长安大学信号与系统期末试卷
《信号与系统》期末试卷A卷与答案.pptx

0
y(t)
1 t2 2
Tt
1 T2
1
2 t Tt
2
3T2
2
2
0
t 0 0t T
T t 2T 2T t 3T 3T t
3、(3×4 分=12 分)
j dX ( j / 2)
(1)
tx(2t) 2
d
(1t)x(1t) x(1t) tx(1t)
(2) X ( j)e j j d [X ( j)e j] jX ' ( j)e j d
(3)
t
dx(t) dt
X ( j)
dX ( j) d
第 页 4共 6 页
学海无 涯
4、(5 分)解 :
s2
1 2s 2
s2 2s 2
s2 2s 2
F (s) es 2(s 1) es (s 1)2 1
f (t) (t 1) 2e(t 1) cos(t 1)u(t 1)
学海无涯
《信号与系统》期末试卷 A 卷
班级:
学号:
姓名:
_ 成绩:
一. 选择题(共 10 题,20 分)
j( 2 )n
j( 4 )n
1、 x[n] e 3 e 3 ,该序列是
A.非周期序列 B.周期 N 3
D。
C.周期 N 3/ 8
CDCC
D. 周期 N 24
2、一连续时间系统y(t)= x(sint),该系统是
3
3
(b)若系统因果,则Re{s} 2,h(t) 1 e2tu(t)-1 et u(t) 4分
3
3
(c)若系统非稳定非因果,则Re{s} -1,h(t) 1 e2t u(t) 1 et u(t) 4分
信号及系统期末考试试题及答案

信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。
2. 说明傅里叶变换与拉普拉斯变换的区别。
三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。
2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。
四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。
2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。
五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。
参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。
数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。
2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。
三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。
信号与系统期末考试复习题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统期末考试题库及答案

信号与系统期末考试题库及答案信号与系统期末考试题库及答案信号与系统期末考试题库及答案1.下列信号的分类⽅法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和⾮周期信号D 、因果信号与反因果信号2.下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y(t )⼀定是周期信号。
B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y(t ) 是周期信号。
C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。
D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。
3.下列说法不正确的是( D )。
A 、⼀般周期信号为功率信号。
B 、时限信号(仅在有限时间区间不为零的⾮周期信号)为能量信号。
C 、ε(t )是功率信号;D 、e t 为能量信号;4.将信号f (t )变换为( A )称为对信号f (t )的平移或移位。
A 、f (t –t 0)B 、f (k–k 0)C 、f (at )D 、f (-t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。
A 、f (at )B 、f (t –k 0)C 、f (t –t 0)D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t t- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D )。
A 、?∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =?+∞∞-δC 、)(d )(t tεττδ=?∞- D 、?∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。
