流体力学教学ppt

合集下载

高等流体力学课件

高等流体力学课件
静止流体满足力的平衡条件,即合力为零。
流体静力学的基本概念
流体静力学是研究流体平衡和压力分布的学 科。
压力分布
静止流体的压力分布与重力场和其他外力场 有关,可以通过静力学方程求解。
流体动力学
总结词
流体动力学的基本概念、一维流动、层流与湍流
一维流动
一维流动是指流体沿着一条线的流动,可以用于 描述长距离管道内的流动或某些对称的流动。
水利工程
机械工程
流体动力学在水力发电、水利枢纽设计、 灌溉系统优化等方面具有广泛应用,为水 利工程提供了重要的技术支持。
流体动力学在机械工程领域的应用也十分 广泛,如内燃机、通风 system等的设计和 优化。
流体在自然界中的应用
气候变化
流体动力学在气候变化研究中发挥着重要作用,如风场、洋流等 对气候的影响研究。
详细描述
连续性方程是流体动力学的基本方程之一,它表达了单位时间内流经某一封闭 曲面微元体的流体质量的增加等于该微元体所受质量源的净增量,用于描述流 体运动的连续性。
动量方程
总结词
描述流体动量守恒的方程
详细描述
动量方程是流体动力学的基本方程之一,它表达了流体动量的变化率等于作用在 流体上的外力之和,包括重力、压力、摩擦力等。
方法
02
常用的线性稳定性分析方法包括特征值分析、傅里叶分析和庞
加莱截面法等。
应用
03
线性稳定性分析在气象、海洋、航空航天等领域有广泛应用,
用于预测和控制流体运动的稳定性。
非线性稳定性分析
定义
非线性稳定性分析是研究流体运动在较大扰 动下的响应,需要考虑非线性效应对流体运 动的影响。
方法
非线性稳定性分析需要求解非线性偏微分方程,常 用的方法包括数值模拟和近似解析法。

流体力学PPT

流体力学PPT

牛顿内摩擦定律表明: 切应力与速度梯度成正比;比例系数称动力粘度。
第 20 页
职教
绪论——1.2流体的主要力学性质 3、流体的粘度
——表示流体粘滞性大小
du dy
(1) 动力粘度

( Pa s)
P(泊) 1P 0.1Pa s
(2) 运动粘度

(m 2 / s )
St : cm2 / s
/ p
β↑,压缩性↑
可知: 液体β很小
第 26 页
职教
绪论——1.2流体的主要力学性质 弹性系数: 压缩系数的倒数
E 1

第 27 页
职教
绪论——1.2流体的主要力学性质 (2)液体的热胀性 热胀系数:压强不变时,单位温度变化所引起的 体积或密度的相对变化率
V / V a T
第 21 页
职教
绪论——1.2流体的主要力学性质 4、粘性的影响因素
粘度 液体 气体
流体种类 流体温度
o 气体 温度
液体:分子内聚力是产生粘度的主要因素。 温度↑→分子间距↑→分子吸引力↓→内摩擦力↓→粘度↓ 气体:分子热运动引起的动量交换是产生粘度的主要因素。 温度↑→分子热运动↑→动量交换↑→内摩擦力↑→粘度↑
第 4 页
职教
绪论——1.1概述


重要的专业基础课程,该课程的目的是 为了学习专业课以及从事技术工作提供必要 的基础理论和实践技能
第 5 页
职教
绪论——1.1概述
主要内容
绪论 流体静力学 不可压缩一元流体动力学 流动阻力和能量损失 管路计算 附面层与绕流阻力 孔口、管嘴出流和气体射流
第 6 页
职教

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

流体力学ppt

流体力学ppt

概念引入: 概念引入:
位置水头 :z 压强水头 :p/γ 测压管水头 :z+p/γ=C 同一容器内静止液体中, 同一容器内静止液体中, 测压管水头均相等。 测压管水头均相等。
三、压强的表示方法和度量单位
1、表示方法
(1)绝对压强Pj:以绝对真空为零点。 绝对压强P 以绝对真空为零点。 相对压强P 以大气压P 为零点。 (2)相对压强P: 以大气压Pa为零点。 工程中,通常采用相对压强, 可正可负。 工程中,通常采用相对压强,P可正可负。 绝对压强与相对压强的关系: 绝对压强与相对压强的关系:P=Pj–Pa P 为正值时: 称为正压(表压, P为正值时:Pj>Pa,称为正压(表压,即压力表 读数)。 读数)。 为负值时: 称为负压( P为负值时:Pj<Pa,称为负压(负压的绝对值称 真空度,即真空表读数)。 真空度,即真空表读数)。 真空度(只能是正值) 真空度(只能是正值):Pk=Pa-Pj=-P
§1-1 流体的主要力学性质 -
一、惯性
定义:惯性是物体维持原有运动状态的性质。 定义:惯性是物体维持原有运动状态的性质。 质量:表征惯性的物理量。 质量:表征惯性的物理量。 流体的质量:常以密度来反映。 流体的质量:常以密度来反映。 密度:对于均质流体, 密度:对于均质流体,单位体积的质量称为密度 ρ = m /V ,即: 重度:对于均质流体, 重度:对于均质流体,单位体积的流体所受的重 力称为流体的重力密度,简称重度。 力称为流体的重力密度,简称重度。 即:
h= p
γ
一标准大气压: 一标准大气压: 三种压强换算关系: 三种压强换算关系: 压强换算关系
101325 N / m 2 h= = 10.33m 3 9807 N / m

