课堂小测试(2.2.1椭圆及其标准方程)
高中数学 2.2.1 椭圆的标准方程课后知能检测 新人教B版选修21

【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2.1 椭圆的标准方程课后知能检测 新人教B 版选修2-1一、选择题1.若方程x 2m 2+y 2m +6=1表示焦点在x 轴上的椭圆,则实数m 的取值范围是 ( )A .m >3B .m <-2C .m >3或m <-2D .m >3或-6<m <-2【解析】 ∵椭圆的焦点在x 轴上,∴⎩⎪⎨⎪⎧ m 2>m +6m +6>0,∴m >3或-6<m <-2.【答案】 D2.(2013·菏泽高二测试)已知椭圆过点P (35,-4)和点Q (-45,3),则此椭圆的标准方程是( )A.y 225+x 2=1 B.x 225+y 2=1或x 2+y 225=1 C.x 225+y 2=1 D .以上都不对【解析】 设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),则⎩⎪⎨⎪⎧ 925m +16n =1,1625m +9n =1,∴⎩⎪⎨⎪⎧ m =1,n =125. ∴椭圆方程为x 2+y 225=1. 【答案】 A3.(2013·西安高二检测)椭圆x 225+y 29=1上的点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |(O 为坐标原点)的值为( )A .4B .2C .8 D.32【解析】 由x 225+y 29=1,知a =5, 根据椭圆定义,|MF 1|+|MF 2|=2a =10,∴|MF 2|=10-2=8.又O 为F 1F 2中点,N 为F 1M 中点,∴ON 为△MF 1F 2的中位线,所以|ON |=12|MF 2|=4. 【答案】 A4.已知A (0,-1)、B (0,1)两点,△ABC 的周长为6,则△ABC 的顶点C 的轨迹方程是( )A.x 24+y 23=1(x ≠±2) B.y 24+x 23=1(y ≠±2) C.x 24+y 23=1(x ≠0) D.y 24+x 23=1(y ≠0) 【解析】 ∵2c =|AB |=2,∴c =1,∴|CA |+|CB |=6-2=4=2a ,∴顶点C 的轨迹是以A 、B 为焦点的椭圆(A 、B 、C 不共线).因此,顶点C 的轨迹方程y 24+x 23=1(y ≠±2). 【答案】 B5.(2013·吉林松原高二期末)已知椭圆x 24+y 2=1的焦点为F 1、F 2,点M 在该椭圆上,且MF 1→·MF 2→=0,则点M 到x 轴的距离为( ) A.233B.263C.33D. 3【解析】 由MF 1→·MF 2→=0,得MF 1⊥MF 2,可设|MF 1→|=m ,|MF 2→|=n ,在△F 1MF 2中,由m2+n 2=4c 2得(m +n )2-2mn =4c 2,根据椭圆的定义有m +n =2a ,所以2mn =4a 2-4c 2,∴mn =2b 2,即mn =2,∴S △F 1MF 2=12mn =1.设点M 到x 轴的距离为h ,则: 12×|F 1F 2|×h =1,又|F 1F 2|=23,∴h =33. 【答案】 C二、填空题6.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点,若|F 2A |+|F 2B |=12,则|AB |=________.【解析】 由椭圆的定义知:|F 2A |+|F 1A |+|F 2B |+|F 1B |=4a =20,∴|F 1A |+|F 1B |=|AB |=20-12=8.【答案】 8 7.椭圆x 2m +y 24=1的焦距是2,则m =________. 【解析】 当焦点在x 轴时,a 2=m ,b 2=4,c 2=m -4,又2c =2,∴c =1,∴m -4=1,∴m =5;当焦点在y 轴上时,a 2=4,b 2=m ,∴c 2=4-m =1,∴m =3.【答案】 3或58.过点(-3,2)且与x 29+y 24=1有相同焦点的椭圆的方程是________. 【解析】 ∵c 2=9-4=5, ∴设椭圆的方程为x 2a 2+y 2a 2-5=1. ∵点(-3,2)在椭圆上,∴9a 2+4a 2-5=1,a 2=15. ∴所求椭圆的方程为x 215+y 210=1. 【答案】 x 215+y 210=1 三、解答题9.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点.设椭圆C 上一点(3,32)到两焦点F 1,F 2的距离和等于4,写出椭圆C 的方程和焦点坐标.【解】 ∵椭圆上一点到两焦点的距离之和为4.∴2a =4,a 2=4.∵点(3,32)是椭圆上一点, ∴32a 2+322b 2=1,∴b 2=3,∴c 2=1, ∴椭圆C 的方程为:x 24+y 23=1.焦点坐标分别为(-1,0),(1,0).10.已知圆B :(x +1)2+y 2=16及点A (1,0),C 为圆B 上任意一点,求AC 的垂直平分线l 与线段CB 的交点P 的轨迹方程.【解】 如图所示,连结AP ,∵l 垂直平分AC ,∴|AP |=|CP |,∴|PB |+|PA |=|BP |+|PC |=4,∴P 点的轨迹是以A 、B 为焦点的椭圆.∵2a =4,2c =|AB |=2,∴a =2,c =1,b 2=a 2-c 2=3.∴点P 的轨迹方程为x 24+y 23=1. 11.已知椭圆的焦点在x 轴上,且焦距为4,P 为椭圆上一点,且|F 1F 2|是|PF 1|和|PF 2|的等差中项.(1)求椭圆的方程;(2)若△PF 1F 2的面积为23,求P 点坐标.【解】 (1)由题意知,2c =4,c =2.且|PF 1|+|PF 2|=2|F 1F 2|=8,即2a =8,∴a =4.∴b 2=a 2-c 2=16-4=12.又椭圆的焦点在x 轴上,∴椭圆的方程为x 216+y 212=1. (2)设P 点坐标为(x 0,y 0),依题意知,12|F 1F 2||y 0|=23, ∴|y 0|=3,y 0=±3,代入椭圆方程x 2016+y 2012=1,得x 0=±23, ∴P 点坐标为(23,3)或(23,-3)或(-23,3)或(-23,-3).。
高中数学 专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1(2021年整理)

高中数学专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1的全部内容。
椭圆及其方程(时间:25分,满分55分)班级姓名得分一、选择题1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是( ) A.椭圆B.直线C.圆D.线段[答案] D2.中心在原点,焦点在坐标轴上,且过两点(4,0)、(0,2)的椭圆方程为() A.错误!+错误!=1 B。
错误!+错误!=1C。
错误!+错误!=1 D。
错误!+错误!=1[答案]D[解析]解法一:验证排除:将点(4,0)代入验证可排除A、B、C,故选D.解法二:设椭圆方程为mx2+ny2=1(m〉0,n>0),∴错误!,∴错误!,故选D。
