俄罗斯教材《代数学引论》的启迪

合集下载

代数学引论第二版课程设计

代数学引论第二版课程设计

代数学引论第二版课程设计一、课程概述本课程为高等数学系列课程中的一门代数学基础课程,是对代数学基础理论和方法的概括与总结,旨在帮助学生全面掌握代数学基本概念,理解代数学基本原理,掌握代数学基本方法和技巧,在将来学习更高阶的数学课程时有更加扎实的数学基础。

二、课程目标通过本课程的学习,学生应该能够:1.掌握代数学的基本概念和基本理论;2.理解代数学基本方法和技巧;3.能够熟练运用代数学中的基本操作;4.能够解决代数学中的基本问题。

三、课程大纲第一章代数系统1.代数系统的定义和基本概念;2.代数系统的分类;3.群、环、域的定义和基本概念。

第二章群论1.群的定义和基本性质;2.等价关系与商群;3.群的同态与同构;4.子群、左陪集和右陪集;5.群的生成元和表示;6.群的分类。

第三章环论1.环的定义和基本性质;2.环的同态与同构;3.互反元、单位元和幺环;4.环的理想和商环;5.环的生成元和表示;6.环的分类。

第四章域论1.域的定义和基本概念;2.域的同态与同构;3.域的代数性与超越性;4.域的扩张:代数扩张与超越扩张;5.域扩张的应用。

四、参考书目1.《代数学引论(第二版)》,李文治,高等教育出版社;2.《现代代数学基础(第二版)》,杨学义,高等教育出版社;3.《线性代数及其应用(第四版)》,Gilbert Strang,机械工业出版社。

五、考核方式本课程的考核方式主要包括平时成绩、期中考试和期末考试三个环节。

其中,平时成绩占课程总评成绩的30%,期中考试占40%,期末考试占30%。

教师根据学生的表现情况,适时设置小组讨论和作业,以及课堂互动等环节,以增强学生的学习兴趣和主动性。

同时,教师将通过每门课程结束时的总结,及时进行反思和修改,以提高本课程的教学质量和效果。

六、结语代数学作为一门基础学科,为其他数学领域的发展奠定了坚实的数学基础,其对我们现代生活的影响至关重要。

本门课程旨在帮助学生体会代数学的精髓,全面掌握代数学的基础知识和理论,为将来的数学学习打下坚实的基础。

高等数学教材俄国

高等数学教材俄国

高等数学教材俄国高等数学教材俄国,“高等数学”在俄罗斯被称为“Вишняков”或“Матан”(Matan),是大学中必修的一门课程,也是所有理工科学生的基本功课。

俄国的高等数学教材在内容和教学方法上有其独特之处,本文将对俄国高等数学教材进行介绍。

一、教材结构与内容俄国高等数学教材通常分为多个卷,每个卷以不同的主题为核心展开讲解。

常见的主题包括微积分、线性代数、概率论等。

每个主题下又会有不同的章节,将知识点有机地组织在一起。

教材注重逻辑性和系统性,通过严谨的论证和推导,帮助学生建立起知识的框架和体系。

与国外一些高等数学教材相比,俄国教材更注重理论与实践的结合。

除了引入基本概念和公式,教材还会给出大量的例题和习题,让学生在理解知识的基础上进行实践运用。

这种教学模式有助于培养学生的问题解决能力和创新思维。

二、教学方法与特点俄国高等数学教材注重学生的自主学习和思考能力的培养。

在教学过程中,教师会引导学生自主发现问题、独立分析和解决问题。

教学内容更偏向于理论基础和逻辑推理,而非简单的公式记忆。

这种教学方法旨在培养学生的深入思考和批判性思维能力。

教材中还注重实际问题的应用。

数学在科学和工程领域有着广泛的应用,俄国教材会通过实例和案例分析,将数学与实际问题紧密结合,帮助学生了解数学在现实生活中的应用场景。

这样的教学方法有助于学生更好地理解数学的意义和价值。

三、教材的潜在问题与改进俄国高等数学教材在内容和教学方法上有其独特之处,但也存在一些潜在问题。

首先,教材过于注重理论,缺乏实际问题的练习。

虽然实例和案例分析有助于学生理解应用,但在解决实际问题时可能会缺乏经验和技巧。

其次,教材的难度较高,对于某些学生来说可能会有一定的挑战。

应考虑为不同层次和能力的学生提供不同的教材版本或辅助教材,以满足不同学生的需求。

最后,教材中的习题数量有限,难以充分锻炼学生的应用能力。

应该增加更多的习题,覆盖不同难度和类型的问题,以帮助学生巩固和扩展所学知识。

代数学发展对数学教学的启示

代数学发展对数学教学的启示

代数学发展对数学教学的启示学号:1250411025 姓名:黄新菊公元8世纪,阿拉伯数学家阿尔﹒花拉子米的著名著作《还原与对消计算》的问世,是代数学成为数学独立分支的重要标志。

