汽车车门总体布置要求
车门布置设计指导手册-上交版

详细造型可行性分析,是针对造型特点,选择和布置合适的车门附件,详细 分析和布置玻璃面、PP1、铰链、限位器、门锁、外手柄及锁芯、玻璃升降器、 防撞梁、门槛断面、窗框断面、窗台及水切断面、线束护套以及车门密封面等。
2. 车门布置与流程 .............................................. - 2 2.1 在产品开发流程中的阶段 ............................... - 2 2.2 车门布置(可行性分析)微流程 ......................... - 3 -
车门布置过程如第一章介绍的那样,是一个不断重复完善的过程,即便如此, 为了使布置过程尽量的标准化,指导后来者,制定可行性分析的微流程也是极为 必要的。
3. 宏观造型可行性分析
该阶段主要工作:对造型效果图或草版的 CAS 表面车身侧部的硬点进行分析 和判断。分析玻璃面是否合理,初步判断 A/B/C 柱、腰线以及门槛的合理性;对 总布置图进行分析,检查上下车方便性,初步定义 PP1(门洞密封面)。
首先需要说明的是,无法设定详细的车门布置过程。 因为,一旦车门设计遵循特定的步骤,那么设计研究的过程就会显得不必要。 事实上,必然有类似内/外造型不匹配、各种要求达不到等问题存在,那么就要 去解决这些问题并且加以研究直到获得完美的车门结构。 在车门结构中,一些部件也有具体的设计顺序。例如:应先布置铰链轴线再 布置门锁;先优化玻璃面再布置升降器等。通过对这些设计要点进行总结,就形 成了较为基本的设计步骤,但在实际工作中仍需要针对具体问题进行详细分析。 车门布置的基本步骤[1]:
汽车车门线束的布置原则与作法

汽车车门线束的布置原则与作法汽车车门线束是指连接车门内部各个零部件的电缆集合体。
车门线束的布置对于整个汽车的安全性、稳定性等方面都有着重要的影响。
因此,良好的车门线束布置必不可少。
一、车门线束的布置原则1.保证线束的安全性车门线束的布置应当避免出现割裂、磨损、摩擦、异物进入等情况。
线束应根据车门的开合动作和施加的力量合理地布置,防止在打开或关闭车门时,线束被卡住或直接受到挤压,从而造成故障。
2.保证线束的可靠性车门线束的布置应当避免线束产生过大的张力,以减少线束在运动中的摇晃和振动,从而确保线束状态的稳定性。
同时,车门线束应尽量降低线束的长度,在连接处采取适当的保护措施,减少连接处的断电风险。
3.保证线束的易维护性车门线束的布置应当方便维修和更换。
所以,布置应尽量简单,能够直观地看到线束的布局和各个零部件的连接情况。
二、车门线束的作法1.布局设计车门线束的布局应该合理,采用尽量短的长度,并且依据车门开合、关闭的动作规律,避免将线束放置在易磨损的位置。
同时,线束应该使用特定的材料进行保护,确保其避免与车门内部其他部件摩擦,避免损坏。
2.固定方式车门线束的固定方式应该符合车门的科学道理。
在每个固定部位,使用专用的固定装置固定线束,以确保线束的安全和稳定。
3.瞪眼长度车门线束的长度要保持一定的瞪眼长度,以避免线垢太长在车门打开和关闭时磨损和缠绕的情况。
4.缆线材料车门线束的材料应选用耐磨、耐高温、耐腐蚀等特殊材料,以确保线束的性能更加可靠。
5.线束保护车门线束的保护系统应该采取可靠的措施,以确保线束的完整性。
使用专业的保护装置,对于线束起到良好的保护作用,同时,要避免使用铁线、尼龙带等易于损坏线束的保护装置。
综上所述,车门线束的布置原则和作法对于整个汽车的安全性和可靠性有着重要的影响。
因此,厂家需要十分重视线束的布置,并严格按照相关的标准进行操作,从而确保线束的质量和使用效果。
同时,应定期检查和维修车门线束,以保护其正常运行。
车门设计中硬点布置和主断面