3.椭圆ax2+by2+ab=0(a〈b〈0)的焦点坐标是()A.(±错误!,0)B.(±错误!,0)C.(0,±错误!)D.(0,±错误!)[答案]D[解析] ax2+by2+ab=0可化为错误!+错误!=1,∵a〈b〈0,∴-a>-b>0,∴焦点在y轴上,c=-a+b=错误!,∴焦点坐标为(0,±错误!).4.“1<m〈2”是“方程错误!+错误!=1表示的曲线是焦点在y轴上的椭圆”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[答案]C[解析] 方程错误!+错误!=1表示的曲线是焦点在y轴上的椭圆,∴错误!,∴1<m<2,故选C。
选修2-1 2.2.1椭圆及其标准方程

实用文档 选修2-1 2.2.1椭圆及其标准方程一、选择题1、设F 1、F 2是椭圆x 216+y 212=1的两个焦点,P 是椭圆上一点,且P 到两个焦点的距离之差为2,则△PF 1F 2是( )A .钝角三角形B .锐角三角形C .斜三角形D .直角三角形2、若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点⎝ ⎛⎭⎪⎫52,-32,则该椭圆的方程是() A .y 28+x 24=1 B .y 210+x 26=1C .y 24+x 28=1D .y 26+x 210=13、方程x 2|a|-1+y 2a +3=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .(-3,-1)B .(-3,-2)C .(1,+∞)D .(-3,1)实用文档4、椭圆2x 2+3y 2=1的焦点坐标是( )A .⎝ ⎛⎭⎪⎪⎫0,±66B .(0,±1)C .(±1,0)D .⎝ ⎛⎭⎪⎪⎫±66,05、椭圆x 216+y 27=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( ) A .32 B .16 C .8 D .46、设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( ) A .椭圆 B .直线C .圆D .线段二、填空题7、“神舟六号”载人航天飞船的运行轨道是以地球中心为一个焦点的椭圆,设其近地点距地面n 千米,远地点距地面m 千米,地球半径为R ,那么这个椭圆的焦距为________千米.实用文档8、P 是椭圆x 24+y 23=1上的点,F 1和F 2是该椭圆的焦点,则k =|PF 1|·|PF 2|的最大值是______,最小值是______.9、椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.三、解答题10、如图△ABC 中底边BC =12,其它两边AB 和AC 上中线的和为30,求此三角形重心G 的轨迹方程,并求顶点A 的轨迹方程.11、已知点A(0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M实用文档上,且|PM|=|PA|,求动点P 的轨迹方程.12、根据下列条件,求椭圆的标准方程.(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P 到两焦点的距离之和等于10;(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点⎝ ⎛⎭⎪⎫-32,52.以下是答案一、选择题1、D [由椭圆的定义,知|PF 1|+|PF 2|=2a =8.由题可得||PF 1|-|PF 2||=2,则|PF 1|=5或3,|PF 2|=3或5.实用文档又|F 1F 2|=2c =4,∴△PF 1F 2为直角三角形.]2、D [椭圆的焦点在x 轴上,排除A 、B ,又过点⎝ ⎛⎭⎪⎫52,-32验证即可.]3、B [|a |-1>a +3>0.]4、D5、B [由椭圆方程知2a =8,由椭圆的定义知|AF 1|+|AF 2|=2a =8,|BF 1|+|BF 2|=2a =8,所以△ABF 2的周长为16.]6、D [∵|MF 1|+|MF 2|=6=|F 1F 2|,∴动点M 的轨迹是线段.]二、填空题7、m -n解析 设a ,c 分别是椭圆的长半轴长和半焦距,实用文档则⎩⎪⎨⎪⎧ a +c =m +R a -c =n +R ,则2c =m -n .8、4 3解析 设|PF 1|=x ,则k =x (2a -x ),因a -c ≤|PF 1|≤a +c ,即1≤x ≤3.∴k =-x 2+2ax =-x 2+4x =-(x -2)2+4,∴k max =4,k min =3.9、2 120°解析∵|PF 1|+|PF 2|=2a =6, ∴|PF 2|=6-|PF 1|=2.在△F 1PF 2中,cos ∠F 1PF 2=实用文档 |PF1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=16+4-282×4×2=-12,∴∠F 1PF 2=120°.三、解答题10、解 以BC 边所在直线为x 轴,BC 边中点为原点,建立如图所示坐标系, 则B (6,0),C (-6,0),CE 、BD 为AB 、AC 边上的中线,则|BD |+|CE |=30.由重心性质可知|GB |+|GC |=23(|BD |+|CE |)=20. ∵B 、C 是两个定点,G 点到B 、C 距离和等于定值20,且20>12, ∴G 点的轨迹是椭圆,B 、C 是椭圆焦点.∴2c =|BC |=12,c =6,2a =20,a =10,b 2=a 2-c 2=102-62=64,实用文档去掉(10,0)、(-10,0)两点.又设G (x ′,y ′),A (x ,y ),则有x ′2100+y ′264=1. 由重心坐标公式知⎩⎪⎨⎪⎧ x ′=x 3,y ′=y 3. 故A 点轨迹方程为(x 3)2100+(y 3)264=1. 即x 2900+y 2576=1,去掉(-30,0)、(30,0)两点.11、解 ∵|PM |=|PA |,|PM |+|PO 1|=4, ∴|PO 1|+|PA |=4,又∵|O 1A |=23<4, ∴点P 的轨迹是以A 、O 1为焦点的椭圆, ∴c =3,a =2,b =1,实用文档12、解 (1)∵椭圆的焦点在x 轴上, ∴设椭圆的标准方程为x 2a 2+y 2b 2=1 (a >b >0). ∵2a =10,∴a =5,又∵c =4. ∴b 2=a 2-c 2=52-42=9.故所求椭圆的标准方程为x 225+y 29=1. (2)∵椭圆的焦点在y 轴上, ∴设椭圆的标准方程为y 2a 2+x 2b 2=1 (a >b >0). 由椭圆的定义知,2a = ⎝ ⎛⎭⎪⎫-322+⎝ ⎛⎭⎪⎫52+22+ ⎝ ⎛⎭⎪⎫-322+⎝ ⎛⎭⎪⎫52-22=3102+102=210, ∴a =10. 又∵c =2,∴b 2=a 2-c 2=10-4=6.故所求椭圆的标准方程为y210+x26=1.实用文档。
课时作业10:2.2.1 椭圆及其标准方程(二)

