3pF 边缘电容:2×( 0.1×106μm )×40aF/μm = 8pF 总电容: 11pF 现假设第二条导线布置在第一条旁边,它们之间只相隔最小允许的距离,计算其耦合电容。
耦合电容: C inter = ( 0.1×106μm )×95 aF/μm2 = 9.5pF材料选择:对于长互连线,铝是优先考虑的材料;多晶应当只用于局部互连;避免采用扩散导线;先进的工艺也提供硅化的多晶和扩散层接触电阻:布线层之间的转接将给导线带来额外的电阻。
布线策略:尽可能地使信号线保持在同一层上并避免过多的接触或通孔;使接触孔较大可以降低接触电阻(电流集聚在实际中将限制接触孔的最大尺寸)。
采电流集聚限制R C , (最小尺寸):金属或多晶至n+、p+以及金属至多晶为 5 ~ 20 Ω ;通孔(金属至金属接触)为1 ~ 5 Ω 。
例4.2 金属线的电阻考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线。
假设铝层的薄层电阻为0.075Ω/□,计算导线的总电阻:R wire =0.075Ω/□⨯(0.1⨯106μm)/(1μm)=7.5k Ω例4.5 导线的集总电容模型假设电源内阻为10k Ω的一个驱动器,用来驱动一条10cm 长,1μm 宽的Al1导线。
电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p) 0.69 RC 0.38 RC0 → 63%(τ) RC 0.5 RC 10% → 90%(t r) 2.2 RC 0.9 RC0 → 90% 2.3 RC 1.0 RC使用集总电容模型,源电阻R Driver =10 k Ω,总的集总电容C lumped =11 pFt 50% = 0.69 ⨯ 10 k Ω ⨯ 11pF = 76 ns t 90% = 2.2 ⨯ 10 k Ω ⨯ 11pF = 242 ns例4.6 树结构网络的RC 延时节点i 的Elmore 延时: τDi = R 1C 1 + R 1C 2 + (R 1+R 3) C 3 + (R 1+R 3) C 4 + (R 1+R 3+R i ) C i 例4.7 电阻-电容导线的时间常数 总长为L 的导线被分隔成完全相同的N 段,每段的长度为L/N 。
因此每段的电阻和电容分别为rL/N 和cL/N R (= rL) 和C (= cL) 是这条导线总的集总电阻和电容()()()N N RCN N N rcL Nrc rc rc N L 2121...2+=+=+++⎪⎭⎫⎝⎛=τ 结论:当N 值很大时,该模型趋于分布式rc 线;一条导线的延时是它长度L 的二次函数;分布rc 线的延时是按集总RC 模型预测的延时的一半. 2rcL 22=RC DN=τ例4.8 铝线的RC 延时.考虑长10cm 宽、1μm 的Al1导线,使用分布RC 模型,c = 110 aF/μm 和r = 0.075 Ω/μm t p = 0.38⨯RC = 0.38 ⨯ (0.075 Ω/μm) ⨯ (110 aF/μm)⨯ (105 μm)2= 31.4 ns Poly :t p = 0.38 ⨯ (150 Ω/μm) ⨯ (88+2⨯54 aF/μm)⨯ (105 μm)2= 112 μsAl5: t p = 0.38 ⨯ (0.0375 Ω/μm) ⨯ (5.2+2⨯12aF/μm) ⨯ (105 μm)2= 4.2 ns 例4.9 RC 与集总C假设驱动门被模拟成一个电压源,它具有一定大小的电源内阻R s 。
应用Elmore 公式,总传播延时:τD = R s C w + (R w C w )/2 = R s C w + 0.5r w c w L 2 及 t p = 0.69 R s C w + 0.38 R w C w 其中,R w = r w L ,C w = c w L假设一个电源内阻为1k Ω的驱动器驱动一条1μm 宽的Al1导线,此时L crit 为2.67cm第五章CMOS 反相器 静态CMOS 的重要特性:电压摆幅等于电源电压 → 高噪声容限。
逻辑电平与器件的相对尺寸无关 → 晶体管可以采用最小尺寸 → 无比逻辑。
稳态时在输出和V dd 或GND 之间总存在一条具有有限电阻的通路 → 低输出阻抗 (k Ω) 。
输入阻抗较高 (MOS 管的栅实际上是一个完全的绝缘体) → 稳态输入电流几乎为0。
在稳态工作情况下电源线和地线之间没有直接的通路(即此时输入和输出保持不变) → 没有静态功率。
传播延时是晶体管负载电容和电阻的函数。
门的响应时间是由通过电阻R p 充电电容C L (电阻R n 放电电容C L )所需要的时间决定的 。
