幼儿园数学准备阅读技能:儿童对话的影响

合集下载

幼儿园教育的五大领域及教育目标探讨

幼儿园教育的五大领域及教育目标探讨

幼儿园教育的五大领域及教育目标探讨幼儿园是儿童最初接触教育的场所,也是儿童智力、情感、社会、体育、艺术全面发展的重要阶段。

为了促进儿童的全面发展,幼儿园教育通常按照五大领域进行分类,分别是:语言沟通、数学思维、科学探究、艺术创造、身体运动。

本文将从五大领域的教育目标展开探讨。

一、语言沟通语言沟通是幼儿园教育的基础,也是儿童发展的重要方面。

幼儿园教育的目标是帮助儿童掌握基本的语言表达技能,包括听、说、读、写四个方面,从而提高儿童的语言沟通能力。

具体目标如下:1. 培养儿童的听力和口语表达能力,能够听懂并理解简单的语言表达。

2. 培养儿童的阅读能力,能够阅读简单的绘本和图画书。

3. 培养儿童的写作能力,能够简单地表达自己的想法和感受。

4. 培养儿童的语言交流技能,能够与他人进行简单的对话和交流。

二、数学思维数学思维是幼儿园教育的重要领域之一,旨在帮助儿童掌握数学概念和方法,提高儿童的数学思维能力。

具体目标如下:1. 培养儿童的数学概念,如大小、形状、数量等。

2. 培养儿童的数学计算能力,如简单的加减乘除运算。

3. 培养儿童的数学推理能力,如根据已知条件推出未知结果。

4. 培养儿童的数学问题解决能力,如解决简单的实际问题。

三、科学探究科学探究是幼儿园教育的另一个重要领域,旨在培养儿童的科学探究能力和科学素养。

具体目标如下:1. 培养儿童的观察能力和实验能力,如观察自然界和简单的实验操作。

2. 培养儿童的科学知识,如天文、地理、生物、物理等基本科学概念。

3. 培养儿童的科学思维,如探究问题、发现规律、提出假设等。

4. 培养儿童的科学探究兴趣,激发儿童对科学的热爱和好奇心。

四、艺术创造艺术创造是幼儿园教育的另一个重要领域,旨在培养儿童的艺术素养和创造能力。

具体目标如下:1. 培养儿童的音乐欣赏能力,如听懂简单的音乐节奏和旋律。

2. 培养儿童的音乐表演能力,如简单的歌唱和舞蹈表演。

3. 培养儿童的美术创作能力,如画画、剪贴、拼图等。

幼儿语言教育数学思维 培养数学思维有助于幼儿的语言发展

幼儿语言教育数学思维 培养数学思维有助于幼儿的语言发展

幼儿语言教育数学思维培养数学思维有助于幼儿的语言发展幼儿教育是关乎孩子未来发展的重要环节,而语言教育和数学思维是其中至关重要的两个方面。

在幼儿时期,孩子正处于语言和思维发展的关键阶段,因此,培养幼儿的数学思维对于促进其语言发展具有重要的帮助和影响。

本文将讨论幼儿语言教育与数学思维的关系,并探讨如何通过数学思维的培养来促进幼儿的语言发展。

一、幼儿语言教育的重要性语言是人类最重要的交流工具,也是思维的表达方式。

对于幼儿来说,通过语言的学习和运用,他们能够更好地理解和表达自己的意思,与人进行有效的沟通。

同时,幼儿的语言能力也与其认知能力密切相关。

通过语言的学习,幼儿能够认知周围的世界,掌握各种概念,培养思维能力,提升自身的综合素质。

二、数学思维对幼儿语言发展的促进1. 培养逻辑思维数学思维讲究逻辑推理和问题解决能力,这种思维方法的运用对于幼儿的语言发展具有重要的帮助。

通过学习数学,幼儿能够培养逻辑思维能力,学会观察问题和分析问题,从而更好地运用语言表达自己的思想和想法。

2. 拓展词汇量数学作为一门具有专业术语的学科,学习数学可以帮助幼儿积累专业的词汇量。

例如,学习数学中的几何概念可以让幼儿学会描述形状和位置,学习数学中的计数和排序可以让幼儿学会使用数字进行描述和比较。

这些数学词汇的学习将为幼儿的语言发展提供更多的表达方式和丰富的词汇资源。

3. 增强口头表达能力数学思维能够培养幼儿的问题解决能力和批判性思维,这对于幼儿的口头表达能力提出了更高的要求。

通过解决数学问题,幼儿需要用清晰的语言表达自己的解题思路和方法,从而提高口头表达的能力。