车门设计中硬点布置和主断面0 前言车门设计是汽车车身设计的重要组成部分,车门系统包括4大部分:车门开闭系、玻璃升降系、门锁系、车门密封系。车门质量的好坏对整车质量有很大的影响。车门设计也是车身设计中相对复杂的部分。设计硬点是总布置设计过程中,为保证零部件之间的协调和装配,及造型风格要求所确定的控制点(或坐标)、控制线、控制面及控制结构的总称。这是汽车零部件设计和选型、附件及车身设计最重要的尺度和设计原则,能使项目组分而不乱,是并行设计的重要方法,一旦确定后不要轻易调整。开始粗定的硬点随着开发逐步深化,变得更加“硬”起来,越接近设计终结硬点越“硬”,不要轻易改动。设计硬点是所有设计的灵魂。车身结构主断面是对车身结构方案的具体描述,分布在车身各个位置以决定车身结构设计。1 车门设计的主要硬点和设计过程车门设计总的设计原则是由外而内、先外板再内板、先断面再数模、先周边再内部的过程。主要设计硬点有外板曲面、分缝线、门锁结构、内板结构、密封间隙、铰链中心线长度姿态、玻璃升降器位置和玻璃曲面等。1.1车门外板设计车门外板设计是在光顺好的整体造型面和车门轮廓线的切割面片基础上加周边翻边和门锁等特征后的车身零件。分缝线和锁机构等是门外板的设计硬点。分缝线通过2种方法获得:(1)一般先将汽车内外观面整体造型面光顺到A级曲面(CLASS A),同时将造型边界线投影到XZ铅垂平面后光顺到A级曲线,然后采用该投影的边界线投影到光顺好的A级大造型面与造型面相交,获得边界线,该交线理论上定为A级曲线。(2)另外也可以采用空间曲线光顺后与曲面相交,反复相交反复光顺的方法,相交后将交线进一步光顺,重新获得边界线,再将该线投影到光顺面上获得更新的边界线,重复这一过程直到边界线达到A级曲线要求,用最后获得的边界线作为车门边界线,并与大的光顺面相切割得到车门外板面。外板面设计好后,将门锁机构等有关设计硬点特征加上去便完成了车门外板设计(见图1),较大的门外板需与内板或车门侧向防撞梁,采用传力胶进行支承,不允许直接接触外板焊接,以防止热变形和几何干涉变形。1.2门锁设计车门内板设计是先建立门锁。门锁与上下铰链共同构成车门的3个受力点,因此要求门锁高度的理想位置居于铰链轴线的中心垂直面;门锁的位置还应保证车门顺利开启和锁止,因此在后视图中锁舌的中心线必须与铰链轴线平行。锁扣到门内板鱼嘴口的距离设计有2种方案:(1)当锁扣超出车门内板表面时,直接留足锁开启和闭合的余量,超出锁体口边缘3mm;(2)当锁扣不超出车门内板表面时,锁扣到门内板鱼嘴口的距离在超出锁体口边缘的情况下为7mm以上。这考虑到保证碰撞后车门仍能顺利打开。1.3车门内板设计车门内板设计首先依靠主断面来进行,预先考虑车门密封要求,确定好设计断面,断面便成为设计硬点。各汽车厂商为了缩短开发周期、节省设计成本,更多的是根据已有成熟车型的主断面加以调整修改,得到新车的设计主断面。主要方法有:(1)肥边调整法(见图2)。当新车的外造型面与原车在y方向相差-3~+5mm,分缝线x 方向相差不超过50mm时,可直接调整原车内板断面肥边,其他部分不变,得到新的车门内板结构。(2)断面平移(见图3)。当新车外造型面相对于原车较大时,采用肥边调整法,将造成肥边过短、车门刚度强度不足、车门过重等情况,采用断面平移法,使原车主断面平移至原车外造型面与新车外造型面重合,得到新车内板结构设计断面。1.4车门密封系设计和检查车门密封系的设计主要是车门内板与周边零件如侧围等的间隙,密封条及其压缩量的设计。这两项车门设计硬点应在设计之初根据制造商制造精度确定,制造精度高、公差小,则间隙可设计得相对较小,密封条压缩量也可设计得较小;制造精度低、公差较大,则间隙必须设计得相对较大,密封条及其压缩量也要设计得相对较大。如果设计得较小,在公差较大的情况下,将出现关门力过大关不上或者密封条压缩量太小关不紧的情况。车门密封系的设计以断面为主要手段。在车门内板和侧围建模完成后,取车门周边不同位置的断面,逐一检查修改,根据国内厂商的生产精度水平,车门周边密封间隙应取15mm左右,日本车厂车身制造精度较高,密封间隙多取在10~12mm。