焊接工艺培训系列之-CO2气体保护焊
二氧化碳气体保护焊

二氧化碳气体保护焊引言二氧化碳(CO2)气体保护焊是一种常用的焊接过程,用于保护焊接区域免受空气中的氧气、水蒸气和其他杂质的污染,以获得高质量的焊接接头。
本文将介绍二氧化碳气体保护焊的原理、设备和应用。
原理二氧化碳气体保护焊的原理是利用CO2气体对焊接区域形成的保护气氛。
当焊接电弧稳定燃烧时,CO2气体被分解成CO和O2,其中CO起到稳定电弧的作用,而O2与金属熔池中的氧化物反应产生热量和熔剂。
设备二氧化碳气体保护焊所需的主要设备包括焊接电源、焊枪、电缆和气体供应系统。
1.焊接电源:提供适当的电流和电压以维持焊接电弧。
2.焊枪:焊工通过焊枪控制焊接电弧和传递焊丝。
3.电缆:将电流从焊接电源传输到焊枪。
4.气体供应系统:提供二氧化碳气体,并通过软管将其传输到焊枪。
应用二氧化碳气体保护焊广泛应用于各种金属焊接过程中,尤其是在钢结构焊接中。
它具有以下优点:•高焊接速度:CO2气体的热导率高,从而加快了焊接速度。
•良好的焊缝外观:CO2气体保护下,焊缝表面光洁,氧化物和其他污染物得到最小化。
•广泛适用性:适用于各种厚度和类型的金属材料,包括碳钢、不锈钢、铝合金等。
然而,二氧化碳气体保护焊也存在一些限制:•氧化物产生:CO2气体在焊接过程中会产生氧化物,可能导致焊接接头的脆化和气孔。
•通风要求:由于CO2气体是一种有毒气体,使用CO2气体保护焊需要提供适当的通风系统以确保焊工的安全。
•成本:CO2气体相对其他气体来说相对便宜,但仍然需要定期购买和更换。
结论二氧化碳气体保护焊是一种常用的焊接过程,广泛应用于各种金属焊接中。
它通过形成保护气氛,保护焊接区域免受污染,从而产生高质量的焊接接头。
虽然它具有一些局限性,但在适当的条件下,二氧化碳气体保护焊是一种可靠且经济的焊接方法。
04-2二氧化碳气体保护焊ppt课件

(二) 冶金特点 CO2是一种氧化性气体,在高温时进行分
解,具有强烈的氧化作用 氧化烧损合金元素 气孔 飞溅 1、CO2的氧化性
CO2气体高温分解:
三者同时存在,CO气体在焊接中不熔于
在熔滴过渡或在熔池中的氧化反应:
(1〕直接氧化
[Mn]+(FeO)====(MnO) +[Fe]
[C]+(FeO)====CO +[Fe]
生成的SiO2和MnO成熔渣浮出,其结果是 液体金属中Si和Mn被烧损而减少。一般CO2焊 接时,焊丝中约有w(Mn)=50%和w(Si)=60%被 氧化烧损。
生成的CO在电弧高温下急剧膨胀,使熔滴 爆破而引起金属飞溅
引起金属飞溅的原因: 1〕由冶金反应引起。焊接过程中熔滴和熔池中的碳被氧
化生成CO气体,随着温度升高,CO气体膨胀引起 爆破,产生细颗粒飞溅。 2〕作用在焊丝末端电极斑点上的压力过大。当用直流正 接长弧焊时,焊丝为阴极,受到电极班点压力较大, 焊丝末端易成粗大熔滴和被顶偏而产生非轴向过渡, 从而出现大颗粒飞溅。 3〕由于熔滴过渡不正常而引起。在短路过渡时由于焊接 电源的动特性选择与调节不当而引起金属飞溅。减 小短路电流上升速度或减少短路峰值电流都可以减 少飞溅。一般是在焊接回路内串入较大的不饱和直 流电感即可减少飞溅。 4〕由于焊接工艺参数选择不当而引起。主要是因为电弧 电压升高,电弧变长,易引起焊丝末端熔滴长大, 产生无规则的晃动,而出现飞溅。
利用CO2作保护气体的熔化极气体保护电弧 焊为CO2气体保护焊,简称CO2焊。
它是目前焊接黑色金属材料重要熔焊方法之 一,在许多金属结构的生产中已逐渐取代了焊条 电弧焊和埋弧焊。
CO2气体保护焊培训ppt课件