信号与系统期末考试题及答案(第一套)

信号与系统期末考试题及答案(第⼀套)信号与系统期末考试题及答案(第⼀套)符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
⼀、填空(共30分,每⼩题3分)1. 已知某系统的输⼊输出关系为(其中X(0)为系统初始状态,为外部激励),试判断该系统是(线性、⾮线性)(时变、⾮时变)系统。
线性时变2. 。
03.4. 计算=。
5. 若信号通过某线性时不变系统的零状态响应为则该系统的频率特性=,单位冲激响应。
系统的频率特性,单位冲激响应。
6. 若的最⾼⾓频率为,则对信号进⾏时域取样,其频谱不混迭的最⼤取样间隔。
为7. 已知信号的拉式变换为,求该信号的傅⽴叶变换=。
不存在8. 已知⼀离散时间系统的系统函数,判断该系统是否稳定。
不稳定9.。
310. 已知⼀信号频谱可写为是⼀实偶函数,试问有何种对称性)sgn(t )(t δ)(k δ)(t ε)(k ε)0(2)()()(2X dt t df t f t t y +=)(t f ________________?∞-=-+32_________)221()32(dt t t t δ?∞∞-=--_________)24()22(dt t t εε??∞∞-==--1)24()22(21dt dt t t εε},3,5,2{)()},3()({2)(021=↓=--=K k f k k k f kεε)()(21k f k f *________}12,26,21,9,2{)()(21↓=*k f k f )(t f ),(),()(00为常数t K t t Kf t y f -=)(ωj H ________=)(t h ________0)(t j Ke j H ωω-=)()(0t t K t h -=δ)(t f )(Hz f m )2()()(t f t f t y ==max T ________m ax T )(6121max max s f f T m==)1)(1(1)(2-+=s s s F )(ωj F ______2121)(---+=z z z H ______=+-+?∞∞-dt t t t )1()2(2δ______)(,)()(3ωωωωA e A j F j -=)(t f。
《信号与系统》期末测验试题及答案

5.下列信号中为周期信号的是 D
。
f1 (t) sin 3t sin 5t
f 2 (t) cos 2t cost
f3
(k)
sin
6
k
sin
2
k
f
4
(k
)
1 2
k
(k
)
A f1 (t) 和 f2 (t)
c f1 (t), f 2 (t) 和 f3 (k)
所以:
(+2 分)
f (k) 10 [0.5k (k 1) 0.2k (k)] 3
(+2 分)
7.已知 f1 (t) 和 f2 (t) 的波形如下图所示,画出 f (t) f1 (t) f 2 (t) 的的波形图 解: 8.已知 f (t) 的波形如下图所示。请画出 f(-2t+1)的图形
(t
1)
d r(t) dt
de(t) dt
e(t)
描述的系统是:
A
。
(A)线性时变系统; (B)线性时不变系统;
(C)非线性时变系统;(D)非线性时不变系统
13.如图所示周期为 8 的信号 f (t) 中,下列对其含有的谐波分量的描述中最准确的是
D。 A 只有直流、正弦项 C 只有奇次余弦项
(z 0.5)(z 2)
B。
(A)|z|<0.5 (B)|z|>2 (C)0.5<|z|<2 (D)以上答案都不对
4. 下面关于离散信号的描述正确的是 B
。
(A) 有限个点上有非零值,其他点为零值的信号。
(B) 仅在离散时刻上有定义的信号。 (C) 在时间 t 为整数的点上有非零值的信号。
信号与系统 期末复习试卷1

, 22t k
第2页共4页
三、(10 分)如图所示信号 f t,其傅里叶变换
F jw F
f t,求(1)
F
0
(2)
F
jwdw
四 、( 10
分)某
LTI
系统的系统函数
H s
s2
s2 2s 1
,已知初始状态
y0 0, y 0 2, 激励 f t ut, 求该系统的完全响应。
参考答案 一、选择题(共 10 题,每题 3 分 ,共 30 分,每题给出四个答案,其中只有一 个正确的)1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、 0.5k uk 2、 (0.5)k1u(k)
3、
s s
2 5
5、 (t) u(t) etu(t)
8、 et cos2tut
三、(10 分)
6、 1 0.5k1 uk
9、 66 , 22k!/Sk+1 s
解:1)
F ( ) f (t)e jt dt
Atut Btut 2 Ct 2ut Dt 2ut 2
10、信号 f t te3tut 2的单边拉氏变换 Fs等于
A
2s
s
7 e 2s3 32
C
se
s
2 s 3
32
B
e 2s
s 32
D
e 2s3
ss 3
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、卷积和[(0.5)k+1u(k+1)]* (1 k) =________________________
