表面修饰--金纳米棒
乙二醇修饰金纳米棒

乙二醇修饰金纳米棒说起乙二醇修饰金纳米棒,你可能会觉得,这个话题听起来像是高大上的科研内容,离我们这些普通人有点远。
但嘿,其实这背后可藏着不少有趣的东西。
让我们把这堆化学元素、纳米技术啥的,换成更生活化一点的语言,说不定你会发现,这些“科技小玩意儿”也能和你我生活紧密相连。
咋说呢?就好像你看电视剧时觉得“特效”太炫酷了,没想到这些“特效”背后其实是无数科研人员的努力。
啥是金纳米棒?想象一下,金子是多么闪闪发光的东西,金纳米棒呢,就是将黄金材料压缩成更小的颗粒,甚至小到你几乎看不见的程度。
可以这么理解,金纳米棒就像是金子的小小魔术棒,虽然看起来不起眼,但它可有大本事。
不仅如此,这些金纳米棒还有个超厉害的能力,那就是它们的表面会与光产生一些特别的互动,简单来说,金纳米棒就像是光的“收音机”,能够吸收并传递某些特定波长的光。
再说到乙二醇修饰,那又是个啥意思呢?乙二醇其实就是一种常见的化学物质,类似于我们日常生活中的防冻液(别紧张,它不危险)。
把乙二醇放到金纳米棒表面,其实就是给金纳米棒穿上了一件“防护服”。
为啥这么做?因为金纳米棒虽然强大,但它们有时候也会比较“娇气”,比如在溶液里就容易发生聚集、变形什么的。
而乙二醇呢,正好能够帮助它们保持稳定,不会乱跑,简直就是“神器”一样的存在。
你可以把乙二醇看作是金纳米棒的小保姆,帮它们整理房间、保养身体。
好啦,咱们接下来聊聊,乙二醇修饰金纳米棒能用在哪儿。
你会发现,它们的用处还真不少,不仅仅是科学家们的“玩具”,还有实际的应用价值。
举个简单的例子,这种金纳米棒在生物医药方面可是大有作为。
你知道,现如今的癌症治疗可是个大难题,而金纳米棒在这一领域却能起到一些意想不到的效果。
乙二醇修饰过的金纳米棒,经过精心“打扮”后,能更精准地“锁定”癌细胞,像个定向导弹一样准确地打击病变部位。
比起传统的药物治疗,这种方法更为温和,而且副作用少,甚至有点儿“温柔而精准”的感觉。
再比如,金纳米棒在化学传感器中的应用也是一大亮点。
金纳米粒子在医学领域中的运用

金纳米粒子在医学领域中的运用金是典型的惰性元素,由金制成的历史文物能够保留几千年的灿烂光泽不变色,如图1所示.金被广泛使用于珠宝、硬币和电子器件等方面.目前,20nm厚的金薄膜已用在办公室的窗户上,因为它能够在传输大量可见光的同时有效地反射红外光线,并吸收光的热量.因金纳米粒子具有很好的稳定性、易操作性、灵敏的光学特性、易进行表面修饰以及良好的生物相容性,使其广泛应用于食品安全检测、环境安全检测和医学检测分析等领域[1-4].金纳米粒子尺寸范围为lnm~100nm.图2(a)为50nm的金纳米棒,(b)为二氧化硅包覆的金纳米颗粒, 其中扇形金纳米粒子尺寸比较小,被二氧化硅包覆后的纳米粒子尺寸大约140nm,(c)为50nm的金纳米笼[5].由于其比较微小的结构,这些颗粒比小分子更能积聚在炎症或肿瘤增长部位.具有高效的光转热属性的金纳米颗粒,可以被应用于特异性地消融感染或患病组织.因金纳米颗粒具有吸收大量X射线的能力,而被用于改善癌症放射治疗或CT(计算机断层扫描)诊断成像.另外,金纳米粒子可以屏蔽不稳定的药物或难溶造影剂,使之有效传递到身体各个部位.1金纳米粒子在加载药物方面的应用1.1金纳米粒子可作为内在药制剂金基疗法有着悠久的历史,这是金自然的优异性能以及其神秘效应引起的药效应用.