物理刚体力学基础

合集下载

刚体力学基础

刚体力学基础
mB
mA
第5章 刚体力学基础
2.7
刚体力学基础
解:研究对象:A、B、圆柱 用隔离法分别对各物体作受力 分析,如图所示。
mB
N
mA
f
mB m Bg
TB
TA
mA
aB T 'B
aA
mAg
T 'A
第5章 刚体力学基础
2.7
刚体力学基础
N
f
mB m Bg
TB
TA
T 'B
T 'A
mA mAg
aA
aB
A: mA g TA mAaA TB f mB aB B: N mB g 0
2.7
定点转动:
刚体力学基础
运动中刚体上只有一点固定不动,整个刚体绕过该
固定点的某一瞬时轴线转动. 如:陀螺的运动
i3
(转轴方向(2),绕轴转角(1))
第5章 刚体力学基础
2.7
刚体力学基础
二 刚体定轴转动的运动学描述 定轴转动:刚体上任意点都绕同一 轴在各自的转动平面内作圆周运动
特征:刚体各个部分在相同时间内绕 转轴转过的角度(角位移)都相同 引入角量描述将非常方便。
oo mi vi 垂直于z轴。
i
th
刚体 mi
oo mi vi ri mi vi
z
我们只对z方向的分量感兴趣:
Liz ri mi vi mi ri 2
Lz Liz mi ri
2
ω,α vi
△ mi
ri O’ × 刚体 × O
刚体定轴转动的动能=绕质心转动的动能+
刚体携总质量(质心)绕定轴作圆周运动的动能

第3章刚体力学基础

第3章刚体力学基础

描述质点系转动的动力学方程
z
取惯性坐标系
dt
oxyz
刚体所受的对
转轴的力矩
x
o
M r F
定义:在垂直于转轴的平 面轴内的,距外离力dF的与乘力积线到转
y z轴为固定转轴
z
M
F
F F
r
垂直转轴的外力分量产生沿
d
转轴方向的力矩, 平行于转
轴的外力分量产生的力矩被
轴承支承力的力矩所抵消
一 、作用于定轴刚体的合外力矩
相对于定轴的合外力矩
(力对转轴的力矩)
M z M iz ri Fi sin i
i
i
即作用在各质元的 力矩的 z 分量之和
二、刚体定轴转动定理
由于刚体只能绕 z 轴转动, 引起转动的力矩只有z方向,
因此转动动力学方程
Mz
dLz dt
dL M
dt
Li
Ri
m
i
v
i
oo ri
mi vi
解:
z
J z mi ri2
i
m i
x
2 i
y
2 i
i
Jy Jx
x
o
yi
ri
m
x
i
i
y
例 均质圆盘:m, R . 求以直径为轴的转动惯量 解:
J 1 mR2 4
例3-6(P181) 挂钟摆锤的转动惯量
解:
o
m1 l
J
1 3
m1l 2
1 2
m2 R2
m2 l
R2
m2 R
例 计算钟摆的转动惯量。(已知:摆锤质量为m,半 径为r,摆杆质量也为m,长度为2r)

第三章-刚体力学基础

第三章-刚体力学基础

薄板对Z轴的转动惯量 J Z =
对X轴的转动惯量 J X
对Y轴的转动惯量 JY
Z
垂直轴定理
JZ JX JY
O
yi
Y
xi
ri
X
JZ miri2 mi xi2 mi yi2 Jx J y
五 刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定
滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂
分析: 由 每分钟150转 可知
0
t
2 150
60
5
rad
/ s
而已知 r=0.2m t=30s ω=0
可由公式求相应的物理量
解: (1) 0 0 5 (rad / s2 )
t
30
6
负号表示角加速度方向与角速度方向相反
(飞轮做匀减速转动)
2 02 2
(5 )2 2 ( )
末位置:
Ek
1 2
J 2
l
由刚体定轴转动的动能定理
1 mgl sin 1 J 2 0
2
2
mgl sin 3g sin
J
l
M
1 mgl cos
2
3g cos
J
1 ml2
2l
3
dm dl
gdm
(用机械能守恒定律解) 假设棒在水平位置时的重力势能为零势能
0 1 J2 (mg l sin ) O
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O

