多元统计分析 实验报告,计算协方差矩阵,相关矩阵,SAS
多元统计分析实验报告

第二部分:实验过程记录(可加页) (包括实验原始数据记录,实验现象记录,实验过程发现的问题
等) 操作步骤: 1、 执行“分析”—“比较均值”—“单因素方差分析” ; 2、 在弹出的单因素方差分析对话框中,将时期选为因子,将 X1、X2、X3、X4 选为因变量; 3、 单击“对比” ,选择“多项式” ,在后面的下拉菜单中选择“线性” ,然后继续; 4、 单击“两两比较” ,选择“LSD”和“S-N-K” ,显著性水平默认为 0.05,然后继续; 5、 单击“选项” ,选择“方差同质性检验”和“均值图” ,然后继续,点击“确定”后即可输出结果。
12
题目:研究者提出,随着时间的推移头骨尺寸会发生变化,这是外来移民与原住民人口民族融合的证据。表 6.13 是古埃及三个时期的男性头骨的四个观测值得观测数据,这是个观测变量是: X1=头骨最大的最大宽度 X2=头骨高度 X3=头骨底穴至齿槽的长度 X4=头骨鼻梁高度 对古埃及头骨数据构造单因子 MANOVA 表, a=0.05.并构造 95%联合置信区间来判断在三个时期中哪个分 令 量的均值发生了改变。同常的 MANOVA 假设对这些数据是不是合理的?请解释。 部分数据如下:
实验课程名称:多元统计分析-均值向量检验
实验项目名称 实 验 者 同 组 者
均值向量检验习题 均值向量检验习题 6.24
专业班级
实验成绩 实验成绩 组 别 年 月 日
实验日期
一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验
方案与技术路线等) 实验目的:深入了解方差分析及方差分析的概念,掌握方差分析的基本原理;掌握方差分析的过程;增强实 践能力,能够动手用统计软件解决实际问题,熟练掌握方差分析的基本操作。 实验原理:多个正态总体均值向量检验(多元方差分析) 设 有 k 个 p 元 正 态 总 体 N p ( µ1 , Σ), L , N p ( µ k , Σ) , 从 每 个 总 体 抽 取 独 立 样 品 个 数 分 别 为
第3章统计实验(多元正态总体检验)

实验零多元正态总体检验(均值向量检验)1.实验目的:本实验讨论利用多元正态总体检验中的均值向量检验方法去判断满足多元正态分布的总体的均值是否等于预先判断的向量(单正态总体检验)或判断两个独立的、满足多元正态分布的总体的均值是否相等(双正态总体检验)。
通过该实验,能够起到如下的效果:(1) 理解多元正态总体检验中的均值向量检验方法的作用、思想、数学基础、方法和步骤;(2) 熟悉如何利用多元正态总体检验中的均值向量检验方法,提出问题、分析问题、解决问题、得出结论;(3)会调用SAS软件实现多元正态总体检验中的均值向量检验方法的各个步骤,根据计算的结果进行分析,得出正确的结论,解决实际的问题。
2.知识准备:多元正态总体检验中的均值向量检验是从判断满足多元正态分布的总体的均值是否等于预先判断的向量(单正态总体检验)或判断两个独立的、满足多元正态分布的总体的均值是否相等(双正态总体检验)。
其思想和步骤是:1.假设“需判断的总体均值等于预先判断的向量(单正态总体检验)”或“需判断的两个总体的均值相等(双正态总体检验)”;2.在该假设下,构造适当的统计量并给出其分布;3.根据观测数据算出其统计量的值;4.根据预先确定的检验水平查阅相应的分布表确定临界值和拒绝域;5.根据结果判断接受或拒绝原假设,得出结论。
(具体见书【1】第三章)3.实验内容:一、单正态总体检验:人出汗多少与人体内钠、钾含量有一定关系。
今测20名健康成年女性出汗多少(X1)、钠含量(X2)、钾含量(X3),其数据如下表1:表1 健康成年女性出汗情况的基本数据序号X1 X2 X3 序号X1 X2 X31 3.7 48.5 9.3 11 3.9 36.9 12.72 5.7 65.1 8 12 4.5 58.8 12.33 3.8 47.2 10.9 13 3.5 27.8 9.84 3.2 53.2 12 14 4.5 40.2 8.45 3.1 55.5 9.7 15 1.5 13.5 10.16 4.6 36.1 7.9 16 8.5 56.4 7.17 2.4 24.8 14 17 4.5 71.6 8.28 7.2 33.1 7.6 18 6.5 52.8 10.99 6.7 47.4 8.5 19 4.1 44.1 11.210 5.4 54.1 11.3 20 5.5 40.9 9.4利用多元正态总体检验中的单正态均值向量检验方法判断“(X1,X2,X3)的均值是否等于(4,50,10)”【1】(假设总体服从正态分布,分别取检验水平为0.05、0.01)。