一直到近代19世纪,代数学才趋近完善。

经过这十几个世纪的发展,代数学从最开始的文辞阶段,经历缩写阶段,到现在的符号阶段。

代数,在日常生活中也是最频繁的被利用的数学,现在可以用最简便的数字,做简便的算术计算。

同时,“算术”,即代数学的发展基础,也经历“初等代数”、“高等代数”,演化到现在的抽象化阶段“抽象代数”。

代数是研究数、数量、关系与结构的数学分支。

作为数学中基础学科之一,在数学中担任着重要的较色。

一些数学分支,如果没有数学符号,就进行不下去。

代数学的发展,对于数学教书,具有以下的教学启示。

1:数学的严密性数学的每一步发展,都是经过我们的数学家先驱经过严格的逻辑证明演算出来的,具有最严格的推理证明。

所以在数学教学当中,可以注重学生的严密推理的能力,培养学生自己思考,建立自己的思维定点。

并且在数学教授过程中,也要对学生负责,对定理的证明要一步一步,正确、清楚的推理证明。

2:对学生进行逻辑思维培养许多学生都存在着思维定势,按照积累的思维活动经验教训和已有的思维规律,在反复使用中所形成的比较稳定的、定型化了的思维路线、方式、程序、模式(在感性认识阶段也称作“刻板印象”),殊不知在很多情况下,是需要向相反的方向思考。