刚体力学基础详解

刚体力学基础详解

(2) 如以重量P =98 N的物体挂在绳端,试计 算飞轮的角加速。
rO T
解 (1) FrJ F r9 80.23.2 9rad 2 /s
J 0.5 (2) m gTma
F mg
TrJ ar
J
mgr mr2
两者区别
0.59 1 80 0.2 0.222.1 8rad 2 /s
例 圆盘以 0 在桌面上转动,受摩擦力而静止
3. 一般运动
刚体不受任何限制的的任意运动称为刚体
的一般运动。它可视为以下两种刚体的基
本运动的叠加:
随基点O(可任 选)的平动
FMac
绕通过基点O的瞬时 轴的定轴转动
质点运动
本章主要讨论
§5.2 刚体绕定轴转动运动学
z 组成刚体的各质点都绕同一直线 做圆周运动 _____ 刚体转动。
转轴固定不动 — 定轴转动
当 M 为零时,则刚体保持静止或匀速转动
实验证明 当存在 M 时, 与 M 成正比
M
在国际单位中 M J
刚体的转动定律 Mz J
作用在刚体上所有的外力对 定轴 z 轴的力矩的代数和
推论
刚体对 z 轴 的转动惯量
(1) M 正比于 ,力矩越大,刚体的 越大
(2) 力矩相同,若转动惯量不同,产生的角加速度不同
dr
J0 m r2 d m 0 R2 R m 2r3 d rm 2R 2
O
Rm dr
r O
(3) J 与转轴的位置有关
z
z
M
L
M
L
O
dx
x
O dx
x
J Lx2dx1M2L
0
3
J L/2x2dx1M2L

刚体力学基础PPT课件

刚体力学基础PPT课件

转动:分定轴转动和非定轴转动 刚体的平面运动
5
二、刚体定轴转动的描述
1.刚体定轴转动的特点 轴上各点都保持不动,轴外各点在同一时间间隔内转过的角度一样。
以某转动平面与转轴的交点为原点,转动平面上所有质元都绕着这个 原点作圆周运动。
2.描述 可类似地定义绕定轴转动的刚体的:
*角位置 (t)

i



ri
z
切向加速度 法向加速度
ai ri
ani ri 2

ri
vi

§3-2 定轴转动刚体的转动惯量
一、刚体定轴转动定律
(1)单个质点m
与转轴刚性连接
Ft mat mr
M rF sinθ
z
M
Ft
F
O
r
m
Fn
M rFt mr 2 M mr2
一、刚体运动分类
2.转动 如果刚体上的所有质元都绕某同一直线作圆周运动,这种运动就称之为转动,
这条直线称为转轴。
A
A
分为定轴转动和非定轴转动
*非定轴转动 若转轴方向或位置变化,这种转动称为非定轴转动
A
A
* 定轴转动 若转动轴固定不动,这种转动称为定轴转动. 这个转
轴称为固定轴,
转动平面:垂直于固定轴的平面
内力(F质i2j 量)元刚受体外力Fej ,
Mej Mij mjrj2
外力矩
内力矩
z
O rj
Fej
m j
Fij
Mej Mij mjrj2
j
j
Mij M ji Mij 0
j

刚体力学基础

刚体力学基础

1).形状、大小相同时, m↑→J↑(决定于m); 2).m相同, m分布离轴越远,J越大(决定于m的分布); 3).同一刚体,转轴不同,J不同,(决定于转轴的位置).
3.计算
1).质量不连续分布 J= miri2 i
m1
r2
r1
其中ri为Δmi到转轴的垂直距离
J m1r12 m2r22 m3r32
4.均匀细棒可绕棒一端的垂直于棒的水平轴无摩擦转
动.若细棒竖直悬挂,现有一弹性小球水平飞来与细棒
发生完全非弹性碰撞,在碰撞过程中球、棒组成的系
统的动量是否守恒?对转轴的角动量是否守恒?机械能
是否守恒?
动量不守恒,角动量守恒,机械能不守恒.
质点与刚体碰撞组成的系统一般 情况下动量不守恒,而角动量守恒.
1.刚体角动量定理 M J J d
dt
M J J d
dt
2
Mdt Jd J2 J1
1
刚体所受合外力的冲量矩等于其角动量的增量
2.刚体角动量守恒定律
条件:M 0, J 常量
刚体所受合外力矩为零,则其角动量守恒.
注意:1).L=Jω=常量, J、ω可变但乘积不变;
2).M、L、ω均对同一转轴, M为合外力矩;
a1 a2 a
a R
J 1 m R2
2
a1
a2
a
(m2 m1 )g
m1
m2
1 2
m
T1
m1
2m2g m1 m2
1 2
mg 1m 2
T2
m2
2m1g m1 m2
1 mg 2 1m
2
注意:1.涉及滑轮转动,滑轮两端绳的张力不相等T1≠T2; 2.绳与滑轮无相对滑动, a=R α