金基分子化合物已被发现可以显着限制艾滋病病毒的生长[6].目前,搭载药物的金纳米粒子常用于靶向癌细胞[7].将放射性金种子植入肿瘤中,对其内部如何实现重现性规模化批量生产纳米颗粒,另外,也需要减少免疫系统与金纳米颗粒的循环反应,增强金纳米颗粒的定位选择性,制定相关战略,显着改善金纳米颗粒的高效输运性.随着金纳米颗粒从台式到诊所的过渡,研究人员还将研究相关的纳米材料和生物系统之间的基本相互作用.我们期待纳米材料新功能和新性能的报道,也期待研究人员对生物医学的新见解.我们将进一步跟踪纳米材料在医学领域的新应用性研究,综述相关研究成果回报纳米生物医学.我们对金纳米颗粒在生物医学领域应用的黄金时代抱有更多期待.进行放射疗法,实现近距离放射治疗[7]直径非常小的金纳米颗粒(小于2nm)能够渗透到细胞和细胞区室(如细胞核)[8].金纳米颗粒与其无毒的较大尺寸的表面修饰试剂[8],有杀菌和杀死癌细胞的功效,并有诱导细胞氧化的应激能力,促使损伤的线粒体和DNA相互作用.最近,人们发现,纳米金(直径5nm)表现出抗血管生成性质(抑制新血管的生长).这些纳米颗粒可选择性结合肝素糖蛋白内皮细胞,并抑制它们的表面活性. 因为上述纳米金的大小和生物分子或蛋白质差不多,在生理过程中,它们也可以相互修饰或作用,尤其在细胞和组织内.最近,El-Sayed和他的同事针对恶性生长与分裂的细胞核,已探索出微分细胞质.通过将金纳米粒子聚集于细胞表面,从而认识到整合肽序列(细胞质交付)和核内蛋白(核周交付),并通过金纳米颗粒选择性地靶向恶性细胞,他们已证明凋亡效应(DNA的双链断裂).另外,使用类似的研究策略,已发现金纳米粒子可选择性地发挥抗增殖和放射增敏效应.1.2基于金纳米粒子的光热疗法光热疗法是金纳米粒子在医疗上的核心应用[9].纳米金吸收光能将其转换为热量并被用于破坏癌细胞和病毒的能力,是一个令人着迷的属性.因此,激光曝光过的金纳米粒子无须结合药物可直接作为治疗剂.金纳米粒子能高效吸收近红外区的电磁波,且在生物液体和组织中的衰减是极小的•在近红外区域曝光过的金纳米粒子,可渗透于高深度组织中进行光热医疗.金纳米粒子和经典光敏剂之间的差异是前者产生热量而后者照射时产生单线态氧,金纳米粒子产生的热量能破坏不良细胞.另外,金纳米粒子具有强的吸收能力,生物相容性好,能高效吸收具有较长波长的分子和药物等.这些属性使得金纳米粒子有望通过光热治疗癌症和各种病原性疾病.金/二氧化硅纳米壳,是第一批经过光热光谱分析,并应用于治疗上的纳米粒子.此纳米核壳结构以二氧化硅为核心,以金为壳,其可调谐的消光能力取决于二氧化硅的尺寸和金壳厚度.在近红外光照射下,纳米壳已被用于靶向各种癌细胞,现已有成功地在体内治疗癌症的动物模型.尽管纳米核壳合成相对容易,也具有期望的电浆性质,然而被包覆后的纳米颗粒比较大(约130nm),此大小阻碍从肿瘤组织中消除它们, 因此可能会降低它们的应用率相比而言,金纳米棒容易制备,电浆吸收可调,且在尺寸上比金硅纳米核壳小.因此,金纳米棒已被用于侵入细胞成像[10],并用于烧蚀小鼠结肠癌肿瘤和鳞状细胞肿瘤[ll-12].EI-Sayed和他的同事[12]首次将金纳米棒用于体内光热癌症治疗,其结果证明金纳米棒能够抑制肿瘤生长,而且在许多情况下,金纳米棒靶向肿瘤,且能够被其完全吸收(见图3).