2.2.1 椭圆及其标准方程(二)一、基础过关1.设F 1,F 2为定点,|F 1F 2|=10,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是( )A .椭圆B .不存在C .圆D .线段 答案 B解析 由于动点M 到两定点的距离之和等于8且小于|F 1F 2|,所以动点M 的轨迹不存在.2.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( ) A .4 B .5 C .8 D .10答案 D解析 由椭圆的标准方程得a 2=25,a =5.由椭圆的定义知|PF 1|+|PF 2|=2a =10.3.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于( ) A.32B. 3C.72D .4答案 C解析 不妨设F 1的坐标为(3,0),P 点坐标为(x 0,y 0),∵PF 1与x 轴垂直,∴x 0= 3.把x 0=3代入椭圆方程x 24+y 2=1,得y 20=14, ∴|PF 1|=12,∴|PF 2|=4-|PF 1|=72. 4.已知椭圆x 2a 2+y 2b2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .线段D .直线答案 B解析 由题意知|PO |=12|MF 2|,|PF 1|=12|MF 1|, 又|MF 1|+|MF 2|=2a ,所以|PO |+|PF 1|=a >|F 1O |=c ,故由椭圆的定义知P 点的轨迹是椭圆.5.曲线x 225+y 29=1与x 29-k +y 225-k=1 (0<k <9)的关系是( ) A .有相等的焦距,相同的焦点B .有相等的焦距,不同的焦点C .有不相等的焦距,不同的焦点D .以上都不对答案 B解析 对于方程x 225+y 29=1,其焦点在x 轴上,且c =4.对于方程x 29-k +y 225-k=1, ∵0<k <9,∴0<9-k <9,16<25-k <25.∴25-k >9-k ,且25-k -(9-k )=16.由此可知,方程x 29-k +y 225-k=1的焦点在y 轴上,且c =4. 故曲线x 225+y 29=1与x 29-k +y 225-k=1有相等的焦距,不同的焦点. 6.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .双曲线的一支D .抛物线答案 A解析 如图,依题意:|PF 1|+|PF 2|=2a (a >0是常数).又∵|PQ |=|PF 2|,∴|PF 1|+|PQ |=2a ,即|QF 1|=2a .∴动点Q 的轨迹是以F 1为圆心,2a 为半径的圆,故选A.7.已知A (-12,0),B 是圆F :(x -12)2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,求动点P 的轨迹方程.解 利用中垂线的性质,我们知道|P A |=|PB |,|PB |+|PF |=2,∴|P A |+|PF |=2>1,结合椭圆的定义,我们知道点P 的轨迹是以A ,F 为焦点的椭圆.a =1,c =12,∴b 2=34. ∴动点P 的轨迹方程为x 2+43y 2=1. 二、能力提升8.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是 ( )A .[12,34] B .[38,34] C .[12,1] D .[34,1] 答案 B 解析 由题意可得A 1(-2,0),A 2(2,0),当P A 2的斜率为-2时,直线P A 2的方程为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619. 由P A 2的斜率存在可得点P ⎝⎛⎭⎫2619,2419,此时直线P A 1的斜率k =38. 同理,当直线P A 2的斜率为-1时,直线P A 2的方程为y =-(x -2),代入椭圆方程,消去y 化简得7x 2-16x +4=0,解得x =2或x =27. 由P A 2的斜率存在可得点P ⎝⎛⎭⎫27,127,此时直线P A 1的斜率k =34. 数形结合可知,直线P A 1斜率的取值范围是⎣⎡⎦⎤38,34.9.设F 1、F 2分别是椭圆x 216+y 27=1的左、右焦点,若点P 在椭圆上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|=________.答案 6解析 由PF 1→·PF 2→=0,得PF 1⊥PF 2,∴|PF 1→+PF 2→|=2|PO →|=|F 1F 2|=6.10.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2 (a >1)的点的轨迹,给出下列三个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2. 其中,所有正确结论的序号是__________.答案 ②③解析 设曲线C 上任一点P (x ,y ),由|PF 1|·|PF 2|=a 2,可得(x +1)2+y 2·(x -1)2+y 2=a 2 (a >1),将原点(0,0)代入等式不成立,故①不正确.∵点P (x ,y )在曲线C 上,∴点P 关于原点的对称点为P ′(-x ,-y ),将P ′代入曲线C 的方程等式成立,故②正确.设∠F 1PF 2=θ,则S △F 1PF 2=12|PF 1||PF 2|·sin θ=12a 2sin θ≤12a 2,故③正确.11.已知点M 在椭圆x 236+y 29=1上,MP ′垂直于椭圆焦点所在的直线,垂足为P ′,并且M 为线段PP ′的中点,求P 点的轨迹方程.解 设P 点的坐标为(x ,y ),M 点的坐标为(x 0,y 0).∵点M 在椭圆x 236+y 29=1上, ∴x 2036+y 209=1. ∵M 是线段PP ′的中点,∴⎩⎪⎨⎪⎧x 0=x ,y 0=y 2. 把⎩⎪⎨⎪⎧x 0=x ,y 0=y 2代入x 2036+y 209=1, 得x 236+y 236=1, 即x 2+y 2=36,∴P 点的轨迹方程为x 2+y 2=36.12.P 是椭圆x 2a 2+y 2b 2=1 (a >b >0)上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,求动点Q 的轨迹方程.解 由OQ →=PF 1→+PF 2→,又PF 1→+PF 2→=2PO →=-2OP →,设Q (x ,y ),则OP →=-12OQ →=-12(x ,y ) =⎝⎛⎭⎫-x 2,-y 2, 即P 点坐标为⎝⎛⎭⎫-x 2,-y 2, 又P 点在椭圆上,∴⎝⎛⎭⎫-x 22a 2+⎝⎛⎭⎫-y 22b 2=1, 即x 24a 2+y 24b 2=1, ∴动点Q 的轨迹方程为x 24a 2+y 24b 2=1 (a >b >0). 三、探究与拓展13.如图,在圆C :(x +1)2+y 2=25内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M ,求点M 的轨迹方程.解 由题意知点M 在线段CQ 上,从而有|CQ |=|MQ |+|MC |.又点M 在AQ 的垂直平分线上,则|MA |=|MQ |,∴|MA |+|MC |=|CQ |=5.∵A (1,0),C (-1,0),∴点M 的轨迹是以(1,0),(-1,0)为焦点的椭圆,且2a =5,故a =52,c =1,b 2=a 2-c 2=254-1=214. 故点M 的轨迹方程为x 2254+y 2214=1.。
高中数学 2.2.1 椭圆及其标准方程试题 新人教A版选修21