(7)气体流量 二氧化碳气体流量与焊接电流、焊接速度、焊丝 伸出长度及喷嘴直径等有关。气体流量应随焊接 电流的增大、焊接速度的增加和焊丝伸出长度的 增加而加大。如果二氧化碳气体流量太大,由于 气体在高温下的氧化作用,会加剧合金元素的烧 损,减弱硅、锰元素的脱氧还原作用,在焊缝表 面出现较多的二氧化硅和氧化锰的渣层,使焊缝 容易产生气孔等缺陷;如果二氧化碳气体流量太 小,则气体流层挺度不强,对熔池和熔滴的保护 效果不好,也容易使焊缝产生气孔等缺陷。
焊接过程
焊接设备 CO2气体保护焊机是由焊接电源、送丝机构、 行走机构、焊矩、气路系统、和控制系统等 部件组成。 (1)焊接电源:电源种类有交流下垂特性电源, 直流定电压特性电源等,但二氧化碳电弧焊接 一般使用直流定电压.其作用在于即使输出电 流(焊接电流)产生变化,电弧电压也基本上 没有变化. (2)送丝机构:送丝机构的作用是将焊丝按要 求的得速度送至焊接电弧区,以保证焊接的 正常进行。
焊接电流与电弧电压是关键的工艺参数。为了 使焊缝成形良好、飞溅减少、减少焊接缺陷, 电弧电压和焊接电流要相互匹配,通过改变送 丝速度来调节焊接电流。飞溅最少时的典型工 艺参数和生产所用的工艺参数范围详见下表.
(5)焊接速度 焊接速度是衡量生产率的主要标志。一般可根据 焊接电流,电弧电压,焊缝截面尺寸等参数来选 择。 随着焊接速度的增大,则焊缝的宽度、余高和熔 深都相应地减小。如果焊接速度过快,气体的保 护作用就会受到破坏,同时使焊缝的冷却速度加 快,这样就会降低焊缝的塑性,而且使焊缝成形 不良。反之,如果焊接速度太慢,焊缝宽度就会 明显增加,熔池热量集中,容易发生烧穿等缺陷。
(3)焊枪或焊矩:焊枪是直接施焊得工具起到导电、 导丝、导气的作用。 (4)气路装置:CO2供气装置由CO2气瓶、预热器、 高压干燥器、减压阀、低压干燥器和流量计等部件组 成。 气体选用和基本特性
CO2气体保护焊培训课件

适用范围广
CO2气体保护焊可焊接 低碳钢、低合金钢、不 锈钢等多种金属材料。
操作简便
CO2气体保护焊设备简 单,操作方便,易于实
现自动化和机械化。
适用范围与局限性
适用范围
适用于低碳钢、低合金钢等黑色 金属材料的焊接,尤其适用于中 厚板结构件的焊接。
局限性
对于有色金属、高合金钢等材料 的焊接有一定困难;在室外作业 或野外环境下使用时,需采取防 风措施以保证焊接质量。
CHAPTER 05
质量检查与缺陷分析
外观质量检查标准
焊缝成形
焊缝应呈现均匀、平滑的外观,无明显的凹 凸不平或波纹状。
咬边与烧穿
咬边深度不应超过允许范围,烧穿现象应得 到控制。
焊缝宽度与余高
焊缝宽度应满足设计要求,余高应适中,不 应过高或过低。
表面气孔与夹渣
焊缝表面不应有气孔、夹渣等缺陷。
内部缺陷产生原因及预防措施
收弧处理
填满弧坑:在收弧前适当减慢焊接速 度,填满弧坑,避免产生裂纹和缩孔
。
熄弧处理:在填满弧坑后,将焊枪逐 渐离开工件表面,同时减小焊接电流 直至熄弧。
接头方法
热接法:在收弧处重新引燃电弧进行 焊接,适用于薄板及要求不高的焊缝 。
冷接法:在收弧处打磨出斜坡或凹槽 后重新焊接,适用于厚板及要求较高 的焊缝。
匹配原则
为了实现良好的焊缝成形和减少飞溅,需要合理匹配电流和电压。通常,根据 焊丝直径和焊接位置选择合适的电流,然后调整电压至最佳匹配状态。
送丝速度与角度调整
送丝速度
送丝速度是影响焊接过程稳定性和焊缝质量的重要因素。送 丝速度过快可能导致焊丝熔化不良、飞溅增加;送丝速度过 慢则可能使电弧不稳定、焊缝成形不良。因此,需要根据焊 接电流和电压合理调整送丝速度。
CO2气体保护焊

CO2气体保护焊CO2气体保护焊是利用CO2作为保护气体的熔化极电弧焊的方法,称为CO2焊。