最近,Bhatia等研究人员进一步证明了金纳米棒在体内的治疗功效,他们发现:通过X射线计算机断层摄影,观察到PEG包覆的单个静脉内剂量金棒能够靶向小鼠肿瘤部位,该发现对后续的高效光热治疗起到指导作用.1.3金纳米粒子作为药物运载工具探索性地将金纳米颗粒用于药物输送,有以下原因:(1)高比表面积的金纳米颗粒提高了药物加载量,增强了其溶解性和装载药物的稳定性;(2)功能化金纳米粒子与靶向配体络合,提高了其治疗效力,并减少了副作用;⑶多价的金纳米颗粒与受体细胞或其他生物分子的相互作用比较强;(4)能携带游离药物靶向肿瘤组织,增强药效;(5)具有生物选择性,让纳米级药物优先靶向肿瘤部位,增强渗透性.基于以上因素,金纳米颗粒被广泛应用于生物传感、药物输送以及治疗癌症等领域(见图4).1.3.1分区加载(图4a-b)所制备的金纳米颗粒表面包覆有单层或双层指示剂,可用作抗聚集的稳定剂或在某些情况下作为形状导向剂.金纳米颗粒表面包覆的单层或双层指示剂可以视为一薄层有机溶剂,能够从中区识别疏水性药物,由于这些原因,单层或双层指示剂可以更有效加载药物并随后在病变部位释放. 例如,包覆金纳米棒的表面活性剂(十六烷基三甲基漠,CTAB),其双层厚度大约为3nm.Alkilany和同事制备的球形纳米金,包覆其表面的单层聚合物有两个疏水区域(内部)和亲水性区域(外部).包覆纳米颗粒表面的聚合物,其疏水区域是用于加载疏水性药物,其亲水性区域用于稳定水介质中的纳米颗粒.Rotell。
金纳米棒在肿瘤诊疗领域的表面修饰策略概述

金纳米棒在肿瘤诊疗领域的表面修饰策略概述金纳米棒是一种具有广阔应用前景的纳米材料,其优异的光学、电学和热学性能使其成为肿瘤诊疗领域的研究热点。
然而,金纳米棒在生物体内存在可溶性、稳定性和生物相容性等方面的缺陷,为了提高其在生物医学领域的应用性能,研究者们对金纳米棒表面进行了不同的修饰。
(一)表面聚集结构调控金纳米棒的表面存在大量的表面活性基团,如羟基、胺基和羧基等,这些活性基团的存在使金纳米棒很容易发生表面聚集行为,从而影响其光学性能。
为了克服这一问题,研究者们通过表面聚集结构调控合成了一系列形态稳定的金纳米棒,如静电吸附法、自组装法、制备共价配体等方法,成功的实现了金纳米棒的分散。
(二)表面修饰功能化金纳米棒表面修饰功能化是指在金纳米棒表面修饰某些化学结构的过程。
由于金纳米棒表面含有丰富的活性基团,这些活性基团可以与多种生物分子发生吸附或偶联反应,如PEG化、靶向修饰、荧光标记等。
通过这些表面化学修饰,可以提高金纳米棒的生物相容性、稳定性、靶向性和荧光标记等特性,从而提高其在生物医学领域的应用性。
(三)表面自组装修饰自组装修饰是一种利用分子间的自组装特性,将分子以自组装的方式结合到金纳米棒表面上的方法。
自组装修饰的优点在于可以有效地控制分子的定向和排列方式等,从而实现对金纳米棒表面性质的准确控制。
自组装修饰可以通过将PEG和其他功能性分子结合或通过适当条件下的溶剂热向金纳米棒表面上吸附,控制金纳米棒表面的化学性质。
(四)表面生物传感修饰生物传感修饰是利用金纳米棒表面具有生物活性位点,通过表面修饰引入生物传感分子,实现对肿瘤细胞的响应和检测。