密封条的断面应处于装配状态,这样可以根据密封条断面进行检查和修改。密封面密封条处于干涉状态,干涉不能太大或太少,一般为有效压缩尺寸的1/3~1/2,这样既保证了密封效果,又不至于运动件在运动过程中产生过大的噪声和关门力。另外在车门与侧围之间没有密封的部分要留9~12mm的腾空间隙,以防止干涉。1.5车门铰链布置和运动校核车门铰链的设计是车门设计的一项重要工作,直接关系到车门能否正常开启。在铰链设计中,铰链中心线定位和铰链中心距是重要的设计硬点。铰链轴线一般设计成具有内倾角和后倾角。内倾角指铰链轴线在x=0平面上的投影与z轴之间的夹角,内倾角一般为0~4°,见图4;后倾角指铰链轴线在y=0平面上的投影与z轴之间的夹角,一般为0~2°,见图5。内倾角和后倾角都是为了使车门开启时获得自动关门力,也有个别汽车门铰链具有前倾角,但一般不会有外倾角。车门铰链轴线的设计先确定铰链轴线沿车身方向的尺寸变化范围(X1,X2),并在此范围内任选一值Xm,将轴线限制在与x轴垂直的平面x=Xm内,在x=Xm平面内确定铰链轴线的倾斜状态:先分别求出x=Xm平面与内外板曲面的交线C1和C2,并求出C1和C2对应的y方向的极限坐标位置Ymin(内板投影线最左端)、Ymax(外板投影线最右端);在x=Xm平面内通过输入直线方程y=B,B∈(Ymin,Ymax)来生成一条与z轴平行的轴线Z1Z2;确定铰链轴线中心点的z坐标值:通过内板上下边框或外板上下边框求出平均位置坐标z=C,并根据它在y=B直线上求出一点O;根据铰链轴线内倾角范围θ∈(0°,4°),将y=B直线绕O点逆时针旋转θ角度,得到轴线位置O1O2。根据铰链间距L∈(300mm,500mm),以铰链中心O为初始点,沿直线y=B确定两点D和E,使两点间线段长度为L,调整L值以及轴线外板的距离,保证在铰链宽度方向不与外板干涉的情况下,轴线尽量靠近外板的极限位置(L值确定已知时)。若L值可以改变,则可以考虑稍微减小L值,轴线更靠近外板(车门外板曲率较大时)。可以通过改变最初的B值重新生成轴线O3O4或作O1O2的平行线来改变轴线到外板的距离。当轴线位置最终确定后,根据D、E两点位置可将铰链模型正确地放入车门门腔内,待进一步运动校核及干涉检验。铰链中心距的确定可参考车门长度,一般铰链中心距/车门长度=33%,或者更长。需要说明的是在布置铰链时,应注意在结构允许的情况下,车门上下两铰链之间的距离应尽可能大。为了避免打开车门时与其它部分干涉,铰链的轴线应尽可能外移,使其靠近车身侧面。铰链中心线位置和中心距确定后,需要进行运动干涉校核,这也在主断面设计中完成,可能出现的干涉位置有前后门干涉、前门与A柱翼子板干涉、门与铰链干涉等,在可能干涉的位置取主断面,将车门延中心线旋转,即可一目了然,如图6。1.6车门玻璃设计以及车门玻璃升降器的设计布置玻璃要设计为双圆环面,可以和外造型匹配,达到玻璃升降的平顺性,圆环面的数学方程如下,其思想简图与基本参数见图7、8:当R足够大且圆柱半径r远远小于R时,从圆环面上截取的玻璃曲面仍近似为柱面。玻璃的运动可以认为是一种绕圆环面中心引导线的旋转运动,其运动轨迹是与引导线成一定夹角的圆环截面线的一部分。R=15~25km,r=1200~2000m;大客车为R=∞,r=4000~7000m。玻璃升降器是车门设计中很重要的一个环节,它的合格与否直接影响到车窗的开闭。玻璃升降器在设计过程中,关键在于安装和玻璃导轨的曲线确定。有了玻璃的数据后,可求出玻璃的质心位置,根据以往设计经验和一些样车数据,一般单导轨的位置是在玻璃质心位置向B柱方向偏移15~25mm,双导轨的间距应在不干涉内门板和其它附件的情况下尽可能大,但两个导轨的中线应该在玻璃质心位置向B柱方向偏移15~25mm。导轨位置确定后,通过偏置玻璃面求出导轨的弧度,此导轨弧度为空间螺旋曲线。