2.2.1椭圆及其标准方程一、选择题1.【题文】已知椭圆221102x y m m +=--,焦点在y 轴上,若焦距为4,则m 等于( ) A .4 B .5 C .7 D .82.【题文】已知椭圆221416x y +=上的一点P 到椭圆一个焦点的距离为5,则P 到另一个焦点的距离为 ( )A .2B .3C .5D .73.【题文】设()14,0F -,()24,0F 为定点,动点M 满足128MF MF +=,则动点M 的轨迹是 ( )A .椭圆B .直线C .圆D .线段4.【题文】已知△ABC 的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长l 是 ( )A ..6 C ..125.【题文】如果椭圆2218125x y +=上一点M 到此椭圆一个焦点1F 的距离为2,N 是1MF 的中点,O 是坐标原点,则ON 的长为 ( )A .2B .4C .8D .326.【题文】已知椭圆()22:1,2,04x C y A +=,点P 在椭圆C 上,且OP PA ⊥,其中O 为坐标原点,则点P 的坐标为( )A .2,33⎛⎫±⎪ ⎪⎝⎭ B .2,33⎛⎫± ⎪ ⎪⎝⎭C .2,33⎛-± ⎝⎭D .233⎛⎫-± ⎪ ⎪⎝⎭7.【题文】若△ABC 顶点B ,C 的坐标分别为()4,0-,()4,0,AC ,AB 边上的中线长之和为30,则△ABC 的重心G 的轨迹方程为 ( )A.()221010036x y y +=≠ B.()221010084x y y +=≠ C.()221010036x y x +=≠ D.()221010084x y x +=≠8.【题文】已知12,F F 为椭圆22:14x C y +=的左,右焦点,点P 在C 上,123PF PF =,则12cos F PF ∠等于 ( ) A .34 B .13- C .35- D .45二、填空题9.【题文】椭圆221167x y +=上横坐标为2的点到右焦点的距离为 .10.【题文】已知方程2213+2x y k k+=-表示椭圆,则k 的取值范围为 .11.【题文】椭圆221259x y +=的左焦点为1F ,P 为椭圆上的动点,M 是圆 (221x y +-=上的动点,则1PM PF +的最大值是 .三、解答题12.【题文】已知椭圆的中心在原点,两焦点1F ,2F 在x 轴上,且过点()4,3A -.若12F A F A ⊥,求椭圆的标准方程.13.【题文】求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点()2,0和点()0,1;(2)焦点在y 轴上,与y 轴的一个交点为()0,10P -,P 到距它较近的一个焦点的距 离等于2.14.【题文】已知定点1,02A ⎛⎫- ⎪⎝⎭,B 是圆C :22142x y ⎛⎫-+= ⎪⎝⎭上的一个动点,线段AB 的垂直平分线交BC 于M 点,求动点M 的轨迹方程.2.2.1椭圆及其标准方程 参考答案及解析1. 【答案】D【解析】因为焦点在y 轴上,所以2100m m ->->,即610m <<,又 ()()22102m m ---=,所以8m =,故选D. 考点:椭圆的标准方程. 【题型】选择题 【难度】一般 2. 【答案】B【解析】设所求距离为d ,由题意得4a =.根据椭圆的定义得25253a d d a =+⇒=-=,故选B .考点:椭圆的定义. 【题型】选择题 【难度】较易 3. 【答案】D【解析】动点M 满足128MF MF +=,128F F =,故动点M 的轨迹是线段12F F .考点:椭圆的定义. 【题型】选择题 【难度】一般 4. 【答案】C【解析】如图,设椭圆的另外一个焦点为F ,由椭圆的方程知a =ABC 的周长()()4l AB AC BC AB BF AC CF a =++=+++==.考点:椭圆的定义及其应用. 【题型】选择题 【难度】一般 5. 【答案】C【解析】∵椭圆方程为2218125x y +=,∴9a =,根据椭圆的定义得2=18216MF -=, 而ON 是△12MF F 的中位线,∴216822MF ON ===,故选C . 考点:椭圆的定义. 【题型】选择题 【难度】一般 6. 【答案】A【解析】设(),P x y ,由OP PA ⊥,得OP PA ⊥,所以()()()2,2,20OP PA x y x y x x y ⋅=⋅--=--=,与椭圆方程2214x y +=联立,解得23x =(2x =舍去),此时3y =±,即点P 的坐标为2,33⎛± ⎝⎭,故选A.考点:椭圆上点的坐标. 【题型】选择题 【难度】一般 7. 【答案】B【解析】设AC 、AB 边上的中线分别为BD 、CE ,∵23BG BD =,23CG CE =, ∴()22302033BG CG BD CE +=+=⨯=(定值). 因此,重心G 的轨迹为以B 、C 为焦点的椭圆,220a =,4c =,∴10a =,b =,可得椭圆的方程为22110084x y +=.∵当G 点在x 轴上时,A 、B 、C 三点共线,不能构成△ABC ,∴G 的纵坐标不能是0,可得△ABC 的重心G 的轨迹方程为()221010084x y y +=≠,故选B. 考点:椭圆的定义及标准方程. 【题型】选择题 【难度】较难 8. 【答案】B【解析】由题意可知,12F F ==12222344PF PF PF PF PF +=+==,211,3PF PF ∴==,(22222212121212311cos 22313PF PF F F F PF PF PF +-+-∴∠===-⋅⨯⨯,故选B .考点:椭圆的定义,余弦定理. 【题型】选择题 【难度】较难 9. 【答案】2.5【解析】由椭圆方程可知22216,7,9,3a b c c ==∴=∴=,右焦点为()3,0,将2x =代入椭圆方程得2214y =,所以两点间距离为2.5d ==. 考点:椭圆的定义.【题型】填空题 【难度】一般10. 【答案】132,2k k k ⎧⎫-<<≠-⎨⎬⎩⎭且【解析】由椭圆的定义知30,20,32,k k k k +>⎧⎪->⎨⎪+≠-⎩解得132,2k k k ⎧⎫-<<≠-⎨⎬⎩⎭且. 考点:椭圆的定义. 【题型】填空题 【难度】一般 11. 【答案】17【解析】圆(221x y +-=的圆心为(0,C ,半径为1.由椭圆方程221259x y +=可知2225,9a b ==,所以5a =,左焦点为()14,0F -,右焦点为()24,0F .122221010PC PF PC a PF PC PF CF +=+-=+-≤+=,()()11maxmax 117PM PF PC PF +=++=.考点:椭圆的定义. 【题型】填空题 【难度】较难12. 【答案】2214015x y += 【解析】设椭圆的标准方程为()222210x y a b a b+=>>,焦点()1,0F c -,()2,0F c .∵12F A F A ⊥,∴120F A F A ⋅=,而()14,3FA c =-+, ()24,3F A c =--, ∴()()24430c c -+--+=,∴225c =,即5c =.∴()15,0F -,()25,0F .∵122a AF AF =+==∴a=,∴(22222515b a c =-=-=.∴所求椭圆的标准方程为2214015x y +=.考点:椭圆的标准方程. 【题型】解答题 【难度】一般13. 【答案】(1)2214x y +=(2)22110036y x += 【解析】(1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为()222210x y a b a b+=>>. ∵椭圆经过点()2,0和()0,1,∴224,1a b ==,故所求椭圆的标准方程为2214x y +=. (2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为()222210y x a b a b+=>>,∵()0,10P -在椭圆上,∴10a =.又∵P 到距它较近的一个焦点的距离等于2, ∴()102c ---=,故8c =,∴22236b a c =-=.∴所求椭圆的标准方程是22110036y x +=. 考点:椭圆的定义,椭圆的标准方程. 【题型】解答题 【难度】一般14. 【答案】22413y x += 【解析】∵线段AB 的垂直平分线交BC 于M 点,∴MB MA =,又∵2MB MC +=, ∴2MA MC AC +=>,点M 的轨迹是以A 、C 为焦点的椭圆, 此时122,2a c ==,∴1,a =234b =, ∴所求的点M 的轨迹方程是22413y x +=. 考点:椭圆的定义及动点的轨迹方程. 【题型】解答题 【难度】一般。