由于CO2是具有氧化性的活性气体,因此除了具备一般气体保护电弧焊的特点外,CO2焊在熔滴过渡、冶金反应等方面与一般气体保护电弧焊有所不同。
1.CO2气体保护焊的工具与材料CO2气体保护焊的工具与材料有CO2气体、焊丝、焊枪。
1)CO2气体:CO2气体保护焊可以采用由专业厂商提供的CO2气体,也可以采用仪器加工厂的副产品CO2气体,但均应满足焊接对气体纯度的要求。
CO2气体的纯度对焊缝金属的致密性和塑性有较大的影响,影响焊缝质量的主要有害杂质是水分的氮气。
焊接时对焊缝质量要求越高,则对CO2气体纯度要求越高;气体纯度高,获得的焊缝金属塑性就越好。
2)焊丝:CO2焊的焊丝设计、制造和使用原则,除最基本的要求外,还对焊丝的化学成分有特殊要求,如焊丝必须含有足够数量的脱氧元素;焊丝的含碳量要低,一般要求小于0.15%;应保证焊缝金属具有满意的力学性能和抗裂性能。
目前,H08Mn2SiA焊丝是CO2焊中应用最广泛的一种焊丝。
它有较好的工艺性能和力学性能以及抗热裂纹能力,适应于焊接低碳钢和σb≤500MPa的低合金钢。
3)焊枪:CO2焊枪包括半自动枪和自动焊枪两种。
半自动焊枪按冷却方式分为气阀和水准两种,按结构分为手枪式和鹅颈式。
鹅颈式焊枪的结构如图所示,其重心在手握部分,因而操作灵活,使用较文,特别适合于小直径焊丝。
手枪式焊枪其重心不在手握部分,操作时不太灵活,常用于较大直径焊丝,采用内部循环水进行冷却。
自动焊枪的主要作用与半自动焊枪相同。
自动焊枪固定在机关或行走机构上,经常在大电流下使用,除要求其导电部分、导气部分和导丝部分性能良好外,为了适应大电流、长时间使用的需要,喷嘴部分要采用水准装置,这样既可以减少飞溅黏着,又可防止焊枪绝缘部分过热烧坏。
2.CO2气体保护焊的焊接方法1)操作时用身体的某个部分承担焊枪的重量,要求手腕能灵活带动焊枪平衡或转动,软管电缆不要有过大弯曲。
培训课件《CO2气体保护焊接技能》

CO2气体保护焊接的应用范围
总结词
了解CO2气体保护焊接在不同领域的应用情况,包括其适用范围和限制条件。
保护气体
介绍常用保护气体的种类 、特性和使用方法,以及 如何根据焊接需求选择合 适的保护气体。
焊接工艺参数
介绍焊接工艺参数的种类 和意义,以及如何根据不 同的焊接需求调整工艺参 数。
焊接设备的日常维护与保养
清洁与保养
介绍如何对焊接设备进行 日常清洁和保养,以延长 设备使用寿命和提高焊接 质量。
安全操作规程
CO2气体保护焊机
介绍CO2气体保护焊机的种类、特点 和使用范围,以及其在焊接过程中的 作用。
送丝机构
焊枪
介绍焊枪的种类、特点和使用方法, 以及如何根据不同的焊接需求选择合 适的焊枪。
介绍送丝机构的结构和工作原理,以 及送丝速度对焊接质量的影响。
焊接材料的选择与使用
01
02
03
焊丝
介绍常用焊丝的种类、规 格和用途,以及如何根据 焊接需求选择合适的焊丝 。
定期维护设备
定期对焊接设备进行维护和检查,确 保设备正常运行,及时排除故障。
焊接过程中的环境保护
控制有害气体排放
使用CO2气体保护焊接可以减少 有害气体的排放,减轻对大气的
污染。
控制噪音和振动
焊接过程中产生的噪音和振动可能 对周围环境和人员造成影响,应采 取措施降低噪音和振动。
废弃物处理
妥善处理焊接过程中产生的废弃物 ,如焊丝、焊渣等,避免对环境造 成污染。
焊接工艺知识培训 - CO2气体保护焊

半自动:焊接速度为30-60cm/min 自动焊:焊接速度可高达250cm/min以上 焊接速度过快时:焊道变窄,熔深和余高变小。
2.4 干伸长度