信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。
若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。
则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。
若x(t)为周期为T的信号,则y(t)也是周期为T的信号。
A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。
答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。
答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。
答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。
信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。
信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。
2. 请简要说明周期信号和非周期信号的区别。
答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。
非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。
...以上是关于信号与系统试题及答案的文档。
希望能对您的大学期末考试复习有所帮助。
祝您考试顺利!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长安大学试题
课程 系别 专业班号 姓名
信号与系统
考试日期 2006 年 6 月 25 日 学号
一 、(10 分)已知某连续时间信号如图所示。
1.绘出信号
x1 (t
)
=
x(4
−
t) 2
的波形;
2.若 x(t ) 的频谱是 X (ω) ,试用 X (ω) 表
示信号 x1(t)(n) = ∑δ (n − 8k) ;
k =−∞
3. y(n) 是如图所示的方波序列
七 、(10 分)已知 x(t) 是一个最高频率为 3kHz 的带限连续时间信号,y(t) 是最高频率为 2kHz
的带限连续时间信号。试确定对下列信号理想抽样时,允许的最低抽样频率。
1. f (t) = x(t) ; 2. f (t) = x(t)∗ y(t) ; 3. f (t) = x(t) y(t) ; 4. f (t) = x(t) + y(t) ; 5. f (t) = y(2t) 。
, X (Ω) 是信号 x(n) 的傅立叶变换。
1.求 X (0) 的值;
π
∫ 2.求 X (Ω)dΩ 的值; −π
∫ 3.求 π X (Ω) 2dΩ 的值. −π
七、(13 分)已知某离散时间序列 x(n) ,其傅立叶变换 X (Ω) 如图所示。
⎧x(n) , n = 2k
x1(n) = x(2n) , x2 (n) = ⎨ ⎩
二、(10 分)已知某离散时间 LTI 系统的单位脉冲响应为 h(n) = u(n) ,该系统对输入信号
x(n)
的输出响应为
y(n)
=
⎜⎛
1
n
⎟⎞ u(n)
,求输入信号
x(n)
。已知系统是因果的。
⎝ 2⎠
三、(15 分)某连续时间增量线性系统由下列微分方程描述,
d 2 y(t) + 3 dy(t) + 2y(t) = x(t); y(0) = 0, y′(0) = 2
(3) Im{X (Ω)} = sin Ω − sin 2Ω ;
∫ (4)
1
π
2
X (Ω) dΩ = 3 。
2π −π
六、(20 分)已知某离散时间 LTI 系统的单位脉冲响应为
sin( π n) h(n) = 3
πn
求该系统对下列输入信号所产生的输出响应 y(n) 。
1.
x(n)
π = cos
n;
0
, n = 2k +1
分别画出 x1(t) , x2 (t ) 的频谱 X1 (Ω) , X2 (Ω) 。
4
长安大学信号与系统期末试卷
长安大学试题
课程 系别 专业班号 姓名
信号与系统
考试日期 2004 年 1 月 14 日 学号
一、(15 分)计算下列各题
1. 已知 x(t) ←⎯F → X (Ω) ,求 x1 (t ) = x(3t − 2)e− j2t 的傅立叶变换 X1 (Ω) 。
4.若该系统对输入信号 x(t) 产生的输出响应为 y(t ) = e−2t u(t) ,求输入信号 x(t) 。
1
长安大学信号与系统期末试卷
五、(15 分)某离散时间信号 x(n) 的离散时间傅立叶变换为 X (Ω) ,且已知下列条件:
(1)当 n > 0 时, x(n) = 0 ;
(2) x(0) > 0 ;
dt 2
dt
求该系统的零输入响应 yzi (t) (已知系统是因果)
四、(20 分)已知某连续时间 LTI 系统如图所示,系统是初始松弛的
1.求该系统的系统函数 H (s) ,并指出其收敛域;
2.该系统是否稳定,为什么? 3.绘出该系统的零极点图,并由零极点图概略绘出系统的幅频特性, (应对幅频特性做出必 要的标注);