这种提高将对幼儿在日常生活中的交流和表达能力产生积极的影响。

三、如何培养幼儿的数学思维1. 融入数学元素在幼儿教育中,教师可以将数学元素融入到语言教育中,例如通过韵律诗或数学故事来引导幼儿学习数学概念。

这种方式可以让幼儿在语言学习中潜移默化地接触到数学,并培养他们对数学的兴趣和好奇心。

《让儿童在对话中学数学》读后感

《让儿童在对话中学数学》读后感

《让儿童在对话中学数学》读后感读后感一:《让儿童在对话中学数学》是一本2017年出版的书籍,由教育科学出版社出版。

这本书的主题是通过对话教学,帮助儿童更好地学习数学。

在阅读这本书的过程中,我深深感受到了作者对于儿童教育的热情和对于数学教育的深入理解。

在书中,作者强调了对话教学的重要性。

他认为,通过对话,可以让儿童更好地理解数学概念,掌握数学技能,同时也能增强他们的沟通能力和合作精神。

这种教学方法不仅适用于数学学科,也适用于其他学科。

在实际教学中,我发现确实如此。

比如,在英语学科中,通过对话教学,可以提高学生的口语表达能力和听力理解能力,同时也能增强他们的自信心和合作精神。

作者在书中还提到了一些实际的教学案例。

这些案例展示了如何通过对话教学,帮助学生解决一些数学问题。

从这些案例中,我看到了对话教学的实际效果。

例如,在一个案例中,学生们通过讨论和合作,成功地解决了一个复杂的数学问题。

在这个过程中,他们不仅学到了数学知识,也学会了如何合作和沟通。

在阅读这本书的过程中,我不仅学到了关于对话教学的方法和技巧,也对于儿童教育有了更深入的理解。

我认为,作为教育工作者,我们需要给予儿童足够的尊重和理解,要具备儿童视角,这样才能看清他们的需求和问题,才能在跟他们对话中充分地了解他们的所思所想。

读后感二:《让儿童在对话中学数学》这本书主要关注的是如何在数学教学中运用对话方法,以帮助儿童更好地理解和掌握数学知识。

在阅读这本书的过程中,我深感其观点和方法具有很强的现实意义和指导作用。

首先,作者强调了对话在教学中的重要性。

他认为,对话是儿童获取知识、表达思想、理解世界的重要途径。

通过对话,儿童可以与他人分享自己的观点和想法,也可以从他人的观点中获得新的启示和灵感。

这种观点与传统的填鸭式教学方法形成了鲜明的对比,也符合现代教育中注重学生主体性和参与性的理念。

其次,作者在书中详细阐述了如何运用对话方法进行数学教学。

他提出了多种实用的策略和方法,如引导式对话、开放式对话、反思式对话等。

早期阅读对幼儿语言能力发展影响的研究

早期阅读对幼儿语言能力发展影响的研究

《早期阅读对幼儿语言能力发展影响的研究》结题报告高淳县实小附幼周琳一、课题研究的意义:语言是人类社会最重要的交际工具,是思维的外壳。

现代科学的突飞猛进,知识的快速发展对未来人才语言表达和思维能力的要求越来越高。

发展语言不仅是幼儿获得知识的必要条件,而且是发展心理,尤其是发展思维的重要前提。

幼儿期是语言发展的重要时期,抓住这一关键期加强语言表达能力的培养十分必要。

随着《幼儿园教育指导纲要》的颁布,幼儿园语言教育目标明确提出了:“鼓励幼儿大胆清楚表达自己的想法和感受,尝试说明、描述简单的事物和过程,发展语言表达能力。

”同时,《纲要》也明确指出:“利用图书、绘画和其他多种方式,引发幼儿对书面阅读和书写的兴趣,培养前阅读和前书写技能。

”早期阅读作为语言教育的主要组成部分是对幼儿进行素质教育的重要内容和途径。

它不仅可以让幼儿了解一些有关书面语言的信息,增长学习书面语言的兴趣,懂得书面语言的重要性,建立良好的阅读习惯,而且有利于发掘幼儿早期阅读的潜能,促进幼儿富有个性地发展。

因此我们决定抓住关键期,从幼儿感兴趣的早期阅读入手,引导幼儿接触许多优秀的儿童文学作品,感受语言的丰富和优美,掌握大量的词汇,培养一定的口语表达能力,通过早期阅读能力的培养来发展幼儿的语言能力。