很多人不知道学习数学学习什么,总认为学习数学一点都没有用,学习数学,学的就是“思维”。

在教学中,要教育学生培养发散性思维,创造性思维。

3:具体到抽象的过度从代数学发展阶段来看,我们的数学家先驱从最开始的利用同样多的物体代替相等的等价物,到现在的数字1、2、3等。

所以在数学教授过程中,如果要学习一些难懂的数学定理、数学概念,可以教学生先在具体的实例中探索、发现、总结。

再把定理、概念提取出来,让学生容易接受。

4:学以致用代数学的发展,许多定理都是再生活中发现问题,解决问题,同时也为了应用在生活中。

数学分析梅加强。答案

数学分析梅加强。答案

数学分析梅加强.答案[篇一:南京大学基础数学考研参考书目]思想政治理论②201 英语一③627 数学分析④801 高等代数复试科目:2305 通信与信息系统专业综合参考书目:《数学分析》梅加强著,高等教育.《高等代数》丘维声编,科学.复试参考书目:《实变函数与泛函分析概要〔第一册〕》〔第二版〕郑维行、王声望编,高等教育.《常微分方程教程》丁同仁、李承治编,高等教育.《代数学引论》聂灵沼、丁石孙编著,高等教育.《概率论基础》李贤平著,高等教育.《数值计算方法〔上、下册〕》林成森编著,科学.参考资料:《南京大学801高等代数考研专业课复习全书》聚英南大〔含真题与答案解析〕《2017南京大学801高等代数考研专业课历年真题与答案解析》[篇二:国内常见数学教材评价.doc]orich,数学分析〔两卷〕作者是s.p.novikov的学生,写本书的时候还很年轻.研究也作的很好,20##国际数学家大会上几何组作过45分钟报告.说句实话,要是把这两卷学下来〔包括习题〕,可能许多博导也做不到.如果作为教材去学,确实不容易,清华数学专业就用的这个,听说第二卷也比较困难.但用来自学还是很好的张筑生数学分析新讲<共三册>这个张老师是十年动乱后的较早期的北大博士之一, 20##2月因病去世,基础绝对过硬,还写过《微分动力系统》与《微分拓扑新讲》两本书,做过几年imo的领队或教练第一册的最后介绍万有引力的证明,其实这个内容也应该教授给工科学生.和国内大多教材差不多,可惜没有习题.邹应数学分析作者是武汉大学的,书学的法国.可惜我没见过他,当我知道他的时候,已经去了.可以用来参考,当然包括习题.我知道它曾经是武大中法班的教材,我的许多老师应该就是受的它的教育常庚哲,史济怀数学分析教程〔两册〕第一作者曾经是imo的领队或教练,中国科技大学的.内容选材和处理都很好,被称为经典.习题也不错,稍微有点难.l.loomis,s.sternberg advanced calculus这两位都是美国数学学派的人,当然其祖上也来自德国.作为研究生的教材,其实适合所有方向的学生.它本来就是mit的研究生教材齐民友重温微积分齐老师是绝对的院士水平,多本名著的译作,近来很关心本科教学.作为为高年级的参考书是很适合的,读过后会很有收益的.尤其是会学到许多新的知识s.m.nikolski 数学分析教程〔两卷〕很长寿的老一辈数学家,已经105岁了 .研究领域是逼近论v.i.smirnov 高等数学教程〔五卷〕圣彼得堡学派的传人.这两部俄罗斯教材的特点是比较全面,一般不易做为教材,但做为参考是很不错的m.fitzpatrick 高等微积分作者倒是没多大名气,但这部马里兰大学的微积分教材很值的借鉴.推荐理由当然也有个人因素,因为我对马大很熟悉k.kodaira 微积分入门陶哲轩实分析小平是日本的数学之神,相信大家对他很熟悉;小陶被誉为世界最聪明的数学家,是奥数培养起来的,想想国内的奥数教育,虽然也有些年头了,但没见什么成效.这两部教材有点象,很注重数学基础,但小陶的书缺少多元积分这部分很有用的内容,可能更适合准备多年学数学的学生梅加强数学分析讲义richard courant 微积分和数学分析引论梅老师是科大少年班的优秀学生,现在南京大学,这是一部很好的数学分析教材,不过有机会得问问梅老师,为什么没有正式出版,看看那么多烂教材都出来骗人,觉得有点遗憾.courant是世界级的应用数学大师,hilbert的得意门生,自己也有许多得意门生.强人易惹人,richard与商人和官方有密切的关系,因此招惹了不少人.他把自己的女儿<二婚>嫁给了moser,侵占了《数学是什么》另一作者robinson<著名的女数理逻辑学家,因其姐姐reid是hilbert的传记作者和richard熟识>的,后因robinson多方努力才使其名字见于书中.这两本书里对许多问题的处理很有特色,还有些有趣而且有用的例子和习题.我自己在教学中就吸纳了不少他们的处理办法和例子陈天权数学分析讲义3卷陈老师据说是当年北大的大才子,毕业后去了##大学,我上大学的那年他已经去了清华,没有听过他的课.被大家称为国内唯一可与v.a.zorich,数学分析比肩的分析教材高等代数--线性代数-空间解析几何-近世代数-数论postnikov 解析几何学与线性代数<第一学期>postnikov 解析几何学与线性代数<第二学期>作者水平应该很高,反正他的学生s.p.novikov是很有名气,他也研究拓扑.书写的绝对好.这套书还有一些分册,但只能找到俄语版.解析几何可以说很重要,但学起来又觉的没什么内容.学会第一本应该就可以了.第二本是线性代数和部分初等微分几何,内容讲的很清晰.a.i.kostrikin,代数学引论<共三卷>这三卷都值得一读,尤其是第二,三卷,作者毕竟是前苏联通讯院士.他是纯粹的俄罗斯学派的传人,其祖上是俄本土数学大家chebevshev.s的学生,这个沙老师作为苏联人,居然有点反对十月革命,结果被学校停了职,也不知道解体后的情况怎么样,水平是很高.克老师这么优秀的人物,可惜没有培养学生.书很好,但学起来不容易,有些抽象,其实这已经是作者的简化版了.m.artin 代数s.lang 线性代数导论很害羞的法国人,不过这个色狼很能写书,把他写的书都学会了,也成了大半个全能数学家了.把这两位放一块是因为他们有关系,色狼是m.artin 的父亲e.artin 的学生,m是以严厉著称的代数几何学家扎老师的学生,据说在扎老师那学习很难毕业,不过他的学生可真是争气.e.artin 是哥学派的,据说他的文章不多,才50多篇,但每篇都是精品.第一本是非常优秀的本科教材,美国几个名校都用.作者是地道的代数几何学家,但教材里看不出作者的倾向,是所有教师的榜样,就是要敢于讲授自己不从事的领域的内容.s.lang是出色的数学家,优秀的教师,它的这本书曾经很畅销n.jacobson lectures on abstract algebra〔三卷〕是个犹太人,代数方面的权威,但被pontryagin贬的一塌糊涂,本来是国际数学联盟主席的候选,但被庞瞎子抵制下去了. 上面俄罗斯人写了三卷,美国人也写这么多,可见代数的重要.作为教科书其实不太适合,有点太代数了.但参考是可以的rotman 高等近世代数作者写过好几本代数方面的著作,要追究其师源,居然是物理学大家maxwell,当然他也是伟大的数学家.rotman所有的书都有个最大的优点,就是介绍名词的来历.学了它应该会对数学有更深刻的认识.hardy g.h., wright e.m. an introduction to the theory of numbers〔中文〕 hardy的大名在数学界应该很响,看起来挺帅的一个英国人,但他老自己觉的自己丑.wrigh是他的学生.很优秀的数论教材华罗庚数论导引华老师是个天才,包括学识和领导才能.这本书的选材不错,比较适合作为教材serre j.-p a course in arithmetic布学派第二代的领袖,研究范围很广,荣誉得了一大堆.有名的数学大奖他都拿了.作为法国数学的代表人物,和阿老师有争论.最大的特点就是薄,内容还不少,难怪他老获奖.atiyah m., macdonald i.g. introduction to mutative algebra20世纪后半叶英国数学的代表,不但自己出色,其学生也很优秀.第二作者这个麦当劳就是他的学生,也在国际数学家大会上做过报告大久保进群论引论这个作者不熟悉,但日本人写的东西还是不错的,很干脆,解释的不错.看来一定是自己学的时候用了不少功夫klingenberg 线性代数与几何老柏林学派的传人,现在很难见到德国的教科书了,或许是因为德国的数学稍有没落吧.我们国内也有许多工科开设的线性代数课程也叫这个名字,但我们的所谓几何太不象几何了.强烈希望所有学数学的学生学点真的几何a.j.khinchin 连分数莫斯科学派第二代中的优秀数学家写了许多部优秀的著作,这一本更以其精致透彻而受到大家的青睐[篇三:南京大学运筹学与控制论考研考试科目]思想政治理论②201 英语一③627 数学分析④801 高等代数2106 近世代数;2110 概率论;2111 计算方法参考书目:《数学分析》梅加强著,高等教育.《高等代数》丘维声编,科学.参考资料:《南京大学801高等代数考研专业课复习全书》聚英南大〔含真题与答案解析〕《2017南京大学801高等代数考研专业课历年真题与答案解析》《2017南京大学627数学分析考研专业课历年真题与答案解析》。