的图形,并说明Y1 (k ) , Y2 (k ) 与 X (k) 之间的关系。
y1
(
n)
=
⎪⎧x( ⎨
n 2
),
n
=
2
k
⎪⎩0, n = 2k +1
⎧x(n), 0 ≤ n ≤ 7
y2 (n) = ⎨ ⎩
0,
8 ≤ n ≤15
七、(10 分)已知信号 x1 (t ) 的最高频率为 500Hz, x2 (t ) 的最高频率为 1500Hz,如果用来恢
二、(15 分)已知某离散时间信号 x(n) 如图所示。
y(n) = x(2n) ∗ x(n2) ,求 y(n) 并画出 y(n) 的波
形。
三、(10 分)已知某因果连续时间 LTI 系统由下列微分方程描述。
d 2 y(t) dy(t)
dx (t )
dt 2
+2 dt
− 3y(t) =
dt
+ x(t)
4. 请根据零极点图概绘出系统的幅频特性,并标注出ω
=
π 0,
,π
时的幅值。
2
六、(10 分)已知 x(n) 是一个 8 点序列,其 8 点 DFT(离散傅立叶变换)为 X (k ) ,如图所示。
y1 (n) , y2 (n) 都是 16 点的序列。试绘出它们的 16 点 DFT Y1(k) 和Y2 (k )
复信号的理想低通滤波器的截止频率为 2500Hz,试确定抽样时所允许的最大抽样间隔。
f1 (t) = x1(t) ∗ x2 (t ), f2 (t) = x1 (2t ) + x2 (t / 3), f3 (t) = x1(t) • x2 (t )
6
1.当输入信号 x(t ) = e−2t 时,求系统的输出响应 y(t);
1.当输入信号 x(t) = e−t u(t) 时,求系统的输出响应 y(t ) 。
四、(20 分)某离散时间 LTI 系统如图所示。
1.求系统函数 H (Z ) ,并画出系统的零极点图; 2.求系统所有可能的单位脉冲响应 h(n) ,并讨论其因果稳定性
二、 (15 分)某离散时间 LTI 系统的互联结 构如图所 示,已知 h1 (n) = δ (n) −δ (n −1) ,
π
sin n
h2(n) = u(n) , h3(n) =
2 πn
。系统最初是松弛的。
1. 求整个系统的单位脉冲响应 h(n) ;
2. 判断系统的因果性,稳定性,并说明理由;
3. 若系统的输入信号 x(t ) = u(n) − u(n − 2) ,求系统响应 y(n) 。 三 、 (15 分 ) 某 连 续 时 间 LTI 系 统 对 输 入 信 号 x(t) = (e−t + e−3t )u(t) 的 响 应 为 y(t ) = (2e−t − 2e−4t )u(t) ,已知系统是因果稳定的,且初始松弛。 1. 求系统的频率响应 H (Ω) ; 2. 求该系统的单位冲激响应 h(t ) ;
2. x2 (t ) 为如图所示的周期信号;
3. x3 (t ) = x2 (t ) cos 5πt
六、(15 分)已知序列
x(n) = −δ (n + 3) + δ (n +1) + 2δ (n) + δ (n −1) + δ (n − 3) + 2δ (n − 4) + δ (n − 5) −δ (n − 7)
[ ] 2. 已知 x1 (n) ←⎯Z → X1 (z) , x2 (n) ←⎯Z→ X 2 (z) ,求 x1 (n) ∗ x2 (n) e jω0n 的 Z 变换 X (z) 。
∫ 3. 已知 x(t) = u(t +1) − u(t −1) , x(t ) 的频谱为 X (Ω) 求 +∞ X (Ω)dΩ 。 −∞
y(n) + 5 y(n −1) + 1 y(n − 2) = x(n) + 1 x(n −1)
6
6
4
1. 求系统函数 H (z) ,并画出系统的零极点图;
2. 求系统的单位脉冲响应 h(n) ;
n
3. 如果系统的输入为 x(n) = ⎜⎛ − 1 ⎟⎞ u(n) ,求系统的输出响应 y(n) ;
⎝ 4⎠
3
长安大学信号与系统期末试卷
3.在系统稳定的条件下,请根据零极点图概略绘出系统的幅频特性,并标注出 Ω = 0, π ,π 2
时的幅值。
五、(15 分)某连续时间 LTI 系统的单位冲激响应为 h(t) = sin 2πt ,求系统对下列输入信号 πt
的响应;
1. x1(t ) = cos πt ;
3. 写出描述系统的微分方程,并用直接 II 型结构实现。
四、(15 分)已知信号 x(t ) 的频谱为 X (Ω) ,试用 X (Ω) 分别表示信号 x1 (t ) x2 (t ) x3 (t) 的频 谱 X1 (Ω) X2 (Ω) X3 (Ω) 。
5
长安大学信号与系统期末试卷
五、(20 分)某离散时间 LTI 系统由下列微分方程描述,已知系统是因果的。且初始松弛。
2
长安大学信号与系统期末试卷
长安大学试题
课程 系别 专业班号 姓名
信号与系统
考试日期 2005 年 7 月 6 日 学号
一、(12 分)已知某连续时间信号 x(t) 的波形如图所示。 1.画出信号 x1(t ) = x(2 − 2t ) + x'(t −1) 的波形; 2.若 x(t) 的频谱是 X (ω) ,试用 X (ω) 表示信号 x1(t) 的频谱。