应用多元统计分析实验报告

多元统计分析实验报告学院名称理学院专业班级应用统计学14-2学生姓名张艳雪学号201411081051工资、受教育年限、初始工资和工作经验资料如下表所示: 设职工总体的以上变量服从多元正态分布,根据样本资料利用 SPSS 软件求出均注 1:最大似然估计公式为: μˆ = X = ∑ ∑ (X i - X )(X i - X )' ; ˆ第一章 多元正态分布1.1 从某企业全部职工中随机抽取一容量为 6 的样本,该样本中个职工的目前值向量和协方差矩阵的最大似然估计。
1 n n i =1 X i , Σ = 1 nn i =1一.SPSS 操作步骤:第一步:利用 spss 建立数据集第二步:分析--描述统计--描述 计算样本均值向量 第三步:分析--相关--双变量计算样本协方差阵与样本相关系数二.输出结果:⎪ μ= 37125 ⎪ 152.50⎪ ⎛ 352068000 12500 -110677500 102000 ⎫= -110677500 - 86250 2192793750 691125 ⎪16695.1⎪⎭ ∑ X i,∑ (X i - X )(X i - X )'ˆ三.实验结果分析:样本均值为样本的协方差∑⎪⎪如此就可以按照极大似然估计方程:1 nΣ =n i =1得出均值向量与协方差向量的最大似然估计结果。
μ=X=1nn i=1ˆ第三章聚类分析3.1下表是15个上市公司2001年的一些主要财务指标,使用系统聚类法和K-均值法利用SPSS软件分别对这些公司进行聚类,并对结果进行比较分析。
公司编号净资产收益率每股净利润总资产周转率资产负债率流动负债比率每股净资产净利润增长率总资产增长率111.090.210.0596.9870.53 1.86-44.0481.99211.960.590.7451.7890.73 4.957.0216.11300.030.03181.99100-2.98103.3321.18411.580.130.1746.0792.18 1.14 6.55-56.325-6.19-0.090.0343.382.24 1.52-1713.5-3.366100.470.4868.486 4.7-11.560.85710.490.110.3582.9899.87 1.02100.2330.32811.12-1.690.12132.14100-0.66-4454.39-62.759 3.410.040.267.8698.51 1.25-11.25-11.4310 1.160.010.5443.7100 1.03-87.18-7.411130.220.160.487.3694.880.53729.41-9.97128.190.220.3830.31100 2.73-12.31-2.771395.79-5.20.5252.3499.34-5.42-9816.52-46.821416.550.350.9372.3184.05 2.14115.95123.4115-24.18-1.160.7956.2697.8 4.81-533.89-27.74一、实验原理:1.系统聚类的基本思想是:首先,每个样品(或变量)先聚成一类,然后,选择距离公式计算类与类之间的距离,把距离相近的样品(或变量)先聚成类,距离相远的后聚成类,该过程一直进行下去,每个样品(或变量)总能聚到合适的类中,最后,所有的样品(或变量)聚成一类。
多元统计分析实验报告计算协方差矩阵相关矩阵SAS

多元统计分析实验报告计算协方差矩阵相关矩阵SAS实验目的:通过对多元统计分析中的协方差矩阵和相关矩阵的计算,探究变量之间的相关性,并使用SAS进行实际操作。
实验步骤:1.数据准备:选择一个数据集,例如学生的成绩数据,包括数学成绩、语文成绩和英语成绩。
2.数据整理:将数据转化为矩阵形式,每一行代表一个学生,每一列代表一个变量(即成绩),记为X。
3. 计算协方差矩阵:根据公式计算协方差矩阵C,其中元素Cij表示变量Xi和Xj之间的协方差。