数学教材推荐

数学教材推荐
11《数值分析》李庆扬,王能超,易大义
似乎是不错的选择,应用数学专业好像都是用这本。
12《数值分析基础》李庆扬,王能超,易大义
13《数值逼近》蒋尔雄,赵风光
14《微分方程数值解法》余德浩,汤华中
15《微分方程数值解法》李立康,於崇华,朱政华
看一个学校的计算数学是真的计算数学还是所谓的信息与计算,只要看一下上不上微分方程数值解就行了。
1《近世代数引论》冯克勤
2《近世代数》熊全淹
3《代数学》莫宗坚
4《代数学引论》聂灵沼
5《近世代数》盛德成
常微分方程
1《常微分方程教程》丁同仁、李承治,高等教育出版社
公认的国内写的最好的教材。
2《常微分方程》王高雄等
使用相当广泛的教材。初学建议从1,2中选
3《常微分方程》V.I.Arnold
解析几何
解析几何有被代数吃掉的趋势,不过就数学系的学生而言,还是应该好好学一下,我大一没有好好学,后来学别的课时总感觉哪里有些不太对劲,后来才发现是自己的数学功底尤其是几何得功底没有打好。
1吴光磊《解析几何简明教程》高等教育出版社
写的简单明了,我基础没有打好,快速翻了一下这本书收获还是不少的。不过打基础的时候还是从下面三本选一本看,把这本当参考书。
11《高等代数习题集》杨子胥著
相对8,9很容易买到,很多人用来做考研的参考书,而且符合所谓的教学或考研大纲。
12《线性代数》蒋尔雄,高锟敏,吴景琨著
名为线性代数,实际上是一本高等代数教材。是一本非常老的为当时计算数学专业编写的书。市面上根本找不到,但各大学的藏书中肯定会有。
近世代数
不光是数学系最重要的几门课,而且在计算机方面有很多应用,通常的离散数学第二部分就是近世代数内容,也叫抽象代数。

代数学范德瓦尔登读后感

代数学范德瓦尔登读后感

代数学范德瓦尔登读后感本书是一部代数的历史,写给好奇的非数学专业人士。

作为这样一本书的作者,我似乎应该在开头告诉读者什么是代数。

那么,什么是代数呢?我最近逛了一家机场书店,发现那里摆放着高中生和大学生常用的公式表小折子,在折叠成三联的塑封纸上印有某个数学主题的所有基础知识,其中有两部分是关于代数的,标题分别是“代数——第1部分”和“代数——第2部分”,副标题说明这两部分“涵盖了小学、中学和大学课程中的数学原理”。