高中数学选修2-1课时作业6:2.2.1 椭圆及其标准方程(二)

2.2.1 椭圆的标准方程(二)1.已知a =13,c =23,则该椭圆的标准方程为( ) A.x 213+y 212=1B.x 213+y 225=1或x 225+y 213=1C.x 213+y 2=1D.x 213+y 2=1或x 2+y 213=1 [解析]选D.由a 2=b 2+c 2,∴b 2=13-12=1.分焦点在x 轴和y 轴上写标准方程.2.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( ) A .5 B .6C .7 D .8[解析]选D.∵a =5,|PF 1|=2.∴|PF 2|=2a -|PF 1|=2×5-2=8.3.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( ) A.x 24+y 23=1 B.x 24+y 2=1C.y 24+x 23=1 D.y 24+x 2=1 [解析]选A.c =1,a =12()2+12+0+2-12+0=2,∴b 2=a 2-c 2=3.∴椭圆的方程为x 24+y 23=1. 4.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( )A .5B .4C .3D .1[解析]选B.由椭圆方程,得a =3,b =2,c =5,∵|PF 1|+|PF 2|=2a =6且|PF 1|∶|PF 2|=2∶1,∴|PF 1|=4,|PF 2|=2,∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴△PF 1F 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×2×4=4. 5.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析]选C.mx 2+ny 2=1可化为x 21m +y 21n =1,因为m >n >0,所以0<1m <1n,因此椭圆焦点在y 轴上,反之亦成立.6.椭圆x 2m +y 215=1的焦距等于2,则m 的值是________. [解析]当焦点在x 轴时,m -15=1,m =16;当焦点在y 轴时,15-m =1,m =14.[答案]16或147.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则k 的取值范围是________.[解析]原方程可化为x 22+y 22k =1,因表示焦点在y 轴上的椭圆.∴⎩⎪⎨⎪⎧k >0,2k >2.解得0<k <1. ∴k 的取值范围是(0,1).[答案](0,1)8.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|和|PF 2|的等差中项,则椭圆的方程为__________.[解析]由题设知|PF 1|+|PF 2|=2|F 1F 2|=4,∴2a =4,2c =2,∴b =3,∴椭圆的方程为x 24+y 23=1.[答案]x 24+y 23=1 9.求适合下列条件的椭圆的标准方程:(1)椭圆上一点P (3,2)到两焦点的距离之和为8;(2)椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15.解:(1)①若焦点在x 轴上,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0). 由题意知2a =8,∴a =4,又点P (3,2)在椭圆上,∴916+4b 2=1,得b 2=647. ∴椭圆的标准方程为x 216+y 2647=1. ②若焦点在y 轴上,设椭圆的标准方程为:y 2a 2+x 2b 2=1(a >b >0),∵2a =8,∴a =4. 又点P (3,2)在椭圆上,∴416+9b 2=1,得b 2=12.∴椭圆的标准方程为y 216+x 212=1. 由①②知椭圆的标准方程为x 216+y 2647=1或y 216+x 212=1. (2)由题意知,2c =16,2a =9+15=24,∴a =12,c =8,∴b 2=80.又焦点可能在x 轴上,也可能在y 轴上,∴所求方程为x 2144+y 280=1或y 2144+x 280=1. 10.已知点P (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2是椭圆左、右焦点,若PF 1⊥PF 2,试求:(1)椭圆方程;(2)△PF 1F 2的面积.解:(1)由PF 1⊥PF 2,可得|OP |=c ,即c =5.设椭圆方程为x 2a 2+y 2a 2-25=1代入P (3,4), 得9a 2+16a 2-25=1,解得a 2=45,a 2=5(舍去).∴椭圆方程为x 245+y 220=1. (2)S △PF 1F 2=12|F 1F 2||y P |=5×4=20. 能力提升1.已知椭圆x 23+y 24=1的两个焦点F 1,F 2,M 是椭圆上一点,且|MF 1|-|MF 2|=1,则△MF 1F 2是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形[解析]选B.由椭圆定义知|MF 1|+|MF 2|=2a =4,且已知|MF 1|-|MF 2|=1,所以|MF 1|=52,|MF 2|=32.又|F 1F 2|=2c =2.所以有|MF 1|2=|MF 2|2+|F 1F 2|2.因此∠MF 2F 1=90°,△MF 1F 2为直角三角形.2.椭圆的两焦点为F 1(-4,0)、F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为__________.[解析]当△PF 1F 2面积取最大时,S △PF 1F 2=12×8b =12,∴b =3.又∵c =4,∴a 2=b 2+c 2=25. ∴椭圆的标准方程为x 225+y 29=1. [答案]x 225+y 29=1 3.已知椭圆8x 281+y 236=1上一点M 的纵坐标为2. (1)求M 的横坐标;(2)求过M 且与x 29+y 24=1共焦点的椭圆的方程. 解:(1)把M 的纵坐标代入8x 281+y 236=1,得8x 281+436=1, 即x 2=9.∴x =±3.即M 的横坐标为3或-3.(2)对于椭圆x 29+y 24=1,焦点在x 轴上且c 2=9-4=5, 故设所求椭圆的方程为x 2a 2+y 2a 2-5=1(a 2>5),把M 点坐标代入得9a 2+4a 2-5=1, 解得a 2=15(a 2=3舍去).故所求椭圆的方程为x 215+y 210=1. 4. 已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过点B 且与圆A 内切,如下图,求圆心P 的轨迹方程.解:设|PB|=r.∵圆P与圆A内切,圆A的半径为10,∴两圆的圆心距|P A|=10-r,即|P A|+|PB|=10,而|AB|=6,∴|P A|+|PB|>|AB|,∴圆心P的轨迹是以A,B为焦点的椭圆.∴2a=10,2c=|AB|=6.∴a=5,c=3.∴b2=a2-c2=25-9=16.∴圆心P的轨迹方程为x225+y216=1.。