计算公式为Cij = cov(Xi, Xj) = E((Xi - u_i)(Xj - u_j)),其中E为期望值,u_i和u_j分别是变量Xi和Xj的均值。
4. 计算相关矩阵:根据协方差矩阵计算相关矩阵R,其中元素Rij表示变量Xi和Xj之间的相关性。
计算公式为Rij = cov(Xi, Xj) / (sigma_i * sigma_j),其中sigma_i和sigma_j分别是变量Xi和Xj的标准差。
5.使用SAS进行实际操作:使用SAS软件导入数据集,并使用PROCCORR和PROCPRINT命令进行协方差矩阵和相关矩阵的计算和输出。
实验结果:通过计算协方差矩阵和相关矩阵,可以得到变量之间的相关性信息。
协方差矩阵的对角线上的元素表示每个变量的方差,非对角线上的元素表示不同变量之间的协方差。
相关矩阵的对角线上的元素都是1,表示每个变量与自身的相关性为1,非对角线上的元素表示不同变量之间的相关性。
使用SAS进行实际操作后,我们可以得到一个包含协方差矩阵和相关矩阵的输出表格。
该表格可以帮助我们更直观地理解变量之间的相关性情况,从而为后续的统计分析提供参考。
实验总结:通过本次多元统计分析实验,我们了解了协方差矩阵和相关矩阵的计算方法,并使用SAS软件进行实际操作。
这些矩阵可以帮助我们评估变量之间的相关性,为后续的统计分析提供重要的基础信息。
在实际应用中,我们可以根据协方差矩阵和相关矩阵的结果,选择合适的统计方法和模型,并做出恰当的推断和决策。
解读SPSS判别分析的计算过程(精)

解读SPSS 判别分析的计算过程ITELLIN在多元统计分析方法中,多元回归分析使用最普遍,几乎到了快要用滥的程度。
但回归分析要求因变量和自变量的属性为定距以上的变量,如果这个条件不满足,使用起来比较费劲。
在实际工作中,因变量为分类变量,自变量为连续变量的情况比比皆是,如对银行来讲如何辨别良好信用和不良信用的客户,对电信运营商来讲如何辨别大客户,中小客户,对生产企业来讲如何判断新产品的速购者和迟购者等等,这些都是我们经常遇见的问题,判别分析就是解决这类问题的一个优选的统计方法。
现行介绍判别分析方法中,常常见到的有距离判别法,费歇尔判别法,贝叶斯判别法。
这三种方法各有各的产生背景,有不同的使用条件,它们有一个共同的特点就是计算量巨大,以至于靠手算无法进行。
为此现在主流统计软件都把判别分析作为一个专用模块来开发,但由于软件产生的只是结果,对于判别分析的整个推理过程涉及很少,不利于初次接触判别分析的人士学习,所以本文准备从具体的计算过程入手,详细解读SPSS 产生的过程,使得学习者能够做到知其然而知其所以然。
一、 数据整理为了便于验证,考虑g=3个总体,每个总体容量为=3个样品,p=2个变量的观测值。
假定总体有相同的协方差矩阵,先验概率分别为。
利用SPSS 的判别分析过程来求得费歇尔判别函数得分和贝叶斯的分类函数得分。
i n Σ1230.25,0.25,0.50p p p ===来自总体123,πππ和的随机样本为1:π125X 0311−⎛⎞⎜=⎜⎜⎟−⎝⎠⎟⎟ 2:π206X 2412⎛⎞⎜=⎜⎜⎟⎝⎠⎟⎟ 3:π31-2X 00-1-4⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠1n =33 2n =3n 3=将以上数据按照SPSS 对数据格式的要求录入到SPSS 的数据编辑窗口。
如下图所示:1.在SPSS数据编辑窗口中点选(Analyze)中的分类(Classify)进行判别分析(Discriminant…)。
2.分析时要选择的分析变量如下:3.点选统计量按钮,选择描述统计量,矩阵及判别函数系数中的所有选项。
多元统计分析实验指导书——实验一均值向量和协方差阵检验

实验一SPSS软件的基本操作与均值向量和协方差阵的检验【实验目的】通过本次实验,了解SPSS的基本特征、结构、运行模式、主要窗口等,了解如何录入数据和建立数据文件,掌握基本的数据文件编辑与修改方法,对SPSS有一个浅层次的综合认识。
同时能够掌握对均值向量和协方差阵进行检验。
【实验性质】必修,基础层次【实验仪器及软件】计算机及SPSS软件【实验内容】1.操作SPSS的基本方法(打开、保存、编辑数据文件)2.问卷编码3.录入数据并练习数据相关操作4.对均值向量和协方差阵进行检验,并给出分析结论。