[1]我浏览了这些内容。

有些主题在数学专业人士看来并不属于代数。

比如,“函数”“数列和级数”应该属于数学家们所说的“分析”。

不过,总的来说,这两部分概括了基础代数的主要内容,还明确地给出了现行美国高中和大学基础课程中“代数”一词的常见定义:代数是高等数学中有别于微积分的一部分。

然而,在高等数学中,代数作为一门独立的学科有其鲜明的特点。

20世纪伟大的德国数学家赫尔曼·外尔(1885—1955)曾在1939年发表的一篇文章中留下一句名言:最近,拓扑学天使和抽象代数恶魔正在为争取各个数学领域的数学家的灵魂而决斗。

[2]读者或许知道拓扑学是几何学的一个分支,它有时也被称为“橡皮几何学”,研究的是图形在拉伸、挤压但不撕裂的情况下保持不变的性质。

(对此不了解的读者可以先阅读第14章中关于拓扑学的详尽介绍。

关于外尔的更多评论也可参考第14章。

)拓扑学告诉我们平环与纽结之间的差异、球面与甜甜圈表面之间的差异。

为什么外尔要把无害的几何研究与代数严格对立起来呢?或者,你可以看看第15章开头给出的那份获奖名单,其中列出了近年来科尔代数奖(Frank Nelson Cole Prize in Algebra)的获奖情况。

非分歧类域论、雅可比簇、函数域、原相上同调[3]……显然,我们已经远离二次方程和绘图了。

它们的共同点是什么呢?最简洁的答案就隐含在外尔的名言中:抽象。

当然,所有数学都是抽象的。

最早的数学抽象发生在几千年前,当时人类发现了数,完成了从3根手指、3头牛、3个兄弟、3颗星星等可观察的3的实例向本身就可以被单独考虑的心智对象“3”的充满想象的飞跃,这里的“3”不再表示3根手指之类的特殊实例。

俄罗斯数学教材选译系列书目

俄罗斯数学教材选译系列书目

俄罗斯数学教材选译系列出版社: 高等教育出版社册数:38简介:从上世纪50年代初起,在当时全面学习苏联的大背景下,国内的高等学校大量采用了翻译过来的苏联数学教材,这些教材体系严密,论证严谨,有效地帮助了青年学子打好扎实的数学基础,培养了一大批优秀的数学人才,到了60年代,国内开始编纂出版的大学数学教材逐步代替了原先采用的苏联教材,但还在很大程度上保留着苏联教材的影响,同时,一些苏联教材仍被广大教师和学生作为主要参考书或课外读物继续发挥着作用,客观地说,从解放初一直到文化大革命前夕,苏联数学教材在培养我国高级专门人才中发挥了重要的作用,起了不可忽略的影响,是功不可没的。

改革开放以来,通过接触并引进在体系及风格上各有特色的欧美数学教材,大家眼界为之一新,并得到了很大的启发和教益,但在很长一段时间中,尽管苏联的数学教学也在进行积极的探索与改革,引进却基本中断,更没有及时地进行跟踪,能看懂俄文数学教材原著的人也越来越少,事实上已造成了很大的隔膜,不能不说是一个很大的缺憾。

事情终于出现了一个转折的契机,今年初,在由中国数学会、中国工业与应用数学学会及国家自然科学基金委员会数学天元基金联合组织的迎春茶话会上,有数学家提出,莫斯科大学为庆祝成立250周年计划推出一批优秀教材,建议将其中的一些数学教材组织翻译出版,这一建议在会上得到广泛支持,并得到高等教育出版社的高度重视,会后高等教育出版社和数学天元基金一起邀请熟悉俄罗斯数学教材情况的专家座谈讨论,大家一致认为:在当前着力引进俄罗斯的数学教材,有助于扩大视野,开拓思路,对提高数学教学质量、促进数学教材改革均十分必要,《俄罗斯数学教材选译》系列正是在这样的情况下,经数学天元基金资助,由高等教育出版社组织出版的微积分学教程(第1卷)作者: F.M.菲赫金哥尔茨译者:出版社: 高等教育出版年: 2006-1本书是一部卓越的数学科学与教育著作。

自第一版问世50多年来,本书多次再版,至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一,并被翻译成多种文字。

