最新同济大学版高等数学期末考试试卷教学教材

合集下载

高等数学(同济)下册期末专业考试题及内容标准答案(5套)

高等数学(同济)下册期末专业考试题及内容标准答案(5套)

高等数学(下册) 考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ; (C )⎰⎰⎰ππϕϕϕθ20213cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

同济大学《高等数学》(上)期末试卷A及答案

同济大学《高等数学》(上)期末试卷A及答案

高等数学(上)期末考试试卷试 题一、填空、选择题1.函数)(x f 在],[b a 上可积是)(x f 在],[b a 上连续的 条件,函数)(x f 在],[b a 上可导是)(x f 在],[b a 上连续的 条件.2.曲线(ln y x =在点(),ln(1处的切线方程是 .3.函数()(1)cos sin f x x x x =−−在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值是 .4.曲线()x x y x −=2e 上有 个拐点.5.设可导函数()g x 满足(0)0g =,()00≠′g ,设())(sin 2x g x G =,则当0x →时, .(A )()G x 与()g x 是等价无穷小. (B )()G x 与()g x 是同阶的无穷小. (C )()G x 是比()g x 高阶的无穷小.(D )()G x 是比()g x 低阶的无穷小.6.极限nnn nnn 333lim 21+++∞→"= .7.如果一物体沿直线运动,物体的运动速度的变化曲线如图3所示(单位省略),则物体在这段位移过程中的平均速度为 .8.微分方程x x y x y sind d =+的通解为 . 二、1.设函数ln sec y x =,,22x ππ⎛⎞∈−⎜⎟⎝⎠.(1)讨论函数的单调区间与该函数的图形的凹凸性; (2)该曲线在哪点处的曲率半径为2?2.设()⎪⎩⎪⎨⎧=≠=∫,0,,0,d e 22x a x x t x x xt ϕ 求a 的值,使得()x ϕ在0=x 处连续,并用导数定义求(0)ϕ′.三、1.求定积分I =∫−π22d sin 1x x x .2.若()()⎪⎪⎩⎪⎪⎨⎧>+≤+=,0,11,0,112x x x x xx f 对于(,)x ∈−∞+∞,求()()∫∞−=xt t f x F d .四、1.设曲边梯形由曲线1y x x=+(0x >)与直线0y =,x a =,1x a =+所围成(其中0a >),问:当a 为何值时,曲边梯形的面积为最小,最小面积是多少?2.设一平板浸没在水中且垂直于水面(水的密度为1000kg/m 3),平板的形状为双曲四边形,即图形由双曲线2244x y −=,直线1y =与1y =−所围成(如图4所示,单位:m).(1)如果平板的上边缘与水面相齐,那么平板一侧所受到的水的总压力是多少?(2)如果水位下降,在时刻t ,水面位于y =()h t 处,且水面匀速下降,速率为0.01(m/s ),问:当水面下降至平板的中位线(即x 轴)时,平板一侧所受到的水压力的下降速率是多少?五、设函数()f x 满足方程x x f u u f x u x 2cos )(d )()(0+=−∫,求()f x .参考答案一、1.必要,充分.2.|1x y ′,因此所求切线是ln(1y x =.3.()(1)sin f x x x ′=−−,在区间(0,)2π内有唯一驻点1x =且为极大值点,因此所求最大值是(1)sin1f =−.4.()x x y x 3e 2+=′′有2个零点3x =−与0x =,且y ′′在这2个零点的左、右两侧邻近异号,因此该曲线上有2个拐点.5.2222000(sin )(0)()(sin )sin (0)sin lim lim lim 00()(0)()()(0)x x x g x g G x g x x g x g x g g x g x x g x→→→−′==⋅=⋅=−′,因此当0x →时,()G x 是比()g x 高阶的无穷小,故选(C ).6.利用定积分的定义,得3ln 2d 3333lim1021==+++∫∞→x n x nn n n n ". 7.1011()d 101v v t t =−∫,根据定积分的几何意义,其中的定积分101()d v t t ∫是图中的图形面积,即10111118()d [4(61)4(86)(24)(108)]1019223v v t t ==⋅⋅−+⋅−++⋅−=−∫. 8.通解为()11d d sin 1cose e d sin d x x x x x x Cy x C x x C x xx−⎛⎞−+∫∫=+=+=⎜⎟⎝⎠∫∫. 二、1.(1)tan y x ′=,在,02π⎛⎞−⎜⎟⎝⎠内,0y ′<;在0,2π⎛⎞⎜⎟⎝⎠内,0y ′>.故,02π⎛⎤−⎜⎥⎝⎦是单调减少区间,0,2π⎡⎞⎟⎢⎣⎠是单调增加区间;而由2sec 0(,)22y x x ππ⎛⎞′′=>∈−⎜⎟⎝⎠得,该函数的图形是凹的. (2)322|||cos |(1)y K x y ′′==′+.由12K =,得3x π=±,故曲率半径为2的点是(,ln 2)3π±.2.11e e 2lim d e lim2224020=−=→→∫xx x xxt x xt ,因此1=a 时,()x ϕ在0=x 处连续. 22020d e lim1d e lim)0()(lim)0(22x x t xx t xx x xt x x xt x x −=−=−=′∫∫→→→ϕϕϕ02e 2e 16lim 21e e 2lim 22224040=−=−−=→→xx x x x x x x x .三、 1.I =∫∫∫−=ππππ222022d cos d cos d |cos |x x x x x x x x x[][]πππ22202sin 2cos 2sin sin 2cos 2sin xx x x xxx x x x −+−−+=4222−+=ππ.2.当0x <时,()2arctan d 112π+=+=∫∞−x t t x F x ; 当0x ≥时,()2arctan 2]arctan 2[2d )1(1d 11002ππ+=+=+++=∫∫∞−x t t t t t t x F xx . 因此()⎪⎪⎩⎪⎪⎨⎧≥+<+=.0,2arctan 2,0,2arctan x x x x x F ππ 四、1.曲边梯形的面积1111()()d ln2a a a A a x x a x a ++=+=++∫, 11()11A a a a ′=+−+.令()0A a ′=,解得在0a >范围内的唯一驻点12a −=,易知该点为极小值点,因此必为最小值点.而其最小面积min 1)ln 22A A −==+ 2.(1)水压力111000(1)2000F g y y g y −=−=∫∫10120002ln(10004ln 2g y g +⎤=++=+⎥⎦.(2)在时刻t ,水面位于()y h t =,平板一侧所受到的水压力为()(()1111000[()]1000()1000h t h t h t F g h t y y gh t y g y −−−=−=−∫∫∫,上式两边对t 求导,得(1d d 1000d d h t F hg y t t−=∫, 由于d 0.01d ht=−,因此,当水面下降至平板的中位线(即x 轴)时,平板一侧所受到的水压力的下降速率为01d 10102ln(d F g y g y t −−⎤=−=−++⎥⎦∫154ln 2g =−+. 五、原方程为x x f u u f x u u f u xx 2cos )(d )(d )(0+=−∫∫,代入0x =,得(0)1f =−.上式两端对x 求导,得x x f u u f x2sin 2)(d )(0−′=−∫,代入0x =,得(0)0f ′=.上式两端再对x 求导,得x x f x f 2cos 4)()(−′′=−.故()y f x =满足初值问题⎩⎨⎧=′−==+′′==.0|,1|,2cos 400x x y y x y y 解得124cos sin cos 23y C x C x x =+−,代入初始条件解得113C =,20C =.故14()cos cos 233f x x x =−.。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=log(a,(x+y))的定义域为D={(x,y)|x+y>0}。