定义:焊丝从导电咀到工件的距离 小于300A时: L= (10--15)倍焊丝直径. 大于300A时: L= (10--15)倍焊丝直径 + 5mm
举例: 直径1.2mm焊丝可用电流120-350A, 电流小时乘10倍的焊丝直径, 电流大时乘15倍的焊丝直径 。
1.1 焊接方法分类
熔化焊接 电弧焊 气焊 铝热焊 电渣焊 压力焊 电子束焊 激光焊 熔化极 手工焊 CO2焊 埋弧焊 MAG焊 MIG焊
非熔化极 钎焊
TIG焊 等离子弧焊
名词解释
电弧焊:以气体导电时产生的电弧热为热源。 熔化极:焊丝或焊条既是电极又是填充金属。 非熔化极:电极(钨极)不熔化。 MIG焊:金属极(熔化极)惰性气体保护焊 TIG焊:钨极(非熔化极)惰性气体保护焊 MAG焊:金属极(熔化极)活性气体保护焊
焊接电流 电缆长度
100A 约1V 约1V 约1.5V 约2V
200A 约1.5V 约2.5V 约3V 约4V
300A 约1V 约2V 约2.5V 约3V
400A 约1.5V 约2.5V 约3V 约4V
500A 约2V 约3V 约4V 约5V
10m 15m 20m 25m
焊接电压的设定
根据焊接条件选定相应板厚的焊接电流,然后根据下列公式 计算焊接电压: < 300A时: 焊接电压 = ( 0.04倍焊接电流 + 16 ± 1.5) 伏 >300A时: 焊接电压 = ( 0.04倍焊接电流 + 20 ± 2) 伏 举例1:选定焊接电流200A,则焊接电压计算如下: 焊接电压 = ( 0.04 ×200 + 16 ± 1.5)伏 = ( 8 + 16 ± 1.5)伏 = ( 24 ± 1.5)伏 举例2:选定焊接电流400A,则焊接电压计算如下: 焊接电压 = ( 0.04 × 400 + 20 ± 2)伏 = ( 16 + 20 ± 2)伏= ( 36 ± 2)伏
焊接工艺培训之CO2气体保护焊工艺知识

焊接工艺培训之CO2气体保护焊工艺知识一、工艺原理CO2气体保护焊是利用CO2气体作为保护气体,通过电弧加热将焊接材料熔化并形成焊缝的一种焊接工艺。
在焊接过程中,CO2气体能够有效地阻挡空气对焊缝的侵入,保护熔融金属,防止氧化和氮化,从而获得良好的焊接质量。
同时,CO2气体还能够提供稳定的焊接电弧,促进熔融金属的沉积,使焊缝形成均匀、美观。
因此,CO2气体保护焊在焊接工艺中具有重要的地位。
二、设备要求进行CO2气体保护焊需要一定的设备支持,主要包括焊接机、保护气体瓶、焊枪和焊丝等。
其中,焊接机是CO2气体保护焊的核心设备,它能够提供所需的电能和焊接电流,控制焊接过程中的电弧稳定性。
保护气体瓶是用于存储CO2气体的容器,需要通过气管与焊接机连接。
焊枪则是将焊丝送入焊接区域并形成电弧的工具,它需要能够与焊接机进行连接,并能够调节电流、电压等参数。
此外,焊接操作台、电源线、接地线等设备也是进行CO2气体保护焊所必备的。
三、操作规程进行CO2气体保护焊需要按照一定的操作规程来进行,以确保焊接质量和人员安全。
首先,需要对设备进行检查和准备工作,确保设备正常运行。
然后,安装焊接枪和调节焊接电流、电压等参数,选择合适的焊接电流和速度,根据焊接材料的特性和焊接要求来确定。
接下来,进行工件表面的处理,去除油污、氧化物等杂质,保持焊接区域的清洁。
在进行焊接前,需要进行试焊和调试,确定焊接机和焊枪的工作状态。
在进行焊接时,需要注意保持恒定的工作姿势和焊接速度,保证焊接质量。
焊接后,需要进行焊渣清理和焊缝检查,确保焊缝的质量符合要求。
最后,需要对设备进行清洁和维护,关闭气体瓶和断开电源,确保人员的安全。