人教新课标版-数学-高二-数学人教B版选修2-1自我小测 2.2.1椭圆的标准方程
自我小测1.化简方程x 2+(y +3)2+x 2+(y -3)2=10为不含根式的形式是( )A.x 225+y 216=1B.x 225+y 29=1C.x 216+y 225=1D.x 29+y 225=1 2.椭圆x 225+y 29=1上的一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |(O 是坐标原点)的值是( )A .4B .2C .8 D.323.若△ABC 的两个顶点坐标为A (-4,0),B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1B.y 225+x 29=1(y ≠0)C.x 216+y 29=1(y ≠0)D.x 225+y 29=1(y ≠0) 4.已知椭圆x 210-m +y 2m -2=1的焦点在y 轴上,若焦距为4,则m =( ) A .4 B .5 C .7 D .85.设F 1,F 2是椭圆x 216+y 212=1的焦点,P 为椭圆上的一点,则△PF 1F 2的周长为( ) A .10 B .12 C .16 D .不确定6.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.椭圆x 24+y 2m=1的焦距为2,则m =__________. 8.P 是椭圆x 24+y 23=1上任意一点,F 1,F 2是焦点,那么∠F 1PF 2的最大值是__________. 9.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足0<x 202+y 20<1,则|PF 1|+|PF 2|的取值范围为______.10.已知圆A :(x +3)2+y 2=1及圆B :(x -3)2+y 2=81,动圆P 与圆A 外切,与圆B 内切,求动圆圆心P 的轨迹方程.11.已知x 轴上一定点A (1,0),Q 为椭圆x 24+y 2=1上任意一点,求AQ 的中点M 的轨迹方程.12.如图,已知椭圆的方程为x24+y23=1,若点P在第二象限,且∠PF1F2=120°,求△PF1F2的面积.参考答案1.解析:由题意可知,方程表示点(x ,y )与两个定点(0,3)和(0,-3)之间的距离之和为10,又两定点之间的距离为6,6<10,它符合椭圆的定义,即2a =10,2c =6,从而可求得b 2=16.答案:C2.解析:设另一个焦点为F 2,则|MF 1|+|MF 2|=10,又|MF 1|=2,所以|MF 2|=8.而ON为△MF 1F 2的中位线,所以|ON |=12|MF 2|=4. 答案:A3.解析:因为|AC |+|BC |+|AB |=18,所以|CA |+|CB |=10>|AB |=8.所以点C 的轨迹是以A ,B 为焦点的椭圆,其方程为x 225+y 29=1,且y ≠0. 答案:D4.解析:因为焦点在y 轴上,所以⎩⎪⎨⎪⎧ m -2>0,10-m >0,m -2>10-m⇒6<m <10.又焦距2c =4,所以m -2-10+m =22⇒m =8.答案:D5.答案:B6.答案:C7.解析:分两种情况:焦点在x 轴上或焦点在y 轴上.答案:3或58.解析:当点P 为(0,3)或(0,-3)时∠F 1PF 2最大,此时|PF 1|=|PF 2|=2,|F 1F 2|=2,故△PF 1F 2为等边三角形.答案:60°9.解析:因为点P (x 0,y 0)满足0<x 202+y 20<1, 所以点P 在椭圆内且不过原点,所以2c ≤|PF 1|+|PF 2|<2a .又因为a 2=2,b 2=1,所以a =2,b =1,c 2=a 2-b 2=1,即c =1,所以2≤|PF 1|+|PF 2|<2 2.答案:hslx3y3h2,22)10.分析:利用椭圆的定义先判断出动圆圆心P 的轨迹是椭圆,再求其方程. 解:设动圆P 的半径为r .由所给圆的方程知,A (-3,0),B (3,0),由题意,可得|PA |=r +1,|PB |=9-r ,故|PA |+|PB |=r +1+9-r =10>|AB |=6.由椭圆的定义知动点P 的轨迹是椭圆.其中2a =10,2c =6,即a =5,c =3,所以b 2=16.故动圆圆心P 的轨迹方程为x 225+y 216=1. 11.解:设中点M 的坐标为(x ,y ),点Q 的坐标为(x 0,y 0),利用中点公式,得⎩⎪⎨⎪⎧x =x 0+12,y =y 02,所以⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y .因为Q (x 0,y 0)在椭圆x 24+y 2=1上, 所以x 204+y 20=1. 将x 0=2x -1,y 0=2y 代入上式,得(2x -1)24+(2y )2=1. 故所求AQ 的中点M 的轨迹方程是⎝⎛⎭⎫x -122+4y 2=1. 12.解:由已知得a =2,b =3,所以c =a 2-b 2=4-3=1, 所以|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|.① 由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|.②把②代入①解得|PF 1|=65. 所以12PF F S =12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335, 即△PF 1F 2的面积是353.。
2.2.1椭圆及其标准方程(2)
∵y1≠0,∴y≠0.已知点 P 在椭圆上,将上面结果代入已知椭 3x2 圆方程,有 +(3y)2=1 (y≠0), 9
2.2.1
1.解答与椭圆有关的轨迹问题的一般思路是
2.注意题目要求中求轨迹和求轨迹方程的区别 .
研一研· 问题探究、课堂更高效
2.2.1
跟踪训练 1 已知圆 A: (x+3)2+y2=100, 圆 A 内一定点 B(3, 0),圆 P 过 B 且与圆 A 内切,求圆心 P 的轨迹方程.
解
如图,设圆 P 的半径为 r,又圆 P 过
点 B,∴|PB|=r. 又∵圆 P 与圆 A 内切, 圆 A 的半径为 10, ∴两圆的圆心距|PA|=10-r, 即|PA|+|PB|=10(大于|AB|). ∴点 P 的轨迹是以 A、B 为焦点的椭圆. ∴2a=10,2c=|AB|=6. ∴a=5,c=3.∴b2=a2-c2=25-9=16. x2 y 2 ∴点 P 的轨迹方程为25+16=1.
研一研· 问题探究、课堂更高效
2.2.1
探究点二 相关点法求轨迹方程 例 2 如图,在圆 x2+ y2= 4 上任取一点 P, 过点 P 作 x 轴的垂线段 PD, D 为垂足. 当 点 P 在圆上运动时,线段 PD 的中点 M 的轨迹是什么?为什么?
解 设点 M 的坐标为(x,y),点 P 的坐标为(x0,y0), y0 则 x=x0,y= 2 .从而得 x0=x,y0=2y
练一练· 当堂检测、目标达成落实处
2.2.1
x2 2 4.椭圆 +y =1 上有动点 P,F1,F2 是椭圆的两个焦点, 9 求△PF1F2 的重心 M 的轨迹方程.