2、二重积分22ln(x+y)dxdy的符号为负号。

3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(x+y-e-1)dxdy,其值为1/2.4、设曲线L的参数方程表示为{x=φ(t),y=ψ(t)}(α≤t≤β),则弧长元素ds=sqrt(φ'(t)^2+ψ'(t)^2)dt。

5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∬(x+y+1)ds=27√2.6、微分方程y'=ky(1-y)的通解为y=Ce^(kx)/(1+Ce^(kx)),其中C为任意常数。

7、方程y(4)d^4y/dx^4+tan(x)y'''=0的通解为y=Acos(x)+Bsin(x)+Ccos(x)e^x+Dsin(x)e^x,其中A、B、C、D为任意常数。

8、级数∑n(n+1)/2的和为S=1/2+2/3+3/4+。

+n(n+1)/(n+1)(n+2)=n/(n+2),n≥1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。

2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x^2+y^2等于(B)x。

3、设Ω:x+y+z≤1,z≥0,则三重积分I=∭Ω2z dV等于(C)∫0^π/2∫0^1-rsinθ∫0^1-r sinθ-zrdrdφdθ。

4、球面x^2+y^2+z^2=4a^2与柱面x^2+y^2=2ax所围成的立体体积V=(A)4∫0^π/4∫0^2acosθ∫0^4a-rsinθ rdrdφdθ。

《高等数学》期末试卷1(同济六版上)及参考答案[2]

《高等数学》期末试卷1(同济六版上)及参考答案[2]