四、常见问题及解决方法在进行CO2气体保护焊的过程中,可能会遇到一些常见问题,例如焊接缺陷、气体外泄、设备故障等。
对于这些问题,需要及时发现并采取相应的解决方法。
比如,焊接缺陷可以采取适当的工艺参数调整、焊接技术改进等方法来解决;气体外泄可以通过检查气体管路、密封件等来排除故障;设备故障需要及时维修和更换零部件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章CO2气体保护焊第二节CO2气体保护焊CO2气体保护焊实质上也是熔化极气体保护焊的一种,即:MAG (Metal Active Gas)一、CO2保护焊的发展过程上节我们介绍了:光焊条焊接是在空气包围下进行,因此在焊缝中渗入了大量的氧、氮和氢,并且烧损了大部分合金元素,严重影响了焊缝质量.焊缝的机械性能下降.为了提高焊缝质量,我们必须防止或消除空气的有害作用,归结起来,和空气的有害作用进行斗争主要是通过一下两个途径:“防”和“治”“防”就是使焊接区域和空气隔绝,从而保护熔池及熔滴使之不被空气侵入。
保护的方法主要有三种,渣保护、气保护、气渣联合保护。
气渣联合保护—手工焊;渣保护—埋弧焊、电渣焊;气保护—氩弧焊、CO2气体保护焊;“治”就是把已经进入到熔滴及熔灺中的氧及氮等有害元素再拉出来(对熔滴及熔灺进行脱氧及脱氮)。
渣保护-埋弧焊又是在一层较厚的颗粒状焊剂下焊接,由于重力的影响,很难在空间位置焊接。
因而如何能进行空间位置自动焊和半自动焊?气体保护焊-可以在任何空间位置喷出气体,给空间位置的自动和半自动焊带来希望.采用什么样的气体来隔绝空气的侵入?人们想到了氩气,氩弧焊主要应用于易氧化金属(铝、镁及其合金、不锈钢等),氩气成本高,用于普遍应用的低碳钢及低合金钢焊接在经济上是不合算的。
要寻求价廉易得的气体用做保护的气体必须满足下列要求:1、无毒, 如CO有毒不能用;2、价廉易得,如氩、氦价格高;3、不能给焊接质量带来危害或危害可以消除;人们想到用N2、H2、O2,上节我们知道了它们对焊缝质量的影响,焊缝中是不允许它们存在的,但迄今为止,人们对脱N2,脱H2的控制能力还是有限的。
故用它们做保护性气体焊接低碳钢及低合金钢是有困难的。
1926年,有人利用过CO2焊接过低碳钢,焊缝出现气孔严重,焊缝很脆→否定CO2可以做为保护气体。
二次大战前,高强度低合金钢应用日益广泛(坦克、装甲车),为解决这类钢的焊接,发展了碱性低氢型焊条,这类焊条药皮含有大量的碳酸钙。
CaCO3→CaO+CO2↑CO2作为保护性气体,有效地防止了空气进入电弧空间,另CO2是一种氧化性气体,它会氧化金属,带来危害。
1951—1952年,科学家们又受到炼钢中脱氧的理论及实践的启发,又重新利用CO2作为保护气体,进行低碳钢及低合金钢半自动焊及自动焊的研究,试验结果证明,采用一定量的脱氧元素的焊丝(含一定量的Si、Mn),可以清除气孔并获得优质的焊缝金属。
1953年CO2保护焊研究成功报告问世。
开始研究和应用CO2保护焊时,是因沿袭软管半自动埋弧焊习惯,采用直径为1.6—2.mm的焊丝,这时必须使焊接电流大于300安培以上,熔滴成喷射过渡,焊接飞溅才得到一些改善,焊缝成形好,但在空间位置用这样大的电流焊接,熔池体积太大,熔池金属向下滴落或向下流动,焊接操作困难,焊缝成形不良,只能进行平焊,不能进行空间位置的焊接。
要推广CO2保护焊,必须解决第二个问题是使其能适应于各种能量的焊接及减少飞溅,为解决这一工艺问题,科学家对焊接电弧进行了深入的研究,即“熔滴过渡”的规律。
1957年提出了“短路过渡”焊接法,设计了动特性好的电源,采用较细的焊丝直径(Φ0.8—Φ1.6mm),配合使用较低的焊接电压及较小的焊接电流,可以很好地进行空间位置的焊接并使飞溅很小。