通过改变金纳米棒表面的化学成分、结构、性质等,可以实现对特定生物分子的检测或针对性干预。
生物传感修饰还具有较高的选择性、灵敏度和实时检测等优点,为肿瘤的早期诊断和治疗提供了方便、准确的手段。
总之,金纳米棒表面的修饰方式多种多样,每种修饰方式都有其独特的特点和优点。
金纳米粒子结构

金纳米粒子结构
金纳米粒子是一种金属纳米材料,其结构和性质很不同于其它尺寸级别的金材料。
这种材料具有超小的尺寸,可以通过控制其形态、大小、分散度和晶体结构来调控其光学、电学、磁学等性质。
金纳米粒子结构包括以下几个方面:
1. 尺寸和形态
金纳米粒子的尺寸一般指其平均粒径,通常在几至数十纳米之间。
形态则可以是球形、立方体、六棱柱、八面体、纳米棒等多种形状。
尺寸和形态决定了其表面积、光学吸收、散射等特性。
2. 表面修饰
金纳米粒子表面上会吸附许多化学物质和生物分子,在使用前需要进行表面修饰,以增强其稳定性和选择性。
修饰的方式包括静电吸附、共价键合、物理吸附等多种方式。
3. 晶体结构
金纳米粒子的晶体结构可以是面心立方结构、体心立方结构、六方最密堆积结构等。
不同的晶体结构会影响其光学、电学、热学等性质。
4. 孔洞结构
金纳米粒子上可以制备出许多孔洞结构,这些孔洞可以增加其表面积,改善其催化性能、吸附能力等。
常见的孔洞结构有多孔、介孔、微孔等。
5. 合成方法
金纳米粒子的合成方法有很多种,包括湿化学合成、光化学法、电化
学法、等离子体法、热分解法等。
不同的合成方法会影响其粒径、形态、结构、催化性能等。
以上是金纳米粒子结构的几个重点方面,不同的结构特征对其性质展
现出不同的优异性,为其在催化、生物医学、光学等领域应用提供了
广泛的可能性。
表面修饰对金纳米粒子表面等离子激元共振现象的影响

表面修饰对金纳米粒子表面等离子激元共振现象的影响近年来, 金纳米粒子作为具有特殊表面等离子激元共振(SPR)效应的材料, 在化学、光学、电子等领域得到广泛应用。
然而, 纳米材料表面容易受到周围环境干扰和污染, 表面的修饰也会对其SPR效应产生一定的影响。
一、SPR现象及其在金纳米粒子中的应用SPR效应是一种在金属表面上发生的特殊电子共振现象, 在特定波长下会引起光的衰减和反射。
在纳米金颗粒上, 等离子激元共振(SPR)现象产生的位置和强度取决于金纳米颗粒的大小、形状、材料以及环境等因素。
SPR效应在光学传感、太阳能电池、热成像和生物成像等领域有着广泛的应用。
二、纳米材料表面修饰的现状在应用中,金纳米颗粒表面往往需要进行修饰,以增强其稳定性、增大其表面积、改善其光催化性能、增强其生物相容性等。
修饰方法包括化学修饰、物理修饰、生物修饰等多种方法,如化学还原、方法,溶剂热法等。
表面修饰可以使金纳米颗粒表面引入不同的官能团,改变其功函数,影响其SPR效应。
因此, 表面修饰对金纳米粒子的SPR效应具有重要的影响。
三、表面修饰对金纳米粒子SPR效应的影响(一)功能化修饰对SPR效应的影响功能化修饰可以使金纳米颗粒表面具有不同的化学活性团,如硫基、羧基、胺基、磷基、甲酸基等。
不同功能团的引入可以通过吸附作用调节表面电荷密度,并改变其SPR响应。
研究表明, 当硫基与金表面形成S-Au键后, 使金纳米粒子产生较重的SPR吸收峰并且其位置发生红移。