《高等数学》期末试卷1(同济六版上)及参考答案[2]一、选择题(本题共5小题;每小题3分;共15分)1、若函数xx x f =)(;则=→)(lim 0x f x ( ).A 、0B 、1-C 、1D 、不存在 2、下列变量中;是无穷小量的为( ). A 、1ln(0)x x +→ B 、ln (1)x x → C 、cos (0)x x → D 、22(2)4x x x -→- 3、满足方程0)(='x f 的x 是函数)(x f y =的( ).A 、极大值点B 、极小值点C 、驻点D 、间断点 4、函数)(x f 在0x x =处连续是)(x f 在0x x =处可导的( ).A 、必要但非充分条件B 、充分但非必要条件C 、充分必要条件D 、既非充分又非必要条件5、下列无穷积分收敛的是( ). A 、⎰+∞sin xdx B 、dx ex⎰+∞-02 C 、dx x ⎰+∞1D 、dx x⎰+∞01二、填空题(本题共5小题;每小题3分;共15分)6、当k= 时;2,0(),x e x f x x k x ⎧≤⎪=⎨+>⎪⎩在0=x 处连续.7、设x x y ln +=,则_______________dxdy=. 8、曲线x e y x-=在点(0;1)处的切线方程是 .9、若⎰+=C x dx x f 2sin )(;C 为常数;则()____________f x =10、定积分dx x xx ⎰-+554231sin =____________.三、计算题(本题共6小题;每小题6分;共36分)11、求极限 xx x 2sin 24lim 0-+→.12、求极限 2cos 12limxt x e dtx-→⎰.13、设)1ln(25x x e y +++=;求dy .14、设函数)(x f y =由参数方程⎩⎨⎧=+=t y t x arctan )1ln(2所确定;求dy dx 和22dx yd .15、求不定积分212sin 3dx x x ⎛⎫+ ⎪⎝⎭⎰.16、设,0()1,01x e x f x x x ⎧<⎪=⎨≥⎪+⎩;求20(1)f x dx -⎰.四、证明题(本题共2小题;每小题8分;共16分)17、证明:dx x x n m )1(1-⎰=dx x x m n )1(1-⎰ (N n m ∈,).18、利用拉格朗日中值定理证明不等式:当0a b <<时;ln b a b b ab a a--<<.五、应用题(本题共2小题,第19小题8分;第20小题10分,共18分)19、要造一圆柱形油罐;体积为V ;问底半径r 和高h 各等于多少时;才能使表面积最小?20、设曲线2x y =与2y x =所围成的平面图形为A ;求 (1)平面图形A 的面积;(2)平面图形A 绕y 轴旋转所产生的旋转体的体积.《高等数学》试卷(同济六版上)答案一.选择题(每小题3分;本题共15分) 1-5 DBCAB 二.填空题(每小题3分;本题共15分)6、17、1xx+ 8、1y = 9、2cos2x 10、0 三、计算题(本题共6小题;每小题6分;共36分)11、解:x x x 2sin 24lim-+→x →= 3分01128x →== 6分12、解:2cos 12limxdt e x tx ⎰-→2cos0sin lim 2xx xe x-→-= 3分12e=-6分 13、解:)111(1122xxx y ++++=' 4分211x +=6分14、解:t t t t dx dy 21121122=++= 3分222232112()241d y t d dydxt dtt dt dxdx t t -+===-+ 6分15、解:212122sin(3)sin(3)(3)23dx d x x x +=-++⎰⎰ 3分 12cos(3)2C x=++ 6分 16、解:⎰⎰⎰⎰--+==-011112d )(d )(d )(d )1(x x f x x f x x f x x f 0110d 1xxe dx x -=++⎰⎰ 3分1010|ln(1)x e x -=++11ln 2e -=-+ 6分四、证明题(本题共2小题;每小题8分;共16分) 17、证明:11(1)(1)m n m n x x dx t t dt -=--⎰⎰ 4分11(1)(1)m nm nt t dt x x dx=-=-⎰⎰ 8分18、、证明:设f (x )=ln x , [,]x a b ∈;0a b <<显然f (x )在区间[,]a b 上满足拉格朗日中值定理的条件, 根据定理, 有()()'()(),.f b f a f b a a b ξξ-=-<< 4分由于1()f x x'=, 因此上式即为 l n l n b a b a ξ--=.又由.a b ξ<< b a b a b ab aξ---∴<< 当0a b <<时;ln b a b b a b a a--<< 8分五、应用题(本题共2小题,第19小题8分;第20小题10分,共18分) 19、解:2V r h π=∴表面积2222222222V V S r rh r rr r rππππππ=+=+=+ 4分令22'40VS r r π=-= 得r =2h =答:底半径r =2h = 8分 20、解:曲线2x y =与2y x =的交点为(1;1); 2分于是曲线2x y =与2y x =所围成图形的面积A 为31]3132[)(10210232=-=-=⎰x x dx x x A 6分A 绕y 轴旋转所产生的旋转体的体积为:()πππ10352)(10521042=⎥⎦⎤⎢⎣⎡-=-=⎰y y dy y y V 10分。

高等数学同济(下册)期末考试题与答案5套

高等数学同济(下册)期末考试题与答案5套

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y 的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰22013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