由于玻璃运动近似圆弧运动,但升降器的长导轨在自由状态下是平面运动,所以在玻璃升降过程中,升降臂和平衡臂会变形随长导轨一起运动。为了提高升降器的寿命,应使运动过程中升降臂和平衡臂的变形量尽可能小。图9表示了玻璃运动轨迹和长导轨在自由状态下的运动轨迹,A、B、C分别表示了玻璃在上、中、下3个位置时升降臂和平衡臂的最大变形量,其中C>A=B。2 结语设计硬点控制在车门设计的灵魂,主断面是车门设计的重要手段,以此为思路,使车门设计有条不紊,效率得以提高,质量得以保证。车门设计是车身设计中最复杂、难度最大,实际过程中可能会遇到很多情况,有时甚至会出现控制硬点之间相互矛盾,需要具体问题具体分析,不断调整以达到最优结果。。
车门设计要领

车门设计要领
1、内外倾角及前后倾角0--4度
2、门铰链中心距/车门长度(到鱼嘴口)大于等于1/3,通常350--500,尽可能的大,布置位置尽可能的靠外铰链的设计要素:铰链形式,铰链的安装平面,铰链中心距,车门长度,门的开启度。
3、一般开闭件的缝隙小于等于5mm,非运动件小于等于4.5mm.密封条的压缩量等于板金距离的1/2--1/3。
设计前首先进行断面设计。
4、防撞杆和外表面的最小距离是5mm,玻璃升降器和内板的最小距离是12.5m m.
5、内板和外板是偏置关系,距离3--5mm.
6、后背门的开启是75-90度,或离地1880-2200mm.
7、后仓门开启是90度。
8、前发动机盖内板和外板之间3--5mm的间隙用传力胶连接,目的是增加外板强度,内板还有工艺孔,大的漏液孔的设计,便于涂装时快速漏液,还有折弯吸能的凹槽设计。
9、车门外板的包边长度为7--11mm,焊接件配合处没缝隙,不配合处放应该预留3mm以上的间隙,否则在车身振动或扭曲时会产生嘎吱声,另外内外板间隙至少3mm,最好5mm以上,否则不能保证底漆彻底,有生锈危险。
活动件(玻璃、手柄开启装置)与其他零件间隙10mm以上,否则在大力关门时可能会产生碰撞声。
车门设计流程

2020年5月4日
星期一
3
车门的分类
一、车门的分类
CV9
1、根据开闭方式,车门可
分为旋转式、推拉式、飞翼
式
2、根据车门的结构,车门 可分为整体式(CV9、 CV7)、分体式(花冠)、 半分体式(大众、宝马)
2020年5月4日 星期一
CV7
4
车门的基本要求
一、基本要求 1、主断面的控制(防止车门回弹、车门间隙) 2、密封方式的确定(双密封、单密封) 3、前后门的尺寸及开度(限制门的重量) 4、铰链及限位器的型式 5、内外开手柄的布置 6、玻璃升降器的布置 7、门锁的布置 8、三个运动可行性分析(限位系统、开闭系统、 玻璃升降系统)
型式) 二、对玻璃升降器的要求(平行度) 1、电机布置尽可能靠前端,减小关门时惯性力矩; 2、尽可能减小升降器运行阻力且在各工况下的稳定 3、施力点的确定,确保玻璃平稳上升/下降 4、空间干涉因素:门锁、防撞杆、加强板、钢丝绳、电机共振
等 5、装配工艺性:总成装配、玻璃安装、电器接插件 6、手动升降器按照人机工程原理布置操作手柄位置,原则上与
出平衡弹簧的特性曲线,即可确定弹簧刚度C。 5)进行强度验算。
2020年5月4日
星期一
22
车门设计基本流程
----输入条件分析 1、车型定位 2、造型输入面(外板面、玻璃面) 3、断面布置 4、黑盒子零件的布置 5、可行性分析 6、结构设计(强度、特征) 7、验证(试验、法规)
2020年5月4日
星期一
电机在同一位置,便于车门内蒙皮状态的统一。
2020年5月4日
星期一
19
玻璃升降系统设计规范
三、相关环境条件 1、车门:边框、 2、玻璃:重量、形状、曲率、行程 3、玻璃导槽:截面、长度(行程)、接触面型式 4、密封条(含内外夹条):截面、接触面型式 5、能源:与整车电器原理的配合一致性 四、运动干涉检查 1、运动包络检查 2、玻璃重心轨迹校核