(二)材料对SPR效应的影响金以外的其他材料(如CdS、Au/Ag、TiO2)往往作为金纳米颗粒的包膜或掺杂体系,形成复合体系,可以调节金纳米颗粒的大小、形状以及电子传输性质,改变SPR效应。
研究发现, 添加CdS纳米微棒可以使金颗粒的SPR峰红移,说明CdS的引入调控了其SPR效应。
(三)形态与晶面对SPR效应的影响金纳米颗粒的形态、晶面和粒径等因素对其SPR效应产生显著影响。
金纳米棒

展望与挑战
金纳米棒由于其具有的独特的光学性质,使其在生物标记、生物检测、生物 成像、疾病的治疗以及信息存储等领域有着广阔的应用前景。 如何在一些实验条件包括纳米微粒的吸收和散射截面,以及纳米微粒和靶向 抗体的结合,纳米生物分子结合体对细胞的靶向标记等都还需进一步优化。 近红外光传输到不同癌症病变细胞的最有效方法及金纳米棒光热作用机理还 有待进一步研究。 基于纳米微粒对细胞的光热损伤机制还不能很好地阐述,需要更深层次的研 究。 金纳米棒颗粒的生物无毒化修饰方面还存在着有待解决的困难。
金纳米棒(GNRs)
简介
1971年,Faulk和Taylor首先将胶体金作为标记物引入免疫学研究中。从此, 金纳米粒子引起了许多科学家的关注和世界性的研究热潮。 近年来, 人们对金纳米材料的研究取得了长足的进步, 不但可以制备出不同尺 寸的球形粒子, 还可以对其形貌加以控制, 并且发现了一些特殊的实验现象和 物理性质 。 其中研究最为广泛、最具应用潜力的是金纳米棒( NRs) , 其制备过程中采用 不同的实验参数, 可实现对其比率( 长比宽) 的精确调控。更为重要的是, 金纳 米棒有着独特的光学性质[ 棒状粒子具有横向和纵向表面等离子体共振( SPR) 双谱峰], 且纵向SPR 峰位( 从可见区到近红外区) 取决于棒状粒子的比率, 通 过控制不同比率, 可以实现纵向SPR 峰位置的人为调控。
应用——医疗诊断
纳米金由于体积小,可以被多种基团修饰和其光学特性,成为疾病诊断新的 研究对象。纳米金可以被多种物质修饰获得对肿瘤细胞的靶向性。 其诊断原理如下:①不同直径的纳米金具有特定的吸收光谱,可以对特定长 度的红外线产生吸收的峰值。②由于EGFR抗体修饰的纳米金可以选择性的聚 集于肿瘤细胞中,从而使肿瘤细胞中高浓度的纳米金之间互相作用产生等离 子共振现象,导致其吸光谱发生红移,而正常细胞中由于不存在纳米金或者 纳米金浓度过低难以产生等离子共振现象,因此应用光声和超声波谱诊断法 可以明显的区别肿瘤细胞与正常细胞,使肿瘤细胞清晰地被诊断出。
表面等离子体共振波长760 nm金纳米棒

文章标题:金纳米棒在表面等离子体共振波长760 nm下的应用在当今科技发展的背景下,纳米技术的应用越来越广泛。
其中,金纳米棒作为纳米技术的重要应用之一,在表面等离子体共振波长760nm下的应用尤为引人注目。
本文将深入探讨金纳米棒在表面等离子体共振波长760 nm下的特性、应用及未来发展方向。
一、金纳米棒的基本特性金纳米棒是一种尺寸在10-100纳米之间的纳米材料,形状呈现出长轴和短轴上不同的尺寸。
由于其独特的形貌和优异的光学性能,在表面等离子体共振波长760 nm下,金纳米棒表现出了特殊的光学特性。
通过调控金纳米棒的尺寸和形状,可以精确地控制其表面等离子体共振现象,使其在特定波长下表现出最大的光学增强效应。