学期教育是基础教育的一个重要组成部分,美国教育学家霍华德.加纳德曾提出:人的智能包括七种,语言交往能力是第一位,而幼儿期是掌握语言的关键期,充分运用幼儿语言发展的关键期,在《幼儿园教育指导纲要》的框架下,探索幼儿语言教育实践,已成为我们教师的必然任务。

二、课题研究的主要内容及实验措施(一)树立新教育观念“教育改革,观念先行”。

传统的幼儿语言教育较多地强调听、说能力的培养。

而近年来,随着对儿童语言发展和语言学习研究的不断深入,国内外语言教育出现了一种新趋势——重视幼儿完整语言的培养。

(所谓“完整语言”即在幼儿语言发展中既强调口头语言的学习,有强调书面语言的准备,听、说、读、写四方面能力培养应紧密结合,同时进行。

《让儿童在对话中学数学》读后感

《让儿童在对话中学数学》读后感

《让儿童在对话中学数学》读后感《让儿童在对话中学数学》这本书给了我很深思的启示。

作者通过对话的方式,将数学主题悄然融入儿童的日常生活中,让孩子们在轻松愉快的氛围中学习数学。

读完这本书,我对于数学教育有了更加全新的认识和体验。

首先,我被书中所采用的对话形式所吸引。

在故事中,爸爸、妈妈和孩子们之间展开了一系列简单而有趣的对话,这些对话贯穿了整个物语的主线,也是引导孩子们学习数学的重要手段。

通过对话的形式,作者让数学不再是枯燥无味的知识点,而是与孩子们生活息息相关的事物。

这种方式不仅培养了孩子们对于数学的兴趣,同时也提高了他们的思维能力和表达能力。

其次,书中所提倡的针对性学习方式很值得借鉴。

作者在对话中灵活应用问题解决的方法,引导孩子们通过自己思考和发问的方式学习数学知识。

这种方法很有启发性,无论是在学校还是在家庭中,我们都应该注重培养孩子们的问题解决能力和自主学习能力。

通过对问题的思考和解决,孩子们可以培养出分析、判断和推理能力,这些能力在解决数学问题的同时也将对他们未来的学习和生活产生积极的影响。

我也深受书中所强调的“错误并不可怕”的观点所触动。

在数学教育中,很多孩子对犯错有着很大的抵触心理,害怕被批评或者被认为是笨的。

但事实上,数学中的错误是学习的一部分,它们可以帮助我们更好地理解和掌握知识。

在书中的对话中,父母鼓励孩子们思考和纠正错误,从而帮助他们建立了正确的学习观念。

这种积极的教育方式对于培养孩子们的学习自信心和勇于面对挑战的心态非常重要。

最后,我觉得书中所强调的家庭教育的重要性也是我深有感触的。

家庭是孩子成长的重要环境,父母在孩子教育中起着至关重要的作用。

通过这本书,我明白了家庭可以是一个孩子学习数学的重要场所,父母可以利用日常生活中的点滴进行有意义的数学教育。

与此同时,家长们也需要不断提升自己的数学素养,以便更好地引导和帮助孩子们学习数学。

总之,《让儿童在对话中学数学》通过引人入胜的对话、针对性的学习方式和积极的教育态度,为我们提供了一种全新的数学教育思路。

幼儿园的数学教育对孩子的问题解决能力有何影响

幼儿园的数学教育对孩子的问题解决能力有何影响

幼儿园的数学教育对孩子的问题解决能力有何影响数学作为一门学科,不仅仅是一种学习内容,更是一种思维方式和解决问题的工具。

在幼儿园的数学教育中,培养孩子的问题解决能力是至关重要的。

通过数学教育的引导和训练,幼儿园为孩子们提供了一个培养问题解决能力的平台。

首先,幼儿园的数学教育培养了孩子们的逻辑思维能力。

数学涉及到的许多概念和原则需要孩子们进行逻辑推理和思维操作。

在解决数学问题的过程中,孩子们需要正确地理解问题,找出合适的解决方法,并进行推理和验证。

这种逻辑思维的训练可以帮助孩子们培养分析、推理和判断问题的能力,从而提高他们的问题解决能力。

其次,幼儿园的数学教育促进了孩子们的空间思维能力。

数学涉及到的几何形状、图形和空间排列等内容,要求孩子们能够正确地感知和理解。

通过触摸、拼图和构建等活动,幼儿园帮助孩子们培养了空间想像力和观察能力。

这种空间思维的训练可以帮助孩子们更好地理解和解决涉及到形状和空间的问题,提高他们的问题解决能力。

此外,幼儿园的数学教育培养了孩子们的抽象思维能力。