3-第3章 刚体力学基础

3-第3章   刚体力学基础
大学物理学(第5版)
二、定轴转动定律
把刚体看作一个质点系
Fi
f i Δ m i a i
ri Fi ri f i Δ m i ri a i
加速度: a i a i a in
§3-2力矩 刚体定轴转动的转动定律
Mi
z M iz
Fi
Fi //
ri
mi Fi
(ri Fi ) (ri fi ) Δmi ri ai Δmi ri ai Δmi ri ain
§3-2力矩 刚体定轴转动的转动定律
M外z Miz ( mi ri 2 ) ( mi ri 2 )
i
i
i
若令
J z (mi ri 2 )
i
M 外z J z
绕定轴转动的刚体的角加速度与作用于刚体上的合外力矩成正比,与刚体的转
动惯量成反比。
注意:
——刚体定轴转动中的转动定律
(1)M和J均对于同一转轴而言;
1
2
合外力矩对定轴转动刚体所做的功等于刚体转动动能的增量。 ——刚体定轴转动时的动能定理
章目录 节目录 上一页 下一页
“十二五”普通高等教育本科国家级规划教材
大学物理学(第5版)
§3-3 刚体定轴转动的动能定理
四、机械能守恒定律
1、刚体的势能
EP mghc
m为刚体的总质量; hc为刚体质心的高度。
dm dx m dx O
r2 x2
l
dm x dx
l
x
J l x2 m dx 1 m x3 l
J 1 ml 2
J=
0
1 ml 2 3
l
1 12
3l
ml 2 m
0
l2 4

第3章 刚体力学基础

第3章 刚体力学基础
第i个质元的动能: Eki
1 1 mi vi2 mi ri 2 2 2 2 n 1 1 n 1 2 2 2 2 刚体的动能: Ek mi ri ( mi ri ) J 2 2 i 1 2 i 1 2
1 E k J 2 2
刚体绕定轴转动时的转动动能等于刚体的转动惯 量与角速度平方乘积的一半。
1
d J d dt
W
2
1
1 1 2 Jd J2 J12 2 2
1 2 Md ( J ) 2

2
1
合外力矩对定轴转动刚体所做的功等于刚体转动 动能的增量。这就是刚体定轴转动时的动能定理。
-------------------------------------------------------------------------------
当输出功率一定时 ,力矩与角速度成反比。 ------------------------------------------
3. 刚体定轴转动的动能定理:
W M d
1 2
Jd
1
2
2

2
-------------------------------------------------------------------------------
L=rm=mr2
2.定轴转动的角动量守恒 若
M
iz
0
则 L=J = 恒量
外力对某轴的力矩之和为零,则该物 体对同一轴的角动量守恒.