初等数学(下册)考试试卷(一)之五兆芳芳创作一、填空题(每小题3分,合计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=.2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为.3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分暗示为,其值为.4、设曲线L 的参数方程暗示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds .5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( . 6、微分方程xyx y dxdytan +=的通解为. 7、方程04)4(=-y y 的通解为. 8、级数∑∞=+1)1(1n n n 的和为.二、选择题(每小题2分,合计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x .2、设),()(xy xf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 .3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰20213cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d .4、球面22224a z y x =++与柱面ax y x 222=+所围成的立体体积V=( ) (A )⎰⎰-2cos 202244πθθa dr r a d ; (B )⎰⎰-20cos 202244πθθa dr r a r d ;(C )⎰⎰-20cos 202248πθθa dr r a r d ; (D )⎰⎰--22cos 20224ππθθa dr r a r d .5、设有界闭区域D 由分段滑腻曲线L 所围成,L 取正向,函数),(),,(y x Q y x P 在D 上具有一阶连续偏导数,则⎰=+L Qdy Pdx )((A )⎰⎰∂∂-∂∂Ddxdy xQ yP )(; (B )⎰⎰∂∂-∂∂Ddxdy xP y Q )(;(C )⎰⎰∂∂-∂∂Ddxdy yQ x P )(; (D )⎰⎰∂∂-∂∂Ddxdy yP x Q )(.6、下列说法中错误的是( )(A ) 方程022=+''+'''y x y y x 是三阶微分方程; (B ) 方程x y dxdyx dxdy y sin =+是一阶微分方程;(C ) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D )方程xy x dxdy 221=+是伯努利方程.7、已知曲线)(x y y =经过原点,且在原点处的切线与直线062=++y x 平行,而)(x y 满足微分方程052=+'-''y y y ,则曲线的方程为=y ( ) (A )x e x 2sin -; (B ))2cos 2(sin x x e x -; (C ))2sin 2(cos x x e x -; (D )x e x 2sin .8、设0lim =∞→n n nu , 则∑∞=1n nu ( )(A )收敛; (B )发散; (C )不一定; (D )绝对收敛. 三、求解下列问题(合计15分) 1、(7分)设g f ,均为连续可微函数.)(),,(xy x g v xy x f u +==,求yu x u ∂∂∂∂,.2、(8分)设⎰+-=tx t x dz z f t x u )(),(,求tu x u ∂∂∂∂,.四、求解下列问题(合计15分). 1、计较=I ⎰⎰-2022x ydy e dx .(7分)2、计较⎰⎰⎰Ω+=dV y x I )(22,其中Ω是由x 21,222===+z z z y 及所围成的空间闭区域(8分)五、(13分)计较⎰++-=Ly x ydxxdy I 22,其中L 是xoy 面上的任一条无重点且分段滑腻不经过原点)0,0(O 的封锁曲线的逆时针标的目的. 六、(9分)设对任意)(,,x f y x 满足方程)()(1)()()(y f x f y f x f y x f -+=+,且)0(f '存在,求)(x f .七、(8分)求级数∑∞=++--11212)2()1(n n nn x 的收敛区间.初等数学(下册)考试试卷(二)1、设z y x z y x 32)32sin(2-+=-+,则=∂∂+∂∂yz xz .2、=+-→→xyxyy x 93lim.3、设⎰⎰=202),(xxdy y x f dx I ,互换积分次序后,=I .4、设)(u f 为可微函数,且,0)0(=f 则⎰⎰≤+→=++222)(1lim2230t y x t d y x f t σπ.5、设L 为取正向的圆周422=+y x ,则曲线积分⎰=-++Lx x dy x ye dx ye y )2()1(.6、设→→→+++++=kxy z j xz y i yz xA )()()(222,则=A div .7、通解为x x e c e c y 221-+=的微分方程是. 8、设⎩⎨⎧<<<≤--=ππx x x f 0,10,1)(,则它的Fourier 展开式中的=n a .二、选择题(每小题2分,合计16分). 1、设函数⎪⎩⎪⎨⎧=+≠++=0,00,),(2222422y x y x yx xy y x f ,则在点(0,0)处( )(A )连续且偏导数存在; (B )连续但偏导数不存在; (C )不连续但偏导数存在; (D )不连续且偏导数不存在. 2、设),(y x u 在平面有界区域D 上具有二阶连续偏导数,且满足02≠∂∂∂y x u及 +∂∂22x u 022=∂∂yu ,则( )(A )最大值点和最小值点肯定都在D 的内部; (B )最大值点和最小值点肯定都在D 的鸿沟上; (C )最大值点在D 的内部,最小值点在D 的鸿沟上; (D )最小值点在D 的内部,最大值点在D 的鸿沟上.3、设平面区域D :1)1()2(22≤-+-y x ,若⎰⎰+=Dd y x I σ21)(,⎰⎰+=Dd y x I σ32)(则有( )(A )21I I <; (B ) 21I I =; (C )21I I >; (D )不克不及比较.4、设Ω是由曲面1,,===x x y xy z 及0=z 所围成的空间区域,则⎰⎰⎰Ωdxdydz z xy 32=( ) (A )3611; (B )3621; (C )3631 ; (D )3641. 