二、CO2焊接原理受碱性焊条里CaCO3(造渣剂和造气剂)受热分解的启示。
CaCO3→CaO+CO2科学家想到用CO2气体做为保护性气体半自动C02焊的设备系统如图2-1所示,图2-1 CO2半自动焊设备示意图1-电源2-送丝机3-焊枪4-气瓶5-预热器6-高压干燥器7-减压器8-低压干燥器9-流量计10-软管11-焊丝盒图2-2 CO2半自动化焊机C02焊的焊接过程如图2-3所示。
焊接时使用成盘的焊丝,焊丝经软管和焊枪的导电嘴送出。
电源的两输出端分别接在焊枪和焊件上。
焊丝与焊件接触后产生电弧,在电弧高温作用下金属局部熔化进入熔池中去。
同时,气瓶中送出的C02气体以一定的压力和流量从焊枪的喷嘴中喷出,形成一股保护气流,使熔池和电弧区与空气隔离。
随着焊枪的移动,熔池金属凝固后形成焊缝。
C02焊接的所用的焊丝直径,可分为细丝C02焊(焊丝的直径≤1.2毫米),及粗丝C02焊(焊丝直径≥1.6毫米)。
按操作方法可分为CO2半自动焊和C02自动焊。
他们的共同点是送丝和送气都是自动的,区别是:C02半自动焊是用手工操作完成焊接热源的移动,C02自动焊是由相应的自动化装置来完成的(如机器人、自动角送丝机焊接电源焊枪电缆焊机等).图2-3 CO2保护焊过程示意图三、冶金特点1、CO2的氧化性CO2→CO↑+Oa、与CO2作用Fe+CO2=FeO+CO↑Si+CO2=SiO+CO↑Mn+CO2=MnO+CO↑b、与高温分解的氧原子作用Fe+O=FeOSi+O=SiO2Mn+O=MnO结论:CO2和O2使Fe和其它元素氧化烧损.CO不熔于金属,熔滴中CO在电弧高温下急剧膨胀,使熔滴爆破而引起金属飞溅。
在熔池中的CO若逸不出来,便成为焊缝中的气孔。
c、氧化的结果:有用的合金元素被烧损,造成了焊缝金属力学能降低,产生气孔和金属飞溅。
c、解决的措施:脱氧在焊丝中加入一定量的脱氧剂,(它们是与氧亲和力比Fe大的金元素,如AI、Ti、Si、Mn等),实践证明采用Si-Mn联合脱氧的效果最好,可以焊出高质量的焊缝来。
2FeO+Si=2Fe+ SiO2FeO+ Mn =Fe+ MnO所以只要在焊丝中有足够的脱氧元素Si和Mn,以及限制焊丝中的C的含量就可以有效的防止C0气孔。
,目前国内外广泛采用H08Mn2Si焊丝,Si、Mn即是脱氧剂也是合金剂.H08Mn2SiA \、H08Mn2Si的焊丝成份见表2-1,Q345钢与H08Mn2Si 焊丝焊接化学成分对比和机械性能对比见表2-2和表2-3表2-1 焊丝化学成分表2-2 H08Mn2SiA焊丝与Q345钢焊接后化学对比表2-3Q345钢机械性能表2-5 Q345+H08Mn2SiA焊丝接头机械性能2、气孔在熔池金属内部存在有溶解不了的或过饱和的气体,当这些气体来不及从熔池中逸出时,便随着熔池的凝固,而留在焊缝内便形成气孔。
可能产生的气孔主要有三种:CO、N、H。
CO气孔的产生主要原因是:焊丝中所含的脱氧合金元素不够,使熔池中熔入较多的FeO(按与氧的亲合力来排为:Si、Mn、C),钢中又含有C,它和C发生强烈的还原反应:FeO+C=Fe+CO↑生成了CO气体,来不及逸出,从而形成气孔.只要焊丝中含有足够量的合金元素Si和Mn,并限制焊丝中的碳量,就可以有效地防止CO气孔.产生N气孔的原因:主要是保护不好,空气进入电弧电弧造成的。
如CO2气流量过小或过大,焊丝伸出长度过长、喷嘴阻塞、导电嘴与喷嘴不同心、喷嘴气筛阻塞、外部气流量过大、室外焊接、电弧电压过高等。
产生H气孔的原因:产生H气孔的原因是在高温时熔入了大量的H,在结晶的过程中不能充分排出,而留在焊缝金属中。