解 设 P,M 点坐标分别为(x1,y1),(x,y) 9-1=2 2. ∵在已知椭圆方程中,a=3,b=1,∴c=
课时作业25:2.2.1 椭圆及其标准方程
2.2.1 椭圆及其标准方程A 组 基础巩固练一、选择题1.设P 是椭圆x 25+y 23=1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A .22B .23C .2 5D .422.已知椭圆x 2a 2+y 22=1的一个焦点为(2,0),则椭圆的方程是( ) A .x 24+y 22=1 B .x 23+y 22=1 C .x 2+y 22=1 D .x 26+y 22=1 3.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( )A .5B .4C .3D .14.已知椭圆x 2a 2+y 2b 2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .线段D .直线5.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( ) A .x 25+y 2=1 B .x 24+y 25=1 C .x 25+y 2=1或x 24+y 25=1 D .以上答案都不对二、填空题6.椭圆25x 2+16y 2=1的焦点坐标是________.7.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.8.已知P 是椭圆x 24+y 23=1上的一动点,F 1,F 2是椭圆的左、右焦点,延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹方程是________.三、解答题9.分别求适合下列条件的椭圆的标准方程.(1)焦点在坐标轴上,且经过点A (3,-2),B (-23,1);(2)与椭圆x 23+y 2=1有相同焦点且经过点M (2,1).10.已知点A (0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM |=|P A |,求动点P 的轨迹方程.B 组 素养提升练1.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为( )A .2B .4C .8D .222.如图所示,∠OFB =π6,△ABF 的面积为2-3,则以OA 为长半轴,OB 为短半轴,F 为一个焦点的椭圆方程为__________.3.若椭圆2kx 2+ky 2=1的一个焦点为(0,-4),则k 的值为________.4.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=________.5.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与椭圆C 相交于A ,B 两点(如图所示),∠F 1F 2B =2π3,△F 1F 2A 的面积是△F 1F 2B 面积的2倍.若|AB |=152,求椭圆C 的方程.参考答案 A 组 基础巩固练一、选择题1.【答案】C【解析】由椭圆的定义可得P 到两焦点距离之和为2a =25.2.【答案】D【解析】由题意知a 2-2=4,∴a 2=6.∴所求椭圆的方程为x 26+y 22=1. 3.【答案】B【解析】由椭圆方程,得a =3,b =2,c =5,∴|PF 1|+|PF 2|=2a =6,又|PF 1|∶|PF 2|=2∶1,∴|PF 1|=4,|PF 2|=2,由22+42=(25)2,可知△F 1PF 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×4×2=4,故选B . 4.【答案】B【解析】|PF 1|+|PO |=12|MF 1|+12|MF 2|=12(|MF 1|+|MF 2|)=a >|F 1O |,因此点P 的轨迹是椭圆.] 5.【答案】C【解析】直线与坐标轴的交点为(0,1),(-2,0),由题意知当焦点在x 轴上时,c =2,b =1,∴a 2=5,所求椭圆的标准方程为x 25+y 2=1. 当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆标准方程为y 25+x 24=1. 二、填空题6.【答案】⎝⎛⎭⎫0,±320 【解析】由25x 2+16y 2=1知焦点在y 轴上,且a 2=116,b 2=125,c 2=116-125=916×25,∴c =320. ∴焦点坐标为⎝⎛⎭⎫0,±320. 7.【答案】3【解析】依题意,有⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ,|PF 1|·|PF 2|=18,|PF 1|2+|PF 2|2=4c 2,可得4c 2+36=4a 2,即a 2-c 2=9,故有b =3.8.【答案】(x +1)2+y 2=16【解析】如图,依题意,|PF 1|+|PF 2|=2a (a 是常数且a >0).又|PQ |=|PF 2|,∴|PF 1|+|PQ |=2a ,即|QF 1|=2a .由题意知,a =2,b =3,c =a 2-b 2=4-3=1.∴|QF 1|=4,F 1(-1,0),∴动点Q 的轨迹是以F 1为圆心,4为半径的圆,∴动点Q 的轨迹方程是(x +1)2+y 2=16.三、解答题9. 解:(1)设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0且m ≠n ),根据题意,得⎩⎪⎨⎪⎧3m +4n =1,12m +n =1,解得⎩⎨⎧ m =115,n =15,∴所求椭圆的标准方程为x 215+y 25=1. (2)由椭圆x 23+y 2=1,知焦点在x 轴上, 则a 2=3,b 2=1,c 2=a 2-b 2=3-1=2,∴c =2,∴椭圆的两个焦点分别为(-2,0)和(2,0).设所求椭圆的方程为x 2a 2+y 2a 2-2=1(a 2>2), 把(2,1)代入方程,得2a 2+1a 2-2=1, 化简,得a 4-5a 2+4=0,∴a 2=4或a 2=1(舍),∴所求椭圆的标准方程为x 24+y 22=1. 10.解:因为|PM |=|P A |,|PM |+|PO 1|=4,所以|PO 1|+|P A |=4,又因为|O 1A |=23<4,所以点P 的轨迹是以A ,O 1为焦点的椭圆,所以c =3,a =2,b =1.所以动点P 的轨迹方程为x 2+y 24=1. B 组 素养提升练1.【答案】B【解析】因为椭圆方程为4x 2+y 2=1,所以a =1.根据椭圆的定义,知△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =4.2.【答案】x 28+y 22=1 【解析】设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由题意可知,|OF |=c ,|OB |=b , ∴|BF |=a .∵∠OFB =π6,∴b c =33,a =2b . ∴S △ABF =12·|AF |·|BO |=12(a -c )·b =12(2b -3b )b =2-3, 解得b 2=2,则a =2b =22.∴所求椭圆的方程为x 28+y 22=1. 3.【答案】132【解析】易知k >0,方程2kx 2+ky 2=1变形为y 21k +x 212k=1,所以1k -12k =16,解得k =132.] 4.【答案】23【解析】设正三角形POF 2的边长为c ,则34c 2=3, 解得c =2,从而|OF 2|=|PF 2|=2,连接PF 1(略),由|OF 1|=|OF 2|=|OP |知,PF 1⊥PF 2,则|PF 1|=|F 1F 2|2-|PF 2|2=42-22=23,所以2a =|PF 1|+|PF 2|=23+2,即a =3+1,所以b 2=a 2-c 2=(3+1)2-4=23.5.解:由题意可得S △F 1F 2A =2S △F 1F 2B ,∴|F 2A |=2|F 2B |,由椭圆的定义得|F 1B |+|F 2B |=|F 1A |+|F 2A |=2a ,设|F 2A |=2|F 2B |=2m ,在△F 1F 2B 中,由余弦定理得(2a -m )2=4c 2+m 2-2·2c ·m ·cos 2π3,∴m =2a 2-c 22a +c. 在△F 1F 2A 中,同理可得m =a 2-c 22a -c, 所以2a 2-c 22a +c =a 2-c 22a -c,解得2a =3c , 可得m =5c 8,|AB |=3m =15c 8=152,c =4. 由c a =23,得a =6,b 2=20, 所以椭圆C 的方程为x 236+y 220=1.。
高中数学2.2.1椭圆及其标准方程课时作业含解析人教A版选修2_1.doc