5、设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ)(βα≤≤t ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ, 则曲线积分⎰=Lds y x f ),(( )(A) ⎰βαψϕdt t t f ))(),((; (B)⎰'+'αβψϕψϕdt t t t t f )()())(),((22 ;(C) ⎰'+'βαψϕψϕdt t t t t f )()())(),((22; (D)⎰αβψϕdt t t f ))(),((.6、设∑是取外侧的单位球面1222=++z y x , 则曲面积分⎰⎰∑++zdxdy ydzdx xdydz =( )(A) 0 ; (B) π2 ; (C)π ; (D)π4.7、下列方程中,设21,y y 是它的解,可以推知21y y +也是它的解的方程是( ) (A)0)()(=++'x q y x p y ; (B) 0)()(=+'+''y x q y x p y ;(C))()()(x f y x q y x p y =+'+''; (D)0)()(=+'+''x q y x p y .8、设级数∑∞=1n n a 为一交织级数,则( )(A)该级数必收敛; (B)该级数必发散; (C)该级数可能收敛也可能发散; (D)若)0(0→→n a n ,则必收敛.三、求解下列问题(合计15分)1、(8分)求函数)ln(22z y x u ++=在点A (0,1,0)沿A 指向点B (3,-2,2)的标的目的的标的目的导数.2、(7分)求函数)4(),(2y x y x y x f --=在由直线0,0,6===+x y y x 所围成的闭区域D 上的最大值和最小值. 四、求解下列问题(合计15分) 1、(7分)计较⎰⎰⎰Ω+++=3)1(z y x dvI ,其中Ω是由0,0,0===z y x 及1=++z y x所围成的立体域.2、(8分)设)(x f 为连续函数,定义⎰⎰⎰Ω++=dv y x f z t F )]([)(222,其中{}222,0|),,(t y x h z z y x ≤+≤≤=Ω,求dtdF .五、求解下列问题(15分)1、(8分)求⎰-+-=L x x dy m y e dx my y e I )cos ()sin (,其中L 是从A (a ,0)经2x ax y -=到O (0,0)的弧.2、(7分)计较⎰⎰∑++=dxdy z dzdx y dydz x I 222,其中∑是)0(222a z z y x ≤≤=+ 的外侧.六、(15分)设函数)(x ϕ具有连续的二阶导数,并使曲线积分⎰'++-'Lx dy x ydx xe x x )(])(2)(3[2ϕϕϕ与路径无关,求函数)(x ϕ.初等数学(下册)考试试卷(三)一、填空题(每小题3分,合计24分) 1、设⎰=yzxz tdt e u 2, 则=∂∂zu. 2、函数)2sin(),(y x xy y x f ++=在点(0,0)处沿)2,1(=l 的标的目的导数)0,0(lf ∂∂=.3、设Ω为曲面0,122=--=z y x z 所围成的立体,如果将三重积分⎰⎰⎰Ω=dv z y x f I ),,(化为先对z 再对y 最后对x 三次积分,则I=.4、设),(y x f 为连续函数,则=I⎰⎰=+→Dt d y x f t σπ),(1lim 2,其中222:t y x D ≤+.5、⎰=+L ds y x )(22,其中222:a y x L =+.6、设Ω是一空间有界区域,其鸿沟曲面Ω∂是由有限块分片滑腻的曲面所组成,如果函数),,(z y x P ,),,(z y x Q ,),,(z y x R 在Ω上具有一阶连续偏导数,则三重积分与第二型曲面积分之间有关系式:, 该关系式称为公式.7、微分方程96962+-=+'-''x x y y y 的特解可设为=*y .8、若级数∑∞=--11)1(n pn n 发散,则p .二、选择题(每小题2分,合计16分)1、设),(b a f x '存在,则xb x a f b a x f x ),(),(lim 0--+→=( )(A )),(b a f x ';(B )0;(C )2),(b a f x ';(D )21),(b a f x '.2、设2y x z =,结论正确的是( )(A )022>∂∂∂-∂∂∂x y z y x z ; (B )022=∂∂∂-∂∂∂x y z y x z ;(C )022<∂∂∂-∂∂∂x y z y x z ; (D )022≠∂∂∂-∂∂∂xy zy x z .3、若),(y x f 为关于x 的奇函数,积分域D 关于y 轴对称,对称部分记为21,D D ,),(y x f 在D 上连续,则⎰⎰=Dd y x f σ),(( )(A )0;(B )2⎰⎰1),(D d y x f σ;(C )4⎰⎰1),(D d y x f σ; (D)2⎰⎰2),(D d y x f σ.4、设Ω:2222R z y x ≤++,则⎰⎰⎰Ω+dxdydz y x )(22=( )(A )538R π; (B )534R π; (C )5158R π; (D )51516R π. 5、设在xoy 面内有一散布着质量的曲线L ,在点),(y x 处的线密度为),(y x ρ,则曲线弧L的重心的x 坐标x 为( ) (A)x =⎰Lds y x x M),(1ρ; (B )x =⎰Ldx y x x M),(1ρ;(C )x =⎰L ds y x x ),(ρ; (D )x =⎰Lxds M1, 其中M 为曲线弧L的质量.6、设∑为柱面122=+y x 和1,0,0===z y x 在第一卦限所围成部分的外侧,则 曲面积分⎰⎰∑++ydxdz x xzdydz zdxdy y 22=( )(A )0; (B )4π-; (C )245π; (D )4π.7、方程)(2x f y y ='-''的特解可设为( )(A )A ,若1)(=x f ; (B )x Ae ,若x e x f =)(; (C )E Dx Cx Bx Ax ++++234,若x x x f 2)(2-=; (D ))5cos 5sin (x B x A x +,若x x f 5sin )(=. 8、设⎩⎨⎧≤<<≤--=ππx x x f 01,1)(,则它的Fourier 展开式中的n a 等于( )(A )])1(1[2n n --π; (B )0; (C )πn 1; (D )πn 4. 三、(12分)设t t x f y ),,(=为由方程 0),,(=t y x F 确定的y x ,的函数,其中F f ,具有一阶连续偏导数,求dxdy.四、(8分)在椭圆4422=+y x 上求一点,使其到直线0632=-+y x 的距离最短.五、(8分)求圆柱面y y x 222=+被锥面22y x z +=战争面0=z 割下部分的面积A.六、(12分)计较⎰⎰∑=xyzdxdy I ,其中∑为球面 1222=++z y x 的0,0≥≥y x 部分 的外侧.七、(10分)设x x d x df 2sin 1)(cos )(cos +=,求)(x f .八、(10分)将函数)1ln()(32x x x x f +++=展开成x 的幂级数.初等数学(下册)考试试卷(一)参考答案一、1、当10<<a 时,1022≤+<y x ;当1>a 时,122≥+y x ; 2、负号; 3、23;110⎰⎰⎰⎰-+=Dye eydx dy d σ; 4、dt t t )()(22ψϕ'+';5、180π;6、Cx xy =sin ;7、xxe C eC x C x C y 2423212sin 2cos-+++=; 8、1;二、1、D ; 2、D ; 3、C ; 4、B ; 5、D ; 6、B ; 7、A ; 8、C ; 三、1、21f y f xu '+'=∂∂;)(xy x g x yu+'=∂∂; 2、)()(t x f t x f x u --+=∂∂;)()(t x f t x f tu-++=∂∂;四、1、)1(21420200220222-----===⎰⎰⎰⎰⎰e dy ye dx e dy dy e dx y y y x y ;2、⎰⎰⎰⎰⎰⎰=+=πππθθ2020212022132233142rdz r dr d dz r dr d I柱面坐标;五、令2222,yx x Q y x y P +=+-=则xQ y x x y y P ∂∂=+-=∂∂22222)(,)0,0(),(≠y x ;于是①当L 所围成的区域D 中不含O (0,0)时,xQ y P ∂∂∂∂,在D 内连续.