数学作为一种抽象的学科,要求孩子们能够将具体问题抽象化,并运用数学方法进行解决。

在数学教育中,幼儿园通过循序渐进的教学和实践活动,帮助孩子们逐渐掌握抽象思维的技巧和方法。

这种抽象思维的训练可以帮助孩子们更好地分析、理解和解决各种问题,提高他们的问题解决能力。

此外,幼儿园的数学教育还培养了孩子们的合作意识和团队合作能力。

在数学教学中,幼儿园鼓励孩子们进行小组或团队合作,共同解决问题。

通过与他人的合作,孩子们能够互相借鉴、协商和合理分工,共同完成任务。

这种合作意识和团队合作能力的培养可以帮助孩子们学会与他人合作,通过合作解决问题,提高他们的问题解决能力。

最后,幼儿园的数学教育还培养了孩子们的自信心和解决问题的勇气。

在数学教学中,幼儿园鼓励孩子们勇于表达自己的想法和解决问题的方法。

通过正确的引导和鼓励,孩子们能够克服困难、解决问题,并获得成功的体验。

学前儿童的数学交流与合作能力

学前儿童的数学交流与合作能力

学前儿童的数学交流与合作能力数学是一门普及广泛且日益重要的学科,学前儿童的数学交流与合作能力对他们日后学习的成功至关重要。

本文将探讨学前儿童数学交流与合作能力的重要性,并提出一些促进这些能力发展的方法。

一、数学交流的重要性数学交流是指学前儿童通过语言、符号、手势等方式进行数学思维的表达和交流。

良好的数学交流能够帮助儿童更好地理解数学概念和解决问题,同时也能增强他们的语言表达能力和逻辑思维能力。

首先,数学交流有助于加深对数学概念的理解。

通过与他人讨论、分享和解释数学问题,儿童能够从不同的角度和思维方式来思考数学,进一步加深对数学概念的理解。

其次,数学交流能够促进儿童的语言表达能力。

在数学交流中,学前儿童需要清晰地用语言表达自己的想法和观点,同时也要倾听他人的意见和解释。

通过与他人的交流互动,儿童能够逐渐提高自己的语言表达能力,扩大词汇量和语言运用能力。

最后,数学交流有助于培养儿童的逻辑思维能力。

在数学交流中,儿童需要通过推理、归纳和总结等思维过程来解决问题。

这种思维过程有助于培养儿童的逻辑思维能力,提高他们的问题解决能力和创造力。

二、数学合作的重要性数学合作是指学前儿童与他人共同完成数学任务或解决问题的过程。

通过数学合作,儿童能够与他人进行思想碰撞和观点交流,共同探索解决问题的方法和策略。

首先,数学合作能够培养儿童的合作精神和团队意识。

在数学合作中,儿童需要与他人协商、讨论和分工合作,共同解决数学问题。

这种合作过程能够让儿童体验到合作的乐趣,培养他们的合作精神和团队意识。

其次,数学合作有助于拓宽儿童的数学思维方式。

通过与他人交流和合作,儿童能够接触到不同的思维方式和解题方法,从而拓宽自己的数学思维视野。

与他人的合作还可以激发儿童的创造力,帮助他们找到更多解决问题的途径和策略。

最后,数学合作有助于提高儿童的解决问题能力和自主学习能力。

在数学合作中,儿童可以通过与他人的合作来解决难题和克服困难,从而提高他们的解决问题能力。

构建“对话式”互动,促进幼儿有效阅读

构建“对话式”互动,促进幼儿有效阅读

构建“对话式”互动,促进幼儿有效阅读随着社会的不断发展,教育的理念也在不断更新完善,尤其是在幼儿教育领域,越来越重视幼儿的阅读能力培养。

阅读是一种重要的认知能力,对幼儿的智力和情感发展有着重要的促进作用。

而要促进幼儿有效阅读,构建“对话式”互动是一种非常有效的方式。

本文将就如何构建“对话式”互动,促进幼儿有效阅读进行探讨。

一、建立轻松愉快的阅读环境要构建“对话式”互动,促进幼儿有效阅读,就需要建立一个轻松愉快的阅读环境。

幼儿在轻松的环境中,会更愿意主动参与到阅读活动中,这对于促进幼儿的阅读兴趣和积极性非常重要。

我们可以在幼儿园、家庭或者其他教育场所设置一个专门的阅读角,让孩子们在这里可以自由选择书籍,并且在舒适的环境中进行阅读。

为了让幼儿更加愿意参与到阅读中来,我们还可以在阅读环境中增加一些有趣的元素,比如布置一些有趣的装饰品、放置一些柔软的坐垫和舒适的靠背椅子等,这样可以为幼儿创造一个更加愉快的阅读环境。