二、金纳米棒在医学领域的应用在医学领域,金纳米棒在表面等离子体共振波长760 nm下的应用尤为广泛。
通过将适当修饰的金纳米棒引入生物体内,可以利用其在表面等离子体共振波长760 nm下的光学增强效应,实现对生物体内部的高灵敏成像和定位。
这为肿瘤的早期诊断和精准治疗提供了新的手段,具有重要的临床应用前景。
三、金纳米棒在光催化领域的应用在光催化领域,金纳米棒在表面等离子体共振波长760 nm下的特殊光学特性也被广泛应用。
通过将金纳米棒嵌入催化剂中,可以利用其表面等离子体共振现象实现光催化反应的高效率和高选择性,为环境污染治理和可持续能源开发提供了新的途径。
个人观点与展望在我看来,金纳米棒在表面等离子体共振波长760 nm下的应用前景十分广阔。
随着对其光学特性的深入研究和理解,金纳米棒将在生物医学、光催化、传感器等领域发挥出更多的潜力,为人类社会的发展和进步做出更大的贡献。
总结本文对金纳米棒在表面等离子体共振波长760 nm下的特性、应用及未来发展进行了全面深入的探讨。
通过深入的研究和探索,金纳米棒在该波长下的应用将为医学、光催化等领域带来革命性的变革,值得进一步关注和探索。
以上是我为您撰写的文章,希望能够满足您的要求。
聚乙二醇-金纳米棒介导的近红外光热抑菌作用

聚乙二醇-金纳米棒介导的近红外光热抑菌作用冯晓燕;陈莹;刘玉鹏;王春鹏;储富祥【摘要】种子生长法合成纵向表面等离子体共振吸收峰为785 nm的金纳米棒,并对其表面进行聚乙二醇(PEG)修饰,研究了表面修饰PEG的金纳米棒(polyethylene glycol modified gold nanorods,PEG-GNR)的光热转化效应,并测试了其细胞毒性.以革兰氏阳性菌金黄色葡萄球菌、蜡状芽孢杆菌,革兰氏阴性菌大肠埃希氏菌及铜绿假单胞菌为细菌模型,详细研究了PEG-GNR在808nm波长近红外激光照射下金纳米棒浓度和照射功率对抑菌效果的影响.结果表明,PEG-GNR对革兰氏阳性菌和革兰氏阴性菌在近红外照射下均有较好的抑菌效果,并且抑菌效果与金纳米棒的浓度和照射功率有着密切的关系;结合荧光显微镜和透射电子显微镜对细菌坏死状况的观察,初步证实细菌对PEG-GNR有效吸收是近红外光热杀菌的关键因素.【期刊名称】《无机化学学报》【年(卷),期】2015(031)002【总页数】7页(P215-221)【关键词】金纳米棒;PEG修饰;光热抑菌【作者】冯晓燕;陈莹;刘玉鹏;王春鹏;储富祥【作者单位】中国林业科学研究院林产化学工业研究所;生物质化学利用国家工程实验室;国家林业局林产化学工程重点开放性实验室;江苏省生物质能源与材料重点实验室,南京210042;中国林业科学研究院林产化学工业研究所;生物质化学利用国家工程实验室;国家林业局林产化学工程重点开放性实验室;江苏省生物质能源与材料重点实验室,南京210042;中国林业科学研究院林产化学工业研究所;生物质化学利用国家工程实验室;国家林业局林产化学工程重点开放性实验室;江苏省生物质能源与材料重点实验室,南京210042;中国林业科学研究院林产化学工业研究所;生物质化学利用国家工程实验室;国家林业局林产化学工程重点开放性实验室;江苏省生物质能源与材料重点实验室,南京210