【实验学时】4学时【实验方法与步骤】1.开机2.找到SPSS的快捷按纽或在程序中找到SPSS,打开SPSS3.认识SPSS数据编辑窗、结果输出窗、帮助窗口、图表编辑窗、语句编辑窗4.对一份给出的问卷进行编码和变量定义5.按要求录入数据6.练习基本的数据修改编辑方法7.检验多元总体的均值向量和协方差阵8.保存数据文件9.关闭SPSS,关机。
【实验注意事项】1.实验中不轻易改动SPSS的参数设置,以免引起系统运行问题。
2.遇到各种难以处理的问题,请询问指导教师。
3.为保证计算机的安全,上机过程中非经指导教师和实验室管理人员同意,禁止使用移动存储器。
4.每次上机,个人应按规定要求使用同一计算机,如因故障需更换,应报指导教师或实验室管理人员同意。
5.上机时间,禁止使用计算机从事与课程无关的工作。
【上机作业】1.定义变量:试录入以下数据文件,并按要求进行变量定义。
表1学号姓名性别生日身高(cm)体重(kg)英语(总分100分)数学(总分100分)生活费($代表人民币)200201 刘一迪男1982.01.12 156.42 47.54 75 79 345.00 200202 许兆辉男1982.06.05 155.73 37.83 78 76 435.00 200203 王鸿屿男1982.05.17 144.6 38.66 65 88 643.50 200204 江飞男1982.08.31 161.5 41.68 79 82 235.50 200205 袁翼鹏男1982.09.17 161.3 43.36 82 77 867.00 200206 段燕女1982.12.21 158 47.35 81 74200207 安剑萍女1982.10.18 161.5 47.44 77 69 1233.00 200208 赵冬莉女1982.07.06 162.76 47.87 67 73 767.80 200209 叶敏女1982.06.01 164.3 33.85 64 77 553.90 200210 毛云华女1982.09.12 144 33.84 70 80 343.00200211 孙世伟男1981.10.13 157.9 49.23 84 85 453.80200212 杨维清男1981.12.6 176.1 54.54 85 80 843.00男1981.11.21 168.55 50.67 79 79 657.40 200213 欧阳已祥200214 贺以礼男1981.09.28 164.5 44.56 75 80 1863.90200215 张放男1981.12.08 153 58.87 76 69 462.20200216 陆晓蓝女1981.10.07 164.7 44.14 80 83 476.80200217 吴挽君女1981.09.09 160.5 53.34 79 82200218 李利女1981.09.14 147 36.46 75 97 452.80200219 韩琴女1981.10.15 153.2 30.17 90 75 244.70200220 黄捷蕾女1981.12.02 157.9 40.45 71 80 253.00要求:1)变量名同表格名,以“()”内的内容作为变量标签。
因子分析实验报告范本

因子分析实验报告范本(8)对实验结果进行分析研究5、预习抽查、提问及成绩(请按优,良,中,及格,不及格五级评定)6、未抽查学生的预习成绩(请按优,良,中,及格,不及格五级评定,由教师评阅实验报告时确定)第二部分:实验过程记录(可加页)1、实验原始记录(包括实验数据记录,实验现象记录,实验过程发现的问题等)第一步:导入数据交作® 编勘视图茁fttg(D)炜飘D 分折他)图羽〔① 起H■幵数据俸回3檢素…■关闭Q Ct甘斗Q 探存Ctrl-S另存M£0...1舲股票代冯蛋票启称星玉每股收主营业务临入万元主营壮务和净利掏万元总资庐万元总氏储万元am万元净资庐万元1600519蛊州茅台9.3500217181918531611D69333536615&831023:625034133 2520*ST 風圈 4.3100 765S9 91S3 4360£9 5321S J3330 34 48773 2304 洋河战储370001230535 735376 396274 29^0921D08495 3719206974 E00694大酋股盼 3.5100244355349&401 1029551M0G9409297431E177205 551 格力电器 3.27® 9341Q06 