所以由Green 公式得:I=0;②当L 所围成的区域D 中含O (0,0)时,xQy P ∂∂∂∂,在D 内除O (0,0)外都连续,此时作曲线+l 为)10(222<<=+εεy x ,逆时针标的目的,并假定*D 为+L 及-l 所围成区域,则 六、由所给条件易得: 又xx f x x f x f x ∆-∆+='→∆)()(lim )(0 =x x f x f x f x f x f x ∆-∆-∆+→∆)()()(1)()(lim 0即)0()(1)(2f x f x f '=+'c x f x f +⋅'=∴)0()(arctan 即 ])0(tan[)(c x f x f +'=又 0)0(=f 即Z k k c ∈=,π))0(tan()(x f x f '=∴七、令t x =-2,考虑级数∑∞=++-11212)1(n n nn t∴当12<t 即1<t 时,亦即31<<x 时所给级数绝对收敛;当1<t 即3>x 或1<x 时,原级数发散;当1-=t 即1=x 时,级数∑∞=++-11121)1(n n n 收敛; 当1=t 即3=x 时,级数∑∞=+-1121)1(n nn 收敛; ∴级数的半径为R=1,收敛区间为[1,3].初等数学(下册)考试试卷(二)参考答案一、1、1; 2、-1/6; 3、⎰⎰⎰⎰+202/4222/),(),(yy y dx y x f dy dx y x f dy ; 4、)0(32f ';5、π8-;6、)(2z y x ++;7、02=-'+''y y y ;8、0;二、1、C ; 2、B ; 3、A ; 4、D ; 5、C ; 6、D ; 7、B ; 8、C ;三、1、函数)ln(22z y x u ++=在点A (1,0,1)处可微,且)1,0,1(221zy x x u A ++=∂∂2/1=;01)1,0,1(2222=+⋅++=∂∂zy y zy x yu A ;而),1,2,2(-==AB l 所以)31,32,32(-=l,故在A 点沿AB l =标的目的导数为:=∂∂Alu Axu ∂∂αcos ⋅+Ayu ∂∂βcos ⋅+Azu ∂∂γcos ⋅2、由⎪⎩⎪⎨⎧=--==-+--='0)24(0)1()4(22y x x f xy y x xy f yx 得D 内的驻点为),1,2(0M 且4)1,2(=f ,又0)0,(,0),0(==x f y f而当0,0,6≥≥=+y x y x 时,)60(122),(23≤≤-=x x x y x f令0)122(23='-x x 得4,021==x x于是相应2,621==y y 且.64)2,4(,0)6,0(-==f f),(y x f ∴在D 上的最大值为4)1,2(=f ,最小值为.64)2,4(-=f四、1、Ω的联立不等式组为⎪⎩⎪⎨⎧--≤≤-≤≤≤≤Ωy x z x y x 101010: 所以⎰⎰⎰---++++=1010103)1(xy x z y x dzdy dx I2、在柱面坐标系中 所以五、1、连接→OA ,由Green 公式得:2、作帮助曲面⎩⎨⎧≤+=∑2221:ay x az ,上侧,则由Gauss 公式得:⎰⎰∑=I +⎰⎰∑1⎰⎰∑-1=⎰⎰⎰⎰∑∑+∑-11=⎰⎰⎰⎰⎰≤≤≤+≤+-++az z y x a y x dxdy adxdydz z y x 0,2222222)(2=⎰⎰⎰≤+-az y x a zdxdy dz 042222π六、由题意得:)()(2)(32x xe x x x ϕϕϕ''=+-' 即x xe x x x 2)(2)(3)(=+'-''ϕϕϕ特征方程0232=+-r r ,特征根2,121==r r对应齐次方程的通解为:x x e c e c y 221+=又因为2=λ是特征根.故其特解可设为:x e B Ax x y 2*)(+= 代入方程并整理得:1,21-==B A即x e x x y 2*)2(21-=故所求函数为:x x x e x x e c e c x 2221)2(21)(-++=ϕ初等数学(下册)考试试卷(三)参考答案一、1、2222z x z y xeye -; 2、5; 3、⎰⎰⎰------1111102222),,(x x y x dz z y x f dy dx ;4、325);0,0(a f π、; 6、⎰⎰⎰⎰⎰+Ω∂Ω++=∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z Ry Q x P )(, Gauss公式; 7、C Bx Ax ++2 8、0≤P .二、1、C ; 2、B ; 3、A ; 4、C ; 5、A ; 6、D ; 7、B ; 8、B三、由于dt t x f dx t x f dy t x ),(),('+'=,0='+'+'dt F dy F dx F t y x由上两式消去dt ,即得:y t t x t t x F f F F f F f dx dy ''+'''-'⋅'=四、设),(y x 为椭圆4422=+y x 上任一点,则该点到直线0632=-+y x 的距离为13326yx d --=;令)44()326(222-++--=y x y x L λ,于是由:得条件驻点:)53,58(),53,58(),53,58(),53,38(4321----M M M M 依题意,椭圆到直线一定有最短距离存在,其中1313133261min =--=M yx d 即为所求.五、曲线⎪⎩⎪⎨⎧=++=yy x y x z 22222在yoz 面上的投影为⎩⎨⎧=≤≤=0)0(22x z y yz于是所割下部分在yoz⎪⎩⎪⎨⎧≤≤≤≤y z y D yz 2020:, 六、将∑分为上半部分2211:y x z --=∑和下半部分2221:y x z ---=∑,21,∑∑在面xoy 上的投影域都为:,0,0,1:22≥≥≤+y x y x D xy于是: ⎰⎰⎰⎰∑--=1221dxdy y x xyzdxdy xyD1511cos sin 2122=⋅-⋅=⎰⎰ρρρθθρθπd d 极坐标; ⎰⎰⎰⎰∑=----=2151))(1(22dxdy y x xy xyzdxdy xyD , ⎰⎰⎰⎰∑∑+=∴21I =152 七、因为x x d x df 2sin 1)(cos )(cos ==,即x x f 2sin 1)(cos +='所以22)(x x f -='c x x x f +-=∴3312)(八、)1ln()1ln()]1)(1ln[()(22x x x x x f +++=++=)1()1ln(11-∈-=+∑∞=-uununn n又]1,1(,。