第二章 2.2 2.2.1请同学们认真完成练案[11]A 级 基础巩固一、选择题1.设F 1、F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( D ) A .椭圆 B .直线 C .圆D .线段[解析] ∵|MF 1|+|MF 2|=6,|F 1F 2|=6, ∴|MF 1|+|MF 2|=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2.2.过点(-3,2)且与x 29+y 24=1有相同焦点的椭圆的方程是( A )A .x 215+y 210=1B .x 2225+y 2100=1C .x 210+y 215=1D .x 2100+y 2225=1[解析] 将点(-3,2)代入验证,只有A 的方程满足,故选A .3.中心在原点,焦点在坐标轴上,且过两点(4,0)、(0,2)的椭圆方程为( D ) A .x 24+y 22=1B .y 24+x 22=1C .y 216+x 24=1D .x 216+y 24=1[解析] 解法一:验证排除:将点(4,0)代入验证可排除A 、B 、C ,故选D . 解法二:设椭圆方程为mx 2+ny 2=1(m >0,n >0),∴⎩⎪⎨⎪⎧16m =14n =1,∴⎩⎨⎧m =116n =14,故选D .4.已知椭圆x 225+y 29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O为坐标原点,那么线段ON 的长是( B )A .2B .4C .8D .32[解析] 设椭圆左焦点F ,右焦点F 1,∵2a =10,|MF |=2,∴|MF 1|=8,∵N 为MF 中点,O 为FF 1中点,∴|ON |=12|MF 1|=4.5.(2019-2020学年房山区期末检测)“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的充要条件是( A )A .m >n >0B .n >m >0C .mn >0D .mn <0[解析] 若方程表示椭圆,则m ,n ≠0,则方程等价为x 21m +y 21n =1,若方程表示焦点在y 轴上椭圆,则等价为1n >1m>0,解得:m >n >0,故选A .6.(2019-2020学年湖南省长沙市湖南师大附中高二期中)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限,若△MF 1F 2为等腰三角形,则△MF 1F 2的面积为( D )A .53B .103C .215D . 415[解析] 设M (m ,n ),m ,n >0,则m ∈(0,6),n ∈(0,25), 椭圆C :x 236+y 220=1的a =6,b =25,c =4.设F 1,F 2分别为椭圆C 的左右焦点,由于M 为C 上一点且在第一象限,可得|MF 1|>|MF 2|,|F 1F 2|=2c =8, 因为|MF 1|+|MF 2|=2a =12,所以|MF 1|>6,|MF 2|<6, △MF 1F 2为等腰三角形,只能|MF 2|=2c =8,则|MF 2|=4, 由勾股定理得|MF 2|2=(4-m )2+n 2=16, 又m 236+n 220=1,联立并消去n 得 m 2-18m +45=0,且m ∈(0,6),解得m =3,则n =15. 则△MF 1F 2的面积为12×8×15=415.故选D .二、填空题7.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为__x 24+y 23=1__.[解析] 由题意可得⎩⎪⎨⎪⎧ a +c =3a -c =1,∴⎩⎪⎨⎪⎧a =2c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1. 8.(福州市2019-2020学年高二期末)若以椭圆上一点和椭圆的两个焦点为顶点的三角形面积的最大值为1,则该椭圆长轴长的最小值为[解析] 由题意可知,因为椭圆上一点和两个焦点为顶点的三角形的最大面积为1,即可知bc =1,因为a 2=b 2+c 2=b 2+1b2≥2,所以a ≥2,故长轴长的最小值为22,答案为2 2.三、解答题9.求满足下列条件的椭圆的标准方程: (1)焦点在y 轴上,焦距是4,且经过点M (3,2);(2)a :c =13:5,且椭圆上一点到两焦点的距离的和为26.[解析] (1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,2a =32+(2+2)2+32+(2-2)2=8,所以a =4,所以b 2=a 2-c 2=16-4=12. 又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1.(2)由题意知,2a =26,即a =13,又a c =135,所以c =5,所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1.10.已知点A (-12,0),B 是圆F :(x -12) 2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,求动点P 的轨迹方程.[解析] 如图所示,由题意知,|P A |=|PB |,|PF |+|BP |=2, ∴|P A |+|PF |=2,且|P A |+|PF |>|AF |, ∴动点P 的轨迹是以A 、F 为焦点的椭圆, ∴a =1,c =12,b 2=34.∴动点P 的轨迹方程为x 2+y 234=1,即x 2+43y 2=1. B 级 素养提升一、选择题1.已知椭圆x 225+y 29=1,F 1、F 2分别在其左、右焦点,椭圆上一点M 到F 1的距离是2,N是MF 1的中点,则|ON |的长为( D )A .1B .2C .3D .4[解析] 由椭圆定义得|MF 2|+|MF 1|=2a =10, 因为|MF 1|=2,所以|MF 2|=8. 因为N 是MF 1的中点,所以|ON |=|MF 2|2=4.故选D . 2.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( D )A .x 225+y 29=1B .y 225+x 29=1(y ≠0)C .x 216+y 29=1(y ≠0)D .x 225+y 29=1(y ≠0)[解析] ∵|AB |=8,△ABC 的周长为18,∴|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D .3.(多选题)若方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围可以是( AD )A .a >3B .a <-2C .-2<a <3D .-6<a <-2[解析] 由题意得a 2>a +6>0, 解得a >3或-6<a <-2,故选AD .4.(多选题)直线2x +by +3=0过椭圆10x 2+y 2=10的一个焦点,则b 的值可以为( AB ) A .-1 B .1 C .-12D .12[解析] 椭圆方程化为标准形式为x 2+y 210=1,∴焦点坐标为(0,±3),当直线过焦点(0,3)时,b =-1;当直线过焦点(0,-3)时,b =1.故选AB .二、填空题5.下列命题是真命题的是__③__.①已知定点F 1(-1,0),F 2(1,0),则满足|PF 1|+|PF 2|=2的点P 的轨迹为椭圆;②到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹为椭圆;③若点P 到定点F 1(-4,0),F 2(4,0)的距离之和等于点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离之和,则点P 的轨迹为椭圆.[解析] ①2<2,故点P 的轨迹不存在;②到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹是线段F 1F 2的垂直平分线(y 轴);③点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离之和为410>8,故点P 的轨迹为椭圆.故填③.6.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任意一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为__15__.[解析] 由椭圆的方程可得a =5,b =4,c =3. ∴F 1(-3,0),F 2(3,0),如图所示,由椭圆的定义可得,|PF 1|+|PF 2|=2a =10,∴|PM |+|PF 1|=|PM |+2a -|PF 2|=10+(|PM |-|PF 2|)≤10+|MF 2|=10+32+42=15,∴|PM |+|PF 1|的最大值为15. 三、解答题7.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.[解析] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0b2=1,又a=3b,解得b2=1,a2=9,故椭圆的方程为x29+y2=1.当焦点在y轴上时,设其方程为y2a2+x2b2=1(a>b>0).由椭圆过点P(3,0),知0a2+9b2=1,又a=3b,联立解得a2=81,b2=9,故椭圆的方程为y281+x29=1.故椭圆的标准方程为y281+x29=1或x29+y2=1.8.如图所示,在圆C:(x+1)2+y2=25内有一点A(1,0).Q为圆C上一点,AQ的垂直平分线与C,Q的连线交于点M,求点M的轨迹方程.[解析]如图所示,连接MA,由题知点M在线段CQ上,从而有|CQ|=|MQ|+|MC|.又点M在AQ的垂直平分线上,所以|MA|=|MQ|,故|MA|+|MC|=|CQ|=5.又A(1,0),C(-1,0),故点M的轨迹是以(1,0),(-1,0)为焦点的椭圆,且2a=5,c=1,故a=52,b2=a2-c2=254-1=214.故点M的轨迹方程为x2254+y2214=1.。