35387J6982755 1595O3B3 11073129 1140772596 600392 广杀朋珠 2.42008612 5149 02756 2&35B1 1041310 25314B76031B8亚邦股粘 2.380019276S9613051512365843105490 10 260053 8300386 飞天诚信 2.3200 73471 31617 18937 1452S8 13802 13 131J869 33B 建茉动力 2.2200 5614B38 1196345 J44543 12291644 8253531 4B4038113 10300Q95三六五网•-■'ill3275730342117353B773BO536080720 111600340 痒夏車舊 2 130******** 5SI71492821171O454E07 0757223 75 1697464 12333 美的菓团 2.120010908416 2724175895296 115822077164805 7D 4417492 13601336新华■保晞 2.030010992500770400&3250061043000663669001246B2100 14 E0Q742 一汽宣錐 1.0300 321935 44368 39B42E25EQ323354120392142 15538 云甫白药 1.0700 1331752397977 194470 1471992397999 37 1074393 1660D436片甘腐 1.06001067735215223877338619&37^025274S21 17 600104 上芫棄团1,0500 46954731 528B0772CMO93238147695 2127279010 16674997 106D3168 张普罢思 1.B400 5B567 41D699995 8347S 1031789 7315819601533匠城汽生 1.BJ0042665B9105313355S625543O55J2317249213113305 2060081G 妄怯信托1,6100135026 109457 S209Q22956270060:45 1594&4图1数据第二步:将数据标准化fe9.36004.3100口十"gn丄H L H教IM也…,貝谒股J締出(①…■本©•••r Trnrsn点击分析f 描述统计f 描述。
多元统计分析中的协方差矩阵与主成分分析

多元统计分析中的协方差矩阵与主成分分析在多元统计分析中,协方差矩阵和主成分分析是两个非常重要的概念。
协方差矩阵用于描述随机变量之间的相关性,而主成分分析则是一种通过线性变换将高维数据转化为低维数据的方法。
本文将详细介绍协方差矩阵和主成分分析的原理和应用。
一、协方差矩阵的概念和计算方法协方差矩阵是多元统计分析中用于描述随机变量之间关系的一种矩阵。
对于n个随机变量X1,X2,...,Xn,其协方差矩阵定义为一个n×n的矩阵Σ,其中Σij表示随机变量Xi和Xj之间的协方差。
协方差矩阵的计算方法如下:1. 首先计算随机变量Xi的均值μi和随机变量Xj的均值μj;2. 然后计算随机变量Xi和Xj的协方差Cov(Xi,Xj);3. 将协方差填入协方差矩阵Σ的对应位置。
需要注意的是,协方差矩阵是一个对称矩阵,即Σij=Σji。
同时,协方差矩阵的对角线上的元素是各个随机变量的方差。
二、主成分分析的原理和步骤主成分分析(Principal Component Analysis, PCA)是一种通过线性变换将原始数据转化为具有统计特性的新坐标系的方法。
主成分分析的原理如下:1. 假设我们有m个样本,每个样本有n个特征,可以将这些样本表示为一个m×n的矩阵X;2. 对X进行去均值操作,即将每个特征减去该特征的均值,得到一个新的矩阵X';3. 计算X'的协方差矩阵Σ;4. 对Σ进行特征值分解,得到特征值和对应的特征向量;5. 将特征值按照从大到小的顺序排列,选择前k个特征值对应的特征向量作为主成分;6. 将原始数据X'与主成分构成的新坐标系相乘,得到降维后的数据X''。
通过主成分分析,我们可以将高维的数据降维到低维,并且保留了大部分的信息。
主成分分析在数据降维、特征提取和数据可视化等领域都有广泛的应用。
三、协方差矩阵与主成分分析的应用协方差矩阵和主成分分析在实际应用中有着广泛的应用。