042;中国林业科学研究院林产化学工业研究所;生物质化学利用国家工程实验室;国家林业局林产化学工程重点开放性实验室;江苏省生物质能源与材料重点实验室,南京210042【正文语种】中文【中图分类】TQ131.2细菌的耐药性已成为全球医疗领域中倍受关注的问题,多药耐药性细菌的出现严重威胁着人类的健康[1-2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面活性剂能够依靠化学结合或物理吸附等
方法在 GNRs 表面形成单层或双层结构。带 有功能团的பைடு நூலகம்面活性剂可以绑定在 GNRs 的 表面,从而改变GNRs的表面性质。 适合用作包裹的表面活性剂有:氯仿、牛血 清白蛋白(BSA)、聚乙二醇等。
4
2、表面活性剂修饰技术及功能化
• 2008年,美国麻省理工学院Schifferli研
Add Your Company Slogan
金纳米棒的表面修饰及应用
2015-1-15
1
金纳米棒(GNRs)的表面修饰有两种途径: 一种是表面修饰材料与粒子表面依靠化学键结 合,这通常是指一些小分子化合物;
另外则是用有机或无机材料直接包裹GNRs , 主要包括表面活性剂、高分子材料、DNA生物 分子及二氧化硅等。
究小组证实了CTAB可以被一种更有用的分 子—硫醇所取代,这种分子与纳米棒的结合 更紧密。此外,DNA等分子也很容易附在 硫醇的末端。
5
3、有机小分子化合物修饰技术及功能化
许多小分子化合物都能与 GNRs 表面形成
牢固的化学键,如巯基化合物、己二酸等。 具有稳定的分散性。
再经化学或生物等方法功能化后,可以被广
2
1、 无机材料修饰技术及功能化
用 二 氧 化 硅 来 包 覆 GNRs 构 建 核 - 壳 结 构
( GNRs@SiO2 )将提供一种解决 CTAB 的毒性和难于生物修饰问题的有效方法。
包裹二氧化硅后得到的复合粒子已经在生物
检测、生物识别领域得到了广泛的应用。
3
2、表面活性剂修饰技术及功能化
泛应用于生物分离、蛋白质检测和医学成像 等生物医学领域。
6
4、有机高分子材料修饰技术及功能化
可分为合成高分子和天然生物大分子两大类。 典型的合成聚合物有聚甲基丙烯酸、聚乙二
醇、聚乙烯醇、聚乙烯吡咯烷酮、聚丙烯酸、 聚乳酸、热敏性聚合物以及它们的共聚物等。 常用的天然生物大分子包括氨基酸类聚合物 (如白明胶、多肽和蛋白质等)和多糖类聚 合物(如葡聚糖、壳聚糖和藻酸盐等)。 可用于制备生物探针。
7
实例----探针
11-巯基十一烷 酸 通 过 Au-S 键 连 接 在 GNRs 上 , 取 代 CTAB , 降低其毒性, 提高生物相容 性,修饰抗体 ,与抗原特异 性结合,该生 物传感器对病 毒抗原定性定 量分析,是一 个比较好的选 择,快速准确 方便。
8
实例—光热治疗
在GNRs表面通过静电吸附或者化学键的方 式修饰治癌药物,经近红外激光照射后,金属 纳米材料将吸收的光能转化成热能,使得负载 在GNRs表面的药物释放,达到治疗癌症的效 果。
9
实例--光热治疗
脉冲激光刺激引 发 的 SPRlong 能 使 GNRs 的 局 部 温 度 升高,诱使熔化。 这种引发的熔化可 控 制 结 合 在 GNRs 上的生物分子或药 物的释放。
10