代数学引论

代数学引论

代数学引论一、代数与空间;三维空间是不存在的,只有二维空间。

从狭义的角度上来说,代数指的是使用抽象方法解决问题的方式,所谓抽象就是将大量现实的数学对象和物理规律用“空”来取代,从而形成一套纯粹的数学语言。

从广义的角度上来讲,代数还包括证明、计算、研究推导等等内容。

例如,给定一个三元组X, A、 B和C,可以构造X的一个具体例子------无穷多个点都满足这样的条件: a∈A、 b∈B、 c∈C。

我们称A、 B、 C为该三元组的“变量”,当A、 B、 C都用变量表示出来时,就构成了一个三元组。

通过这种方式可以构造出无穷多个三元组。

将这些三元组按照一定的顺序排列起来,得到的就是三维空间。

另外,任何可视化的三维空间都是由一系列二维平面组成的。

二、代数学与分析;与“代数学”密切相关的另一个重要概念是“分析”。

在微积分中,代数问题是和函数以及其导数联系在一起的,一般的代数结构(比如二次型)被用来解决非常困难的分析问题,这个领域我们称之为“分析”。

由于自然界本身的复杂性,有些问题很难求得精确解答,这时候必须利用代数方法,因此这些方法也属于分析学的范畴。

1。

二项式定理。

这是说,当n为质数时,二项式定理(Duquetin theorem)指出,当n的某一次幂为2或者根号n时,即: 2的平方+ 1的平方+根号n的平方= n的平方。

2。

一元二次方程。

对于二次函数f(x),存在常数c(k)使得:f(0)=f(c(2k))。

这个称作一元二次方程。

当c(k)是常数时, f(x)=0,它与二次函数相同,但一般地它更接近一次函数。

3。

二元一次方程。

在线性代数中,二元一次方程指的是两个一次式y=ax+b( a、 b都为整数),当x=0时,可写成: y=bx+b,那么就称y为x的一次式。

但事实上,若a=1,则y就不是一次式,而是二次式了。

注意:“ a=1”并不保证“ b=1”,“ b=1”也不一定保证“ a=1”。

那么这类方程的集合是: a=1, b=1, y=1,且xy为二次式的方程,就叫做二元一次方程组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

俄罗斯教材《代数学引论》的启迪(初稿)庄瓦金(漳州师范学院,福建,363000)二十年前,北京大学三位教授根据1982年斯普林格出版社的英文版翻译了莫斯科大学A.И.柯斯特利金院士的《代数学引论》[1,2],使得国内同行们对俄罗斯高水平的代数教材有所认识。

但鉴于中国国情,至今还没看到该书对中国大学本科代数教学有实质的影响。

而今,在中国数学会、中国工业与应用数学学会、国家自然科学基金委员会的关注下,数学天元基金资助、高等教育出版社出版了庆祝莫斯科大学成立250周年而推出的一批优秀数学教材的中译本,其中有A.И.柯斯特利金的《代数学引论》(第二、三版)三卷本[3~5](以下简称《引论》)。

笔者看后,很受启发,现根据这几年来对高等代数研究的基础[17~23],对《引论》作些思索,为提升中国大学本科代数教学水平奉献余力。

一《引论》的特色稍读[3~5],笔者认为,A.И.柯斯特利金之著有以下四大特色。

1 继承性[1]的英文版译者指出:A.И.柯斯特利金“发展了莫斯科大学的代数课”,这从《引论》著者经历就可以看出。

A.И.柯斯特利金1959年获莫斯科大学数理科学博士学位,1972年任莫斯科大学高等代数教研室主任,1976年升为教授,同年当选为苏联科学院通讯院士,1977-1980任莫斯科大学数学系主任,1991年起为莫斯科大学学术委员会成员,他的《引论》理所当然地继承了А.Г.库洛什等老一辈代数学家的代数教材,这还从[3~5]的补充文献也得到进一步证实。

在注意《引论》继承自己前辈工作之时,我们注意到《引论》三卷本与N.Jacobson的《抽象代数学》三卷本[6]在分卷上的相似性,这也多少说明[3~5]继承了国际上代数教材的遗产,使得这三卷本能够更好地贯串一条主线。

因此,《引论》的继承性不仅是莫斯科大学的,而且也包涵了全世界各著名大学的。

值得一提的是,[3~5]的俄文版,第二卷2004年出版,第三卷2001年出版,估计第一卷也是2001年出版,也就是说:这三卷本是在著者去世之后出版的。

记得Φ.Ρ.甘特马赫尔的《矩阵论》俄文第二版也是在著者去世后出版的。

看来,这里说的继承性是莫斯科学派集体继承性,这是多么伟大的继承性,它体现了俄罗斯数学家的优良品格。

2 整体性《引论》的特色不仅在于教材的系统性,更在于教材的整体性。

首先是代数科学的整体性,中国的高等代数与抽象代数两门课程,在[3~5]中则整合为一,使整个代数教材的水平提高了一个层次,让学生尽早接触抽象代数思想,推进了学生对代数结构的理解。