二、引导幼儿进行“对话式”阅读要构建“对话式”互动,促进幼儿有效阅读,就需要引导幼儿进行“对话式”阅读。

所谓“对话式”阅读,就是指在阅读的过程中,与幼儿进行有意义的对话,引导他们进行积极的思考和表达。

这样不仅可以加深幼儿对书本内容的理解,还可以促进他们的语言表达能力和思维发展。

在进行“对话式”阅读时,我们可以通过提问的方式引导幼儿思考,并鼓励他们表达自己的看法和感受。

在阅读完一本故事书之后,我们可以问幼儿:“你觉得故事里的主人公是怎样的一个人呢?”“你觉得故事发生在哪里?”“你觉得这个故事想要教给我们什么呢?”这样的问题可以引导幼儿进行深入的思考,并且在回答问题的过程中,他们还可以进行语言的表达,从而促进了他们的思维和语言能力的发展。

三、提供多样化的阅读材料要构建“对话式”互动,促进幼儿有效阅读,还需要提供多样化的阅读材料。

因为幼儿的阅读兴趣和阅读能力是需要不断培养和提高的,而提供多样化的阅读材料可以激发幼儿的阅读兴趣,同时也可以促进他们的认知能力的全面发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Abstract Title PageNot included in page count.Title:Preparing Prekindergartners with Math Readiness Skills: The Effect of Children’s Talk, Focus, and Engagement on Math AchievementAuthor(s):Tracy Cummings, Vanderbilt UniversityKerry G. Hofer, PhD., Vanderbilt UniversityDale C. Farran, PhD., Vanderbilt UniversityMark W. Lipsey, PhD., Vanderbilt UniversityCarol Bilbrey, PhD., Vanderbilt UniversityElizabeth Vorhaus, Vanderbilt UniversityContact Information:Tracy CummingsDepartment of Teaching and LearningVanderbilt UniversityBox 0230 Peabody College230 Appleton PlaceNashville, TN 37203-5721Phone: 615-343-2267Abstract BodyLimit 5 pages single spaced.Background/context:Description of prior research and/or its intellectual context and/or its policy context.Well-designed and well-implemented model prekindergarten programs have shown the potential to improve children’s cognitive growth, readiness-for-school, and the likelihood of long-term outcomes such as persistence in school and higher rates of graduation. Such effects have been reported for the Perry Preschool Project (Schweinhart, Barnes, Weikart, Barnett, & Epstein, 1993), the Abecedarian program (Campbell, Ramey, Pungello, Sparling, & Miller-Johnson, 2002), and the Infant Health and Development Project (McCarton, Brooks-Gunn, Wallace, & Bauer, 1997). However, in a descriptive review of such model programs as well as large-scale public programs that generally have less funding and serve children from low-income homes, it was reported that public programs had much weaker effects than the model programs according to existing literature (Barnett, 1995, 1998). Thus, researchers concerned with the early childhood education of children from impoverished backgrounds seek to identify interventions that will more effectively produce the positive outcomes seen from earlier model prekindergarten programs.One particular area of concern is math achievement. Children who fall behind in math during elementary school are far more likely to spend the remainder of their K-12 career trying to catch up, and a disproportionate number of these students are from poor or minority populations (Ball, Goffney, & Bass, 2005). While the field of early childhood education has identified and communicated strategies to improve reading-readiness, less is known about successful strategies for improving math-readiness. Early math skills have been found to predict both later math and later reading abilities, while early reading skills predict only later reading ability; furthermore, early math skills were better predictors than early reading skills of later reading ability (Duncan et al., 2007). To improve math education overall, and especially for those from impoverished backgrounds, a greater emphasis should be placed on identifying successful strategies and interventions that prepare children in large-scale public programs to begin school ready to excel in mathematics.Purpose/objective/research question/focus of study:Description of what the research focused on and why.The Building Blocks PreK Math Curriculum (Clements & Sarama, 2007) was designed to facilitate children’s engagement in math and talk about math. Much research investigates the effect of curriculum on classrooms or teacher practices. This study used a mediational model to look at a curriculum’s effect on children’s achievement gain, operating through specific child behaviors in the classroom. Specifically, this study looked at how a math curriculum affected children’s focus in math alone or in all learning activities (math, literacy, science, social-studies, and other), talking during math-related activities or in all learning activities, and engagement during math or during all learning activities. Additionally, this study examined how those child behaviors predicted children’s math achievement gain. It is hypothesized in the existing literature that much of the variability in student achievement across prekindergarten programs can be explained by the amount of time children are engaged in learning through talking,listening, or sustained focus on academic content. Behaviors like a child’s focus on instruction (Barr & Dreeben, 1983; NCES, 2002), verbal behaviors (Winsler & Naglieri, 2003; Dickinson & Tabors, 2001; Snow, Burns, & Griffin, 1998), and educational engagement (Brophy & Good, 