同济大学大一高等数学期末试题精确答案

同济大学大一高等数学期末试题精确答案

课程名称:《高等数学》试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟适用层次:适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不得分则在小题大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。

课程名称:高等数学A (考试性质:期末统考(A 卷)一、单选题(共15分,每小题3分)C 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在D 2.若x y z ln =,则dz 等于( ).C 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f).题 号(型)一二三四 核分人 得 分总分评卷人B 4. 4.若1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定A 5.曲线222x y z z x y -+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z =-1 .2.交 换ln 1(,)e xI dx f x y dy =⎰⎰的积分次序后,I =___I =1(,)y eedy f x y dx ⎰⎰__________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为→→→-+-k j i 242 .4. 已知0!nxn x e n ∞==∑,则x xe -=1(1)!n n n x n +∞=-∑ . 5. 函数332233z x y x y =+--的极小值点是 (2,2).三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctany z y x=, 求z x ∂∂,z y ∂∂.解:222yx y x z +-=∂∂; (3分)y z ∂∂=x y arctan +22y x xy +2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.解:记切点000(,,)x y z 则切平面的法向量为0002(2,3,)n x y z =r满足:00023232x y z ==- ,切点为:(1,1,2)-或(1,1,2)-- (3分),切平面:23299x y z or -+=- ( 4分), 法线方程分别为:112232x y z +-+==-或者112232x y z -+-==- ( 6分)3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量1322l i j =+r r r方向的方向导数。