装置反向转动的双旋翼产 生反向角动量而相互抵消
-------------------------------------------------------------------------------
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ji
0
ri
f ij
10 首页 上页 下页退出
二、刚体定轴转动的转动定律
在刚体上任取一质元Δmi,半径为 ri,设它所受的合外力为Fi,合内 力为fi,它们与矢径ri的夹角分别 为φi和θi.设刚体绕轴转动的角速 度和角加速度分别为ω和α.根据 牛顿第二定律,采用自然坐标系, 可得质元Δmi的法向和切向方程, 分别为
1、刚体的平动 在运动过程中,若刚体内部任意两质元间的 连线在各个时刻的位置都和初始时刻的位置 保持平行,这样的运动称为刚体的平动.
2 首页 上页 下页退出
2、刚体的转动
若刚体上各个质元都绕同一直线作 圆周运动,这样的运动称作刚体的 转动(rotation),这条直线称为转 轴(这根轴可在刚体之内,也可在 刚体之外)。
Mz
rF//
F
· F
若设力F的作用点到Z轴的位矢为r,则力对Z轴的
力矩为
Mz
rF
sin
r sin F F rF sin rF
式中为力F到轴的距离
力对固定点的力矩为零的情况:
力F等于零,
力F的作用线与矢径r共线(力F的作用线穿过0点, 即
,有心力对力心的力矩恒为零)。
9
首页 上页 下页退出
2)力矩的单位: 牛·米(N·m)
7 首页 上页 下页退出
3)力矩的计算: M的大小、方向均与参考点的选择有关
M Frsin
※在直角坐标系中,其表示式为
M
r
F
(xi
yj
zk ) (Fxi
Fy
j
Fzk )
( yFz zFy )i (zFx xFz ) j (xFy yFx )k
Mxi M y j Mzk
i jk M x y z
M x yFz zFy M y zFx xFz
Fx Fy Fz
M z xFy yFx
8 首页 上页 下页退出
2、力对轴的矩:
力矩在x,y,z轴的分量式,或称力对
轴的矩。例如上面所列Mx,My,,Mz,即
为力对X轴、Y轴、Z轴的矩。
牛顿第二定律:F=ma。
三、转动惯量的计算
J miri2
单位:千克·米2(kg·m2)
对于单个质点
J mr2
n
质点系
J miri2
i 1
若物体质量连续分布, J r 2dm m
13
首页 上页 下页退出
J r2dm
注意:(1)刚体的转m 动惯量
与刚体的质量有关, 与刚体的质量分布有关, 与轴的位置有关。 (2)质量元的选取:
3.1 刚体 刚体定轴转动的描述
一、刚体的引入
刚体(rigid body) :即形状和大小完全不变的 物体。是一理想模型。
通常把刚体分成许多部分,每一部分都小到可 看作质点,叫作刚体的质元。 由于刚体不变形,各质元间距离不变。
1 首页 上页 下页退出
二、刚体的基本运动 刚体最基本的运动方式是平动和转动 。
非定轴转动:在刚体转动过程中,转轴的方 向或位置随时间变化。该转轴称为转动瞬 轴.如陀螺的旋进、车轮的滚动等。
定轴转动:转轴固定不动,即既不改变方向 又不发生平移。该转轴称为固定轴。
3 首页 上页 下页退出
三、刚体定轴转动的描述
垂直于固定轴的平面为转动平面.显然,转动平 面不止一个,而有无数多个。如果以某转动平面 与转轴的交点为原点,则该转动平面上的所有质 元都绕着这个原点作圆周运动。
vi ri
ai ri
ani ri 2
6 首页 上页 下页退出
3.2 力矩 刚体定轴转动的转动定律
一、力矩
1、力对固定点的力矩
1)定义:作用于质点的
力对惯性系中某参考点的
力矩,等于力的作用点对该点的位矢与力的矢积,即Mr
F
M
o•
r
F
m
力矩是矢量,M的方向垂直于r和 F所决定的平面 ,其指向用右手螺旋法则确定。
把上式对刚体所有质元求和,并考虑到各质元角加 速度相同,有
Firi sini firi sini ( miri2 )
i
i
i
因为
firi sin i 0
i
令:
M Fi ri sin i
i
J mi ri 2
i
合外力矩 转动惯量
M J
12 首页 上页 下页退出
M J
上式为刚体定轴转动的转动定律:绕定轴转动的刚 体的角加速度与作用于刚体上的合外力矩成正比, 与刚体的转动惯量成反比。
刚体的平均角速度
t
当Δt→0时,平均角速度的极限称为瞬时角速度,简 称角速度,用ω表示:
lim
d
t0 t dt
平均角加速度
t
瞬时角加速度,简称角加速度
lim
t0 t
d
dt
5 首页 上页 下页退出
刚体定轴转动的特点:
所有质点的角量都相同 ; 质点的线量与该质点的轴矢径大小成正比 。
力对固定轴的力矩为零的情况:
若力的作用线与轴平行 若力的作用线与轴相交
则力对该轴无力矩作用
任一对作用力和反作用力(内力)对同点(同轴)的
力矩之和为零:
Mi0 Mj0 ri fij rj f ji
fij
f ji
Mi0 M j0 (rj ri ) f ji
f ji rj
rji
线分布 dm dx(或dl)
面分布 dm ds
体分布 dm dv
(3)由于刚体是一个特殊质点系,即各质点之间无相 对位移,即对于给定的刚体其质量分布不随时间变化 ,故对于给定轴而言,刚体的转动惯量是一个常数。
转动惯量计算举例:
14 首页 上页 下页退出
例3-1 求质量为 M,长为l的均质细棒对过穿过棒 之中心并与棒垂直的轴的转动惯量。
(Fi cosi fi cosi ) miain miri 2 Fi sin i fi sini miai miri
11 首页 上页 下页退出
切向方程: Fi sin i fi sini miai miri
将切向方程的两边各乘以ri,可得
Firi sini firi sini miri2
刚体定轴转动的基本特征是:轴上所有各点都保 持不动,轴外所有各点在同一时间间隔内转过的 角度都一样。
角位移、角速度和角加速度
转动平面上任一质元对原点的位矢r与极轴的夹角
称为角位置θ。刚体在一段时间内转过的角度
Δθ=θ2-θ1 称为角位移
4
首页 上页 下页退出
在时刻t到t+Δt时间内的角位移Δθ与Δt之比称为
dm
l 2
x dx
lx
2
解:在棒上任取一质量元 dm dx
线密度 于是
M
l
dJ x2dm
J0
相关文档
最新文档