1986; Howse, Lange, Farran, & Boyles, 2002) are all considered critical elements of learning. This study was based on the hypothesis that a curriculum which encourages teachers to focus on such critical elements in the classroom can lead to changes in child achievement if changes in children’s behaviors are also affected.Setting:Specific description of where the research took place.This study was conducted as part of the SUNY Buffalo/Vanderbilt scale-up of the Building Blocks Prekindergarten Math Curriculum in Nashville, Tennessee. Fifty-seven classrooms from twenty sites, 16 Public Schools and 4 Head Start centers, participated in one of two study conditions. Thirty-one classrooms participated in the new math curriculum while twenty-six classrooms conducted business as usual. Across both conditions, children were observed in their classrooms and during mealtimes on three typical days - once in fall, once in winter, and once in spring, - but not when they were outdoors.Population/Participants/Subjects:Description of participants in the study: who (or what) how many, key features (or characteristics).The final analytic sample is comprised of 565 children with both pre and post test scores on at least one of two standardized math achievement measures and at least one of three classroom observations. Children who were listed by their teachers as being English Language Learners or having Individualized Education Plans were excluded from this analysis. The sample was 58% female, 87% Black, with mean age of 4.5 years at date of pretest. One of the qualifications to enroll in the included programs was eligibility for the Free and Reduced Lunch Program, so all children were from low-income households.Intervention/Program/Practice:Specific description of the intervention, including what it was, how it was administered, and its duration. Building Blocks Prekindergarten Math Curriculum is a supplemental mathematics curriculum designed to develop preschool children's early mathematical knowledge through various individual and small- and large-group activities. It uses Building Blocks software, manipulatives, and print material. The curriculum embeds mathematical learning in children's daily activities, ranging from designated math activities to circle and story time, with the goal of helping children relate their informal math knowledge to more formal mathematical concepts. A basic tenet of Building Blocks Prekindergarten Math Curriculum is that children who talk more about the math they are doing will learn more math. Teachers are encouraged to probe children’s understanding with higher-order inferential questions and allow sufficient wait time for children to answer. Thus, it is anticipated that children in the treatment condition will spend more time on math activities, talk more about math, and be more highly engaged than children in the control condition.Research Design:Description of research design (e.g., qualitative case study, quasi-experimental design, secondary analysis, analytic essay, randomized field trial).This was a randomized field trial in which twenty sites, 16 Public Schools and 4 Head Start centers, were randomly assigned to one of two study conditions. Thirty-one classrooms participated in the new math curriculum while twenty-six classrooms conducted business as usual.Data Collection and Analysis:Description of plan for collecting and analyzing data, including description of data.In the randomized field trial, children’s pre and post achievement was individually assessed using two math subtests and one literacy subtest from the Woodcock Johnson III and two non-standardized tests of mathematical ability developed to match the targeted math curriculum. This study focused on the two standardized math measures only.Observations of child behavior were collected using the Child Observation in Preschool (Farran, Plummer, Kang, Bilbrey, & Shufelt, 2006), an observational tool that codes children’s behavior in nine dimensions. Children were observed three times across the year for 4 hours each day. Proportions and averages were created across three time points to create the variables to be used in these analyses. The 6 behaviors examined were: the proportion of observations children were in a math focus (Math Focus), proportion of observations children were in a learning focus of any subject (Learning Focus), proportion of observations children were talking while with a math focus (Talk with Math Focus), proportion of observations children were talking while with a learning focus (Talk with Learning Focus), children’s average engagement during math focus (Engagement with Math Focus), and children’s average engagement while with a learning focus (Engagement with Learning Focus).The Baron-Kenny model for analyzing mediational effects was used, which involves