这显然对于学生的整个数学学习大有好处。

其次是数学课程的整体性,《引论》第一卷的前言一开头就写到:“人们很早就感到有必要把代数、线性代数和几何放到一个统一的教程中。

而教科书《代数学引论》自出版后的22年来可以看作是这种统一处理的初步考试。

”因此,《引论》突出了代数与几何的统一;同时也注意了与分析的联系,特别是注意到了线性代数的两大后继课程:计算数学与泛函分析,这不仅在教材中有交代,而且在基本术语上相一致,如“线性变换”称为“线性算子”。

再次是数学语言的整体性,在[1]中,著者就注意了范畴论,在[4]中注意了范畴中的“态射”,这或许影响了丘维声在[7]中前言的用词。

3 权威性《引论》的第一版译成英文,所加的译者序就显示其权威性,译者称A.И.柯斯特处金是“一位有献身精神且有成就的”,从[3~5]的著者简介:“主要从事李代数、有限群、非结合代数、上同调群、群和代数的组合理论、表示论、整数格的研究。

1968年获苏联国家奖。

”可见,柯斯特利金几乎涉及整个代数深刻领域的研究,从而保证了他作为莫斯科大学代数学科带头人的权威性,也保证了《引论》的权威性。

这种权威除了著者的实力外,还有著者长达三十年的实践,还有著者继承莫斯科大学250年的传统。

因此,这种权威是世界的,因而《引论》已译成英文、保加利亚文、西班牙文、波兰文、法文、中文。

作为大学本科教材,没有这种权威性,是不可能有如此多种译本的。

4 先进性《引论》第一卷的前言中,对第三卷有个说明:这里的代数属初等水平,但充分包含了当代每个数学家所需的代数系统。

因此可以猜想:《引论》是以培养数学家为目标的。

这在以后的各卷中都有明确的表露。

在第一卷的第一章“代数的起源”中,在对高斯消元法作注时,提及了1969年的施特拉辛的研究,为第二卷的待解问题:施特拉辛问题作了伏笔。

第一章§7的例1是费马猜想,点出了费马数的最新成果F 1945;例2是欧拉研究的一个多项式:形如n 2-n +41 的数;§7的最后的例子是“给定圆周上任意n 个点,确定由⎪⎪⎭⎫⎝⎛2n 条弦划分的圆内的区域数R n =1+⎪⎪⎭⎫ ⎝⎛2n +⎪⎪⎭⎫⎝⎛4n ,则留给读者完成。

由此可见,《引论》在阐述代数起源时就把人们带进了解决数学难题的王国,为贯彻培养数学家的宗旨打下基础。

再看《引论》各卷之末,第一卷是“关于多项式的公开问题”,第二卷是“有待解决的问题”,第三卷是“未解决的问题”,都充分体现了《引论》培养数学家的宗旨。

当然,《引论》没有直接这么说,但在序言中明确写到:“教科书应当成为创造性思维的推动力”。

著者就是围绕某些基本问题刻意安排大量习题,并与这些猜想相串通,以培养学生的创造性思维,为未来的数学家增进数学素质的。

再加上教材内容之深刻,将之综合,充分地体现了《引论》的先进性,与欧美教材相比较,这种先进性也是世界的。

二 中国的矛盾为了从《引论》中吸收营养,这里不得不面对我们之现实。

1 文革冲击中国的大学本科代数课程,文化大革命以前主要是高等代数,近世代数在一般高校仅选修张禾瑞著的《近世代数基础》;五十年代高代讲的是A.Γ.库洛什《高等代数教程》的内容;五、六十年代之交以来,由于苏联第一颗人造地球卫星上天的影响[8,9],吉林大学、北京大学、复旦大学、南京大学、武汉大学、北京师大都编著出版了高代教材,中国的高等代数教材基本上与国际接轨,尤其是王湘浩、谢邦杰两先生的《高等代数》,应该说已达到较高水平,特别是1964年的修订本[10],与A.И.柯斯特利金的三卷本的前两卷,存在着一定相似性。

[10]有阐述群、环、域概念的第七章,因而接下阐述了域上向量空间及其线性变换的一般理论。

为了使书中前面阐述的矩阵、多项式内容对于域上情形也适用,[10]还在第七章§4介绍域的特征之后用两页的篇幅回顾了“关于矩阵、行列式、线性方程组以及多项式的一般理论”,这与[3]第四章§3.6的“关于线性方程组的注记”是多么的吻合。