流体力学课件PPT课件

流体力学课件PPT课件

注意:恒定流中流线与迹线重合
第27页/共90页
四、流管、流束、元流、总流、过流断面
1.流管
在流场中通过任意不与流线重合的封闭曲线上各 点作流线而构成的管状面。
第28页/共90页
2.流束
流管内所有流线的总和。流束可大可小,视流管 封闭曲线而定。
•元流:流管封闭曲线无限小,故元流又称微元流束。 •总流:流管封闭曲线取在流场边界上,总流即为许
x
y方向:
my
(uy ) dxdydz
y
z方向:
mz
(uz ) dxdydz
z
据质量守恒定律:
第39页/共90页
单位时间内流进、流出控制体的流体质量差之总和
等于控制体内流体因密度发生变化所引起的质量增
量 即
mx
my
mz
t
dxdydz
将 mx、my、mz 代入上式,化简得:
(ux ) (u y ) (uz ) 0
第54页/共90页
1.伯努利方程的物理意义
• z mgz : 单位重量流体所具有的位能。 mg

p
mg
p
/
mg
:
单位重量流体所具有的压能。
•z p :
单位重量流体所具有的势能。

u2 2g
1 2
mu
2
/
mg
:
单位重量流体所具有的动能。
第55页/共90页
• z p u2 : 单位重量流体所具有的机械能。
第8页/共90页
§3-1 描述流体运动的方法
一、拉格朗日方法
1.方法概要
着眼于流体各质点的运动情况,研究各质点 的运动历程,并通过综合所有被研究流体质点的 运动情况来获得整个流体运动的规律。

流体力学ppt课件

流体力学ppt课件
6
三、特例 ❖ 火箭在高空非常稀薄的气体中飞行以及高真空技术中,如真空泵,其分子距与设备
尺寸可以比拟,不再是可以忽略不计了。这时不能再把流体看成是连续介质来研究。 ❖ 流体性质有局部突变时,如汽化。 ❖ 研究区域很小时。
7
第三节 作用在流体表面上的力 表面力 质量力
两类作用在流体上的力:表面力和质量力
M V d M V d d V 0
V dV d
E1 pd1V 1d d p0.0 1% 25 140 2.5 18P 0 a
Vdp
13
二、流体的膨胀性 当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性,膨胀性的大小用
温度膨胀系数来表示。 1.膨胀系数
单位温度增加所引起的体积相对变化量
17
三种圆板的衰减时间均相等。 库仑得出结论:衰减的原因,不是圆板与液体之间的相互摩擦 ,而是液体内部的摩擦 。
18
2.牛顿内摩擦定律
(1) 牛顿平板实验
当h和u不是很大时,两平板间沿y方向的流速呈线性分布,
uUy 或duUdy
h
h
h
dy
y U
uu+du
y
dudt
Aa
Bb
o
dy
d
d(dud)/tdtdu
3
第二节 流体作为连续介质的假设 问题的引出:
微观:流体是由大量做无规则热运动的分子所组成, 分子间存有空隙,在空间是不连续的。 宏观:一般工程中,所研究流体的空间尺度要比分子 距离大得多。
4
一、流体的连续介质假设 定义:不考虑流体分子间的间隙,把流体视为由
无数连续分布的流体微团组成的连续介质。这就是1755年欧拉提出的“连续介质 假设模型”。

流体力学基础讲解PPT课件

流体力学基础讲解PPT课件
措施。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。

流体力学(共64张PPT)

流体力学(共64张PPT)

1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功

HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

② 测量气体
为液体的密度 为气体的密度
(3) 组合比托管2
4. 流量计
(1) 测量液体流量 的汾丘里流量计
(2) 测量气体流量 的汾丘里流量计
第2节 黏性流体的运动 the motion of viscous fluid 一、牛顿黏滞定律(Newton viscosity law)
1. 实验: 甘油在竖直圆管中的分层流动分析
水平管: h1=h2=h
S2<S1 v2>v1 p2<p1
p2< p0 空吸作用
实例1: 喷雾器
实例2: 水流抽气机
2. 小孔流速
一个很大的开口容器, 器壁上有一小孔, 当容器内 注入液体后, 液体从小孔流出. 设小孔距液面的高度 是h, 求液体从小孔流出的速度.
任意选取一流线, A为流线上通过液面的一点, B为 该流线通过小孔上的一点.
kg
m s2
/m2
gh
:
kg m3
m s2
m
kg
m s2
/m2
Pa
静压强
1 2
v2
:
kg m3