H主要来自焊丝、工件表面的油污和铁锈以及CO2气体中的水分,前者易清除和防止,而后者往往是产生H2气孔的主要原因。
因此对CO2气体进行提纯和干燥是必要的。
3)、飞溅问题飞溅的危害:a、增加焊丝及电能的消耗;b、降低焊接生产率和增加焊接成本;c、飞溅粘到导电嘴和喷嘴内壁上,会造成送丝和送气不畅而影响电弧的稳定和降低保护作用;d、恶化焊缝成形;e、粘到焊缝表面上又增加焊后清理工序;引起飞溅的原因:a 焊接过程中熔滴和熔池中的碳被氧化生成CO气体,随温度升高,CO气体膨胀引起爆破,产生细颗粒飞溅。
b、作用在焊丝末端电极斑点上的压力过大,当用正接长弧焊时,焊丝为阴极,受到来阳极的正离子的冲击,阴极斑点上的压力较大,焊丝末端易形成粗大熔滴和被顶偏而产生非轴向过渡,从而出现大颗粒飞溅。
c、在短路过渡时由于焊接电源的动特性选择与调节不当而引起金属飞溅,减小短路电流上长速度或减少短路峰值电流都可以减少飞溅。
一般是在焊接回路内串入较大的不饱和直流电感即可减少飞溅。
d、由于焊接工艺参数选择不当而引起。
主要是电弧电压升高,电弧变长,易引起焊丝末端熔滴长大,产生无规则的晃动,而出现飞溅。
减少飞溅的措施:a选用合适的焊丝材料或保护气体。
例如选用含碳量低的焊丝,减少焊接过程中产生CO气体,长弧焊时,加入Ar的混合气体保护,使熔滴变细,甚至得到射流过渡,改善过渡特性。
b在短路过渡时,合理选择焊接电源,并匹配合适的可调电感,以便当采用不同直径的焊丝,能得到合适的短路电流增长速度。
c采用直流反接进行焊接。
d采用不同熔滴过渡形式焊接时,要合理地选择焊接工艺参数,以获得最小的飞溅。
四、焊接材料1)保护气体—CO2用于焊接的CO2气体其纯度要求>99.5%,含水量<0.05%。
CO2气无色无毒,易溶于水,密度为空气的1.5倍,沸点为-78℃。
受压后变成无色的液体,当温度低于—11℃时,比水重;当高于—11℃时,比水轻。
在0℃和一个大气压下,一公斤CO2液体可蒸发509升CO2气体。
供焊接用的CO2气体,通常是以液态装于钢瓶中,钢瓶容量40升,可装入25kg的液态CO2。
CO2气瓶外表涂黑色并写有黄色的“CO2”字样。
25kg液态CO2约占钢瓶容积的80%,其余20%的空间充满气态的CO2。
气瓶压力表上所指压力值,即是这部份气体的饱和压力,该压力大小与环境温度有关,室温为20℃时,气体的饱和压力约为:5.72Mpa.(注意该压力不反映液态CO2的贮量,只有当瓶内液态CO2全部气化后,瓶内气体的压力才会随着CO2气体的消耗而逐渐下降。
这时的压力表的读数才反映瓶内气体的储量)。
故正确估算瓶子内CO2的储量是用称钢瓶质量的办法。
一瓶装25kg液化CO2气,若焊接时的流量为20L/min,则可连续使10小时左右.汽车行业CO2焊接暂载率(负责持续率)为10%~30%左右(计算焊装车间CO2汇流排钢瓶数量用到)。
焊装车间CO2汇流排钢瓶数量的计算当市售CO2气体含水量较高时,在现场减少水份的措施是:a、将新灌气瓶倒立静置1~2h,然后开启阀门,把沉积在瓶口部的水排出,可放水2~3次,放水时间为1分钟左右,每次间隔30min,放后将瓶正回来。
b、倒置放水后的气瓶,使用前先打开阀门放掉瓶内上部纯度低的气体。
c、在气路中设置高压干燥器和低压干燥器,进一步减少CO2气体中的水份。
(干燥剂为:硅胶或脱水硫酸铜)。
d、使用瓶装CO2时,注意设置气体预热装置(瓶中高压气体经减压而体积膨胀时,要吸收大量的热,而使气体温度降到零度以下,会引起CO2气中的水份在减压器内结冰而堵塞气路,因此在未减压之前须经过预热)。
见图2-4 CO2汇流排预热装置。