我们设想,中国的《高等代数》教材如果能在20世纪六十年代[10]的基础上巩固、发展,或许其水平也可剂身于世界之列。

但是,1966年的文化大革命,高等学校受到严重冲击,抽象的数学更是受到了严重冲击,《高等代数》几乎处于消失状态。

不仅如此,文革还制造了数学家之间的隔核,大大削弱了集体攻关的力量。

1977年恢复高考以来,《高等代数》才从死亡中复活,元气至今难以复原。

2 市场冲击“学好数理化,走遍天下都不怕”,这是文化大革命以前人们的口头语,可时下,在市场经济的冲击下,已消失得无影无踪,每年大学招生,不仅高考状元无一人学习数业专业,而且连数学奥赛的优胜者也基本不念数学专业,新生质量较文革前大为下降,而且女生人数的比例在逐年增加。

市场经济的冲击还远不止于此。

如教材、教学参考书,我们统计了1977以来出版的46种带上高等代数帽子的各种图书,习题解答类竞多达一半,而教科书性质者,大多类同,较高水平又方便学生学习的是很少很少。

因此,学生基本上停滞在单一的教材上苦学,难以提高自身的学习能力。

更不少学生成了习题解答的奴隶,这样一门着力培养学生创造思维能力的课程竞有不少学生在背习题解答、应付考试,年复一年的这样高师数学毕业生到中学任教,请大家想想,这对于中国后代的数学教育有多么大的危害?!有个名牌大学教授,在国内著名出版社出了一套高代教材,还被评为国家级名师。

后来由于年龄原因,他不上高代课了,这套教材在该校也不用了,其他学校充其量是作作教学参考书,于是,他在另一个出版社出的学习指导书,上册已出版多年,可下册市面上还没看到,看来这位教授感到,这么好的教材人家都不用了,学习指导书还有什么出版的价值!市场的冲击还稳函着人为的因素。

一个小学老师去教经商,开了一家学生书店,专营中小学教参,可现在挂上××出版社华南片主管,工资、福利、医保比我们在座的每个教授还优,可他还有书店的收入!中国式的市场经济已严重冲击大学教学,抽象的高等代数又如何是好?3 体制之疑上面例子已涉及大学体制。

熊丙奇先生在《教育熊视》[11]中有个标题:“大学最深刻的危机:体制化”,“官”太让人无可奈何!:有个代数教授,他的老师好不容易争取到一个出国名额,使他有机会跟一位国际代数名家读硕、读博、做博士后,回国后不久就评上教授,学校对他也十分关照,但中国的气候毕竟与欧美有异,他深知,要在国内为先,在国内一级刊物发文是自然之事,可他投这些一级刊的文章老是被退回,因此就查起审稿人的为人来了,但得到的答复是中国代数老前辈们为人极佳。

于是,随着时间的流失,他想当“院士”的雄心消失了,因而寻找机会,利用民主党派参政人才之缺,离开学校去当个副厅长,这种还算真才实学者的当官之路,钻体制的漏洞,一步步走上大学领导,利用手中的权力打扮自己,为数也不少,且党内居多,而且反转过来,欺压你这些教授,你们又怎么样?!这种现状怎不引起人们的关注!中国实施经济改革,可教育不然。

教育是在教育部的主导下进行的改革,体制问题左右一切,例如教材,鼓励老师积极性,可本科评估,教材认定的是姓“高”,像北大代数小组的《高等代数》,编著者都不好意思,第三版时加了“王萼芳、石生明修订”,可人们只认是高等教育出版社出版,不管北京大学的现实情况如何,不少学校仍然把它认定为首选教材,考研用书!在这样的体制下,丘维声退位,蓝以中日子也有担忧。

前几天,蓝先生通过北大出版社理学部主任给我寄来了他的新著《高等代数学习指南》[12],这是一本编著目的正确、阐述简洁、方便学习阅读并达到一定深广度的学习指导书,加上国家首批精品课程、北京大学的牌子,可在当今体制下,对市场、消路还是有担心。

4 环境混沌上述表明,在当今体制下,环境受污染,已处于混沌。

这类混沌的深广度如何?我们不仿来看看教育部抓的质量工程吧!此下,四年一次的“教学成果奖”评选,每年评定的“教学名师”、“精品课程”、“教学团队”,花样不少,名堂也应有尽有!我还当省政协委员时,针对其中的“名堂”曾写了个提案,教育厅可热情啊,连处长都来电话,以示重视。

其中,关键的建议是各种评优应有“答辩”环节,厅里也同意了,可至今未见实施。

相关文档
最新文档