开关阈值V M 定义为V in = V out 的点(在此区域由于V DS = V GS ,PMOS 和NMOS 总是饱和的)r 是什么:开关阈值取决于比值r ,它是PMOS 和NMOS 管相对驱动强度的比DSATnn DSATp p DD M V k V k VV =,r r 1r +≈ 一般希望V M = V DD /2 (可以使高低噪声容限具有相近的值),为此要求 r ≈ 1例5.1 CMOS 反相器的开关阈值通用0.25μm CMOS 工艺实现的一个CMOS 反相器的开关阈值处于电源电压的中点处。
所用工艺参数见表3.2。
假设V DD = 2.5V ,最小尺寸器件的宽长比(W/L)n 为1.5()()()()()()()()V V L W V V V V k V V V V k L W L W 25.125.55.15.35.320.14.025.1263.043.025.10.163.010*********==⨯==----⨯-⨯⨯⨯----=-= 分析: V M 对于器件比值的变化相对来说是不敏感的。
将比值设为3、2.5和2,产生的V M 分别为1.22V 、1.18V 和 1.13V ,因此使PMOS 管的宽度小于完全对称所要求的值是可以接受的。
增加PMOS 或NMOS 宽度使V M 移向V DD 或GND 。
不对称的传输特性实际上在某些设计中是所希望的。
噪声容限:根据定义,V IH 和V IL 是dV out /dV in = -1(= 增益)时反相器的工作点 逐段线性近似V IH = V M - V M /g V IL = V M + (V DD -V M )/g 过渡区可以近似为一段直线,其增益等于在开关阈值V M 处的增益g 。
它与V OH 及V OL 线的交点用来定义V IH 和V IL 。
点。
()0 12'≥⎪⎪⎭⎫ ⎝⎛=V V V V V LW K I 若+-λ例 5.2 CMOS 反相器的电压传输特性和噪声容限假设设计一个通用0.25μm CMOS 工艺的反相器,PMOS 对NMOS 的比为3.4,其中NMOS 晶体管的最小尺寸为(W=0.375μm ,L=0.25μm ,即W/L=1.5)g = -27.5 V IL = 1.2V, V IH = 1.3V NM L = NM H = 1.2 确切值: V IL = 1.03V, V IH = 1.45V NM L = 1.03V & NM H = 1.05V 输出电阻 低输出 = 2.4k Ω 高输出 = 3.3k Ω在饱和区,增益与电流的斜率关系很大(Vin = VM) g ≈(1+r)/ (VM-VTn-VDSATn/2)(λn - λp )分析:公式5.10过高估计了增益;最大的偏差是对于VTC 的逐段线性近似造成的动态特性:分析此图栅漏电容C gd12 扩散电容C db1和C db2连线电容C w 扇出的栅电容C g3和C g4电容 表达式 值(fF)(H →L)值(fF)(L →H) C GD12 C on W n0.23 0.23C GD22 C op Wp0.61 0.61C DB1K eqbpn AD n C j+ KeqswnPD n Cjsw0.66 0.90 C DB2K eqbppAD p C j + KeqswpPD p Cjsw 1.5 1.15 C G3(2 C on)W n+ C ox W n L n0.76 0.76 C G4(2 C op)W p+ C ox W p Lp2.28 2.28C w提取参数 0.12 0.12CL∑ 6.1 6.0例5.5 一个0.25μm CMOS 反相器的传播延时V DD =2.5V 0.25μm W/L n = 1.5 W/L p = 4.5 R eqn = 13 k Ω (÷ 1.5) R eqp = 31 k Ω (÷ 4.5) t pHL = 36 psec t pLH = 29 psec 得到:t p = 32.5 psec()DSATn n n LDSATnDD L L eqn pHL V k L W CI V C C R '52.04369.069.0t ≈== 设计技术----减小一个门的传播延时 减小C L :门本身的内部扩散电容.漏扩散区的面积越小越好:互连线电容;扇出电容.增加晶体管的W/L 比:设计者手中最有力和最有效的性能优化工具:注意自载效应! – 一旦本征电容(即扩散电容)开始超过由连线和扇出形成的外部负载,增加门的尺寸就不再对减少延时有帮助,只是加大了门的面积.提高V DD :用能量损耗来换取性能;增加电源电压超过一定程度后改善就会非常有限;对可靠性的考虑迫使在DSM 工艺中对V DD 要规定严格的上限. NMOS 与PMOS 的比使PMOS 管较宽,以使它的电阻与下拉的NMOS 管匹配。