multiple steps (Baron & Kenny, 1986). First, the relationship between experimental condition and child achievement was examined. Because children were nested in classrooms, and classrooms were nested in schools, hierarchical linear modeling was used to predict achievement gain scores on the two math standardized measures (Applied Problems and Quantitative Concepts) from children’s classroom condition, controlling for children’s pre-test scores, gender, interval between testing, and age at time of testing. Second, the relationship between experimental condition and child behaviors was examined, also using hierarchical designs. Third, the relationship between child behaviors and child achievement was analyzed, controlling for curriculum condition and other covariates, again using hierarchical procedures, and the main effect of condition was examined. Models were run separately for each achievement measure and each child behavior.Findings/Results:Description of main findings with specific details.Results from the analyses can be seen in Tables 1- 4 in Appendix B. Analyses revealed that significant variation in children’s gains on both standardized math measures was explained by curriculum, with higher scores seen in the treatment condition (Table 1). Also, significant variation in the proportion of observations that children were focused on math activities and the proportion of observations that children were observed talking with a math focus was explainedby curriculum, with more math focus and talk about math seen in the treatment condition (Table 2). Additionally, significant variation in children’s gains on both standardized math measures was explained by children’s time observed in learning-focused and math-focused activities (Table 3). Finally, the main effects of curriculum condition in these last models were examined. Those behaviors for which curriculum was a significant predictor in Table 2 but was no longer significant in Table 4 were deemed to fit the mediational model. The model held for the proportion of observations children were seen engaging in math-focused activities. Children in Building Blocks classrooms were observed in math-focused activities more than children in the control classrooms and, in turn, made greater gains on both standardized math achievement measures. The model did not hold true for the other behavior variables involving engagement and talk about learning/math. Because of the nature of the study, numerous models were analyzed. This multiplicity in analyses can lead to Type 1 error. To correct for this, a Benjamini-Hochberg procedure was used to create a more conservative estimate of the significance of any found effects. After this correction was used, the mediational model still held true for the behavior of math focus.Conclusions:Description of conclusions and recommendations of author(s) based on findings and over study. (To support the theme of 2009 conference, authors are asked to describe how their conclusions and recommendations might inform one or more of the above noted decisions—curriculum, teaching and teaching quality, school organization, and education policy.)Controlling for students entering skills and other demographic characteristics, we found that children’s gains in math skills were related to the experimental condition of their classroom as mediated by their learning-related observed classroom behaviors. The Building Blocks curriculum, designed to facilitate children’s engagement in math and talk about math, was predictive of children’s participation in math-focused activities, which predicted higher gains on standardized math measures. Without the resulting change in children’s behaviors in the classroom, however, changes in achievement would not have been possible through curriculum implementation alone. Although getting children to talk more about math was a goal of the curriculum, children’s talk with a math focus did not predict their gain. It is possible that teachers in the treatment condition actually spent more time in learning related activities, but spent that time instructing rather than probing children’s thinking or asking higher-order inferential questions. The results of this study demonstrate the difficult task of helping teachers promote an environment where children can investigate mathematics through talk and play, rather than through direct instruction. The results suggest that classrooms organized to keep children focused in learning activities will better equip children with math-readiness skills, and thereby improve early math education in large-scale public programs for children from low-income households.AppendixesNot included in page count.Appendix A. ReferencesReferences are to be in APA format. (See APA style examples at the end of the document.)Ball, D., Goffney, I., & Bass, H. (2005) The role of mathematics instruction in building a socially just and diverse democracy. The Mathematics Educator, 15(1), 2- 6.Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal ofPersonality & Social Psychology, 51, 1173-1182.Barnett, W. S. (1995). Long term effects of early childhood programs on cognitive and school outcomes. The Future of Children, 5(3), 25-50Barnett, W. S. (1998). Long term effects on cognitive development and school success. In W.S.Barnett & S. S. Boocook (Eds.) Early care and education for children in poverty (pp. 11-44). Albany, NY: SUNY Press.Barr, R., & Dreeben, R. (1983). How schools work. Chicago: University of Chicago Press. Brophy, J. & Good, T. L. (1986). Teacher behavior and student achievement. In M. C. Wittrock (Ed.), Handbook of research on teaching (3rd ed., pp. 328-375). New York: Macmillan Campbell, F. A., Ramey, C. T., Pungello, E., Sparling, J., & Miller-Johnson, S. (2002). Early childhood education: Young adult outcomes from the Abecedarian Project. AppliedDevelopmental Science, 6, 42-57Clements, D. H., Sarama, J. (2007). Building Blocks Prekindergarten Math Curriculum.Columbus: McGraw Hill.Dickinson, D. K., & Tabors, P. O. (Eds.). (2001). Beginning literacy with language: Young children learning at home and school. Baltimore: Paul H. Brookes.Duncan, G., Dowsett, C, Claessens, A., Magnuson, K., Huston, A., Klebanov, P., Pagani, L., Feinstein, L., Engel, M., Brooks-Gunn, J., Sexton, H., Duckworth, K., & Japel, C. (2007).School readiness and later achievement. Developmental Psychology, 43(6), 1428-1446. Farran, D. C., Plummer, C., Kang, S., Bilbrey, C., & Shufelt, S. (2006) Child observation in preschool manual. Unpublished manuscript. Nashville, TN: Vanderbilt University. Howse, R. B., Lange, G., Farran, D. C., & Boyles, C. D. (2002). Motivation and self-regulation as predictors of achievement in economically disadvantaged young children. Journal ofExperimental Education, 71(2), 151-174.McCarton, C. M., Brooks-Gunn, J., Wallace, I.F., & Bauer, C. R. (1997). Results at age 8 years of early intervention for low-birth-weight premature infants: The Infant Health andDevelopment Program. Journal of the American Medical Association, 277, 126-132. National Center for Education Statistics. (2002). Children's reading and mathematics achievement in kindergarten and first grade. Washington, DC: National Center forEducation Statistics.Schweinhart, L. J., Barnes, H. V., Weikart, D. P., with Barnett, W. S & Epstein, A. S. (1993).Significant benefits: The High/Scope Perry Preschool Study through age 27. Ypsilanti, MI: High/Scope Press.Snow, C. E., Burns, M. S., & Griffin, P. (1998). Preventing reading difficulties in young children. Washington DC: National Academy Press.Winsler, A. & Naglieri, J. (2003). Overt and covert verbal problem-solving strategies: Developmental trends in use, awareness, and relations with task performance in children aged 5 to 17. Child Development, 74(3), 659-678.Appendix B. Tables and FiguresNot included in page count.Table 1Effects of Curriculum Condition on Child Math OutcomesOutcome F df p WJ Applied Problems 4.05 11.80 .068* WJ Quantitative Concepts 5.76 16.89 .028* *p < .10Table 2Effects of Curriculum Condition on Observed Child BehaviorsBehavior F df p Learning Focus 1.70 12.94 .215 Math Focus 11.43 18.51 .003* Talking with Learning Focus 1.76 56.16 .191 Talking with Math Focus 4.87 16.00 .042* Engagement with Learning Focus & Condition 1.86 9.55 .203 Engagement with Math Focus & Condition 2.21 17.78 .155 *p < .10Table 3Main Effects of Observational Predictors on Standardized Math Assessments Source F df p Woodcock Johnson Applied ProblemsLearning Focus 2.81 166.40 .096* Math Focus 25.79 75.58 .000* Talking with Learning Focus 0.00 538.98 .978 Talking with Math Focus 6.86 509.61 .009* Engagement with Learning Focus 0.63 492.01 .428 Engagement with Math Focus 2.86 529.99 .091* Woodcock Johnson Quantitative ConceptsLearning Focus 5.38 232.15 .021* Math Focus 25.07 156.23 .000* Talking with Learning Focus 2.10 551.97 .148 Talking with Math Focus 1.00 552.66 .318 Engagement with Learning Focus 0.60 531.59 .440 Engagement with Math Focus 0.59 529.01 .442 *p < .10Table 4Main Effects of Condition on Standardized Math AssessmentsSource F df p Woodcock Johnson Applied ProblemsLearning Focus 3.65 10.61 .083* Math Focus 0.07 6.46 .798 Talking with Learning Focus 4.01 11.79 .069* Talking with Math Focus 3.09 11.13 .106 Engagement with Learning Focus 3.90 11.56 .073* Engagement with Math Focus 5.57 10.40 .039* Woodcock Johnson Quantitative ConceptsLearning Focus 5.20 16.44 .036* Math Focus 1.53 13.98 .236 Talking with Learning Focus 6.20 17.01 .023* Talking with Math Focus 5.56 16.43 .031* Engagement with Learning Focus 5.64 16.82 .030* Engagement with Math Focus 6.55 16.63 .021* *p < .10。

相关文档
最新文档