高等数学同济版下册期末考四套试题及答案

高等数学同济版下册期末考四套试题及答案

高等数学同济版下册期末考四套试题及答案高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、$z=\log_a(x+y)$ $(a>0)$的定义域为$D=\{(x,y)|x+y>0\}$。

2、二重积分$\iint_{|x|+|y|\leq1}2\ln(x+y)dxdy$的符号为正。

3、由曲线$y=\ln x$及直线$x+y=e+1$,$y=1$所围图形的面积用二重积分表示为$\iint_D dxdy$,其值为$e-2$。

4、设曲线$L$的参数方程表示为$\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}$$(\alpha\leqx\leq\beta)$,则弧长元素$ds=\sqrt{\left(\dfrac{dx}{dt}\right)^2+\left(\dfrac{dy}{dt}\right)^2}dt$。

5、设曲面$\Sigma$为$x+y=9$介于$z=0$及$z=3$间的部分的外侧,则$(x+y+1)ds=\iint_{\Sigma}(x+y+1)dS=27$。

6、微分方程$\dfrac{dy}{dx}=f(x,y)$的通解为$y=\varphi(x,c)$,其中$c$为任意常数,$\varphi(x,c)$是微分方程的一族特解。

7、方程$y^{(4)}+y'''-4y=0$的通解为$y=c_1e^x+c_2e^{-x}+c_3\cos x+c_4\sin x-\dfrac{1}{2}x\cos x$。

8、级数$\sum\limits_{n=1}^{\infty}\dfrac{n(n+1)}{2}$的和为$\dfrac{1}{6}\sum\limits_{n=1}^{\infty}n(n+1)(n+2)$,再利用$\sum\limits_{n=1}^{\infty}n(n+1)(n+2)=\dfrac{1}{4}\sum\limits _{n=1}^{\infty}n(n+1)(2n+1)$,最终得到$\dfrac{1}{12}\sum\limits_{n=1}^{\infty}n(2n+1)(n+1)=\dfrac{1}{12}\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot 4=\dfrac{1}{3}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高数》试卷1(上)
一.选择题(将答案代号填入括号内,每题3分,共30分).
1.下列各组函数中,是相同的函数的是( ).
(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 (
)g x =(C )()f x x = 和 (
)2
g x =
(D )()||
x f x x
=
和 ()g x =1 2.函数()
00x f x a x ≠=⎨⎪
=⎩ 在0x =处连续,则a =( ).
(A )0 (B )1
4
(C )1 (D )2
3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).
(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).
(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微
5.点0x =是函数4
y x =的( ).
(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点
6.曲线1
||
y x =
的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.
211
f dx x x
⎛⎫' ⎪⎝⎭⎰
的结果是( ). (A )1f C x ⎛⎫
-+ ⎪⎝⎭
(B )1f C x ⎛⎫
--+ ⎪⎝⎭
(C )1f C x ⎛⎫
+ ⎪⎝⎭
(D )1f C x ⎛⎫
-+ ⎪⎝⎭
8.
x x dx
e e -+⎰的结果是( ).
(A )arctan x
e C + (B )arctan x
e
C -+ (C )x x e e C --+ (
D )ln()x x e e C -++
9.下列定积分为零的是( ).
(A )424arctan 1x dx x π
π-+⎰ (B )44
arcsin x x dx ππ-⎰ (C )112x x
e e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()
f x 为连续函数,则()1
2f x dx '⎰等于( ).
(A )()()20f f - (B )
()()11102f f -⎡⎤⎣⎦(C )()()1
202f f -⎡⎤⎣
⎦(D )()()10f f -
二.填空题(每题4分,共20分)
1.设函数()21
00x e x f x x a x -⎧-≠⎪
=⎨⎪=⎩
在0x =处连续,则a =
.
2.已知曲线()y f x =在2x =处的切线的倾斜角为5
6
π,则()2f '=.
3.2
1
x
y x =-的垂直渐近线有条. 4.
()21ln dx
x x =
+⎰.
5.
()4
22
sin cos x
x x dx π
π
-
+=
⎰.
三.计算(每小题5分,共30分) 1.求极限
①21lim x
x x x →∞+⎛⎫
⎪⎝⎭ ②()
2
0sin 1
lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①
()()13dx x x ++⎰
②()0a > ③x xe dx -⎰
四.应用题(每题10分,共20分) 1. 作出函数3
2
3y x x =-的图像.
2.求曲线2
2y x =和直线4y x =-所围图形的面积.
《高数》试卷1参考答案
一.选择题
1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题
1.2-2.
3
3
-3.24.arctanln x c
+5.2
三.计算题
1①2e②1
6
2.
1
1
x
y
x y
'=
+-
3. ①11
ln||
23
x
C
x
+
+
+
②22
ln||
x a x C
-++③()1
x
e x C
-
-++
四.应用题
1.略2.18
S=。

相关文档
最新文档