m s
2
k
g
m s2
/m2
Pa
动压强
(7) 适用条件 ① 理想流体做稳定流动; ② 同一流管的不同截面积处或同一流线的不同点;
(8) 分支管道的伯努利方程: S1
S2
v2
v1
p1
gh1
1 2
2. 速度梯度(velocity gradient) :
x x+dx
x
v v+dv v
dv/dx 表示垂直速度方向相距单位距离的液层间的 速度差, 叫做该处的速度梯度.
单位: s1
3. 牛顿黏滞定律(Newton viscosity law): 黏性力 F 的
v12
p2
gh2
1 2
S3
v22
v3
p1
1 2
v12
gh1
p3
1 2
v32
gh3
(9) 特殊情况下方程的简化 ① 不均匀水平管, h1=h2=h
② 均匀管, S1=S2, v1= v2= v 竖直: 水平:
③ 若某处与大气相通, 则该处的压强为大气压 p0
伯努利方程的应用 1. 空吸(suction)
(2) 外力的合力所作的总功A: (3) 动能Ek和势能Ep的变化
(4) 功能原理(work-energy theory)
(5) 伯努利方程
理想流体作稳定流动时,同一流管的不同截面 积处的压强、流体单位体积的势能与单位体积的 动能之和都是相等的.
(6) 方程中各个物理量的单位
p : Pa
N m2
在任意水位 h 处水的流速为:
SA=6102 m2 hA=0.7 m
该处厚度为dh 的薄层从小孔流出时间为:
SB=1 cm2
整个水箱的水流尽所需时间为
3. 流速计(比托管pitot tube)
(1) 原理图(图4-1-6), v2=0
P2
P1
gh2 S
S
gh1 S
S
(2) 组合比托管1
① 测量液体
稳定流动时, 流速场的空间分布不随时间变化.
两个重要概念:流线和流管
(3) 流线 (Stream line)
C vC
A vA
B
vB
① 流线只是一种形象描述;
② 任意两条流线互不相交; ?
③ 稳定流动时, 流线的分布 不随时间改变;
④ 流线与轨迹的关系.
(4) 流管(tube of flow )
① 流管同样也是一种形象描述; ② 流管的形状在稳定流动时保持不变;
2. 稳定流动 (steady flow)
Study method (1) 流速场
Lagrange method Euler method
流体空间中每一点(x, y, z)上有一个速度矢量 v(x, y, z), 它们构成一个流速场.
(2) 稳定流动
流体在流动时, 流体粒子顺序到达空间任一点, 而 在这一点的速度大小和方向不随时间而改变.
4. 分支流管的连续性方程
S1
S2
v2
v1
S3
v3
S1v1 S2v2 S3v3
三、 伯努利方程Be及rn其ou应lli用equation
1738年, 英国科学家Daniel Bernoulli(1700 ~1782年) 利用力学中的功能原理, 推导出理想流体在流动中的 动力学方程.
理想流体作稳定流动时, 在流体内同一流管任意点 的压强、单位体积势能、单位体积动能满足:
或在流体中同一流管任意两截面处 有
推导依据: 连续性方程和功能原理.
推导过程:当t→0时
(1) 假设与近似 ① aa' 处的截面积近似相等(S1) ② bb' 处的截面积近似相等(S2) ③ aa'体积内的v1、p1不变, 高度h1 ④ bb'体积内的v2、p2不变, 高度h2 ⑤ aa'和bb'体积相等V1 = V2 = V, 质量均为 m ⑥ 流管周围的流体对流体柱ab的力不做功 ⑦ 只有推力F1和阻力F2对流体柱做功
③ 稳定流动时, 流管内外的流体彼此互不交换. ?
二、连续性方程(continuity equation)
1. 体积流量:
S
单位: m3/s
vt
2. 连续性方程: S1v1=S2v2 或 Sv=C
适用条件:
v2
不可压缩的流体作稳定流动.
S2
S
v
说明

小 流线稀
v1
小 大 流线密
S1
3. 质量守恒: S1v1= S2v2
A

令小孔处的高度为 hB=0
点A: hA=h, vA=0, pA=p0
点B: hB=0, vB=?, pB=p0
•B
例1 一圆形开口容器, 高0.7 m, 截面积6×102m2. 贮满清水, 若 容器底有一小孔1cm2 , 问该容器中水流完需要多少时间?
解: 已知 hA=0.7 m, SA= 6×102 m2, SB= 104 m2. 随着水的流出, 水位不断下 降, 流速逐渐减小, 根据小孔流速规律知
压低?
第1节 理想流体的运动 the motion of ideal fluid 一、理想流体的稳定流动
1. 理想流体(ideal fluid)
实际流体的特性: (1) 粘性(viscosity) (2) 可压缩性(compressibility)
理想流体:绝对不可压缩的、完全没有粘性(或 内摩擦力)的流体。
流体运动简介 the introduction of motion fluid
第1节 理想流体的运动 第2节 黏性流体的运动
航空航天、船舶与海洋——application
弧旋球
G V0
Lift
船舶运动
地效翼艇
(WIG)
海洋平台
潜器
浮标

问题:
1. 喷雾器怎样把瓶中的液体带出来? 2. 为什么远离水塔比靠近水塔同样楼层的住家水
相关文档
最新文档