汽车车门设计

汽车车门设计车门是车身上相对独立的总成,与车身组成一个有机的整体,因此,在车门的设计过程中,需要充分的考虑结构要素的完整统一和与车身其他相关要素的协调匹配。
1 车门的类型和功能要求,1.1车门的类型 车门有多种类型,详见上表1,车门可分为车门本体和车门附件两部分,车门本体可归于白车身范畴,指作为一个整体涂漆,未装备状态的钣金焊接总成,包括车门内外板,内外腰线加强板,防撞梁,锁加强板和铰链加强板(有些采用激光拼焊门板无单独的锁加强板和铰链加强板),玻璃导轨等,是实现车门整体造型效果、强度、刚度及附件安装的基础框架。
而附件则是为满足车门的各项功能要求,在白车身上装配的零件和总成,其中包括车门锁、铰链、限位器、玻璃、拉手、操纵扭、密封件及内外装饰件等。
1.2 车门及附件的功能要求车门的功能要求详见上表2。
对车门总成的功能要求,一方面,车门作为车身结构中的 重要组成部分,其造型风格、强度、刚度、可靠性及工艺等必须满足车身整体性能要求,另一方面,车门开关及上下车的方便性又是车门结构首要满足的要求,而车门结构自身的视野性、安全性、密封降噪等性能,又对整个车身结构影响较大,也是车门功能安全的重要组成部分。
车门附件的功能要求详见下表3。
在表3中列出了车门主要附件的结构形式,功能要求等,其中铰链和门锁是车门承力件,开门时铰链受力,关门时铰链和门锁同时受力。
因此,铰链、门锁的强度和刚度要求比较重要,车门限位器虽然不直接承受车门重量,但是起到了开关限位作用,与门锁和铰链在寿命、可靠性方面的要求应该一致。
另外,玻璃升降器、锁操纵手柄、按钮等的可靠性也不能忽视,其他附件结构和功能一般也要与主要附件的要求一致。
2 车门结构分析2.1 窗框形式和车门结构的关系窗框的结构形式对车门的影响较大,可分为分体式车门和整体式车门、有窗框车门和无窗框车门,因此,在对车门结构进行分析时,车门窗框的结构形式和特点很关键。
2.1.1分体式车门及窗框结构分体式车门的窗框结构通常为滚压型材,经成型焊接等工序后制成独立的窗框总成(E31结构),再与内板焊接,最后合成车门焊接总成。
车门设计及主要附件布置

4、钢丝绳绕线复杂,若松动则容易相互缠绕脱轨而失效,钢丝绳如果润 滑不好与导轨摩擦会增大, 绷断几率很高; 5、由于没法安装玻璃上升、下降过程蓄能装置“平衡弹簧”,手动绳轮 升降器转动手柄上升用力很大,而下降时玻璃下降太快手柄用力小,手感 很差。 综合上述2 种升降器特点, 新车型设计时建议优先选用交叉臂式升降器, 没有布置交叉臂式升降器条件时再考虑选用绳轮升降器。 由于绳轮升降器布置相对简单,所以在此不讨论。以下主要讨论交叉 臂式升降器的布置与设计。
6)制造工艺性好,易于冲压并便于安装附件。 7)车门造型与整车协调,保证表面齐平,门缝间隙均匀; 色彩与内饰和整车匹配。 8)设计就满足人机工程要求,如空间位置、操作件位置 和视野障碍最小化等要求,以提高乘员舒适性。
二、车门系统的组成: 由于大家都比较熟悉开闭件系统的构成,在此简 要叙述一下: 车门系统一般由门体、车门附件和车门内饰件三 部分组成。 1. 门体--包括车门内、外板,门体加强板,窗框 等零件的焊接总成,如图1。 2.车门附件—包括铰链、限位器、锁体、升降 器、密封条等。 3.车门内饰件—包括门护板、门拉手、开手、扶 手板等。
车门的开度限位器具有门半开时的支撑功能和全开时的 制止功能,其作用是限制车门的最大开度,防止车门外板与 车身相碰,并使车门停留在所需开度,防止车门自动关闭。 车门限位器的结构一般如图3所示,通过改变臂的形状, 可设定门半开的保持位置和保持力。设计时要考虑过力开启 和暴风吹开门的作用力。
车门开度---车门的最大开度一般在60°-75°,较多的车门开度设 置在70°。这要根据上下车方便性,上车后关门方便以及车门与车身 不干涉等条件而定。 链轴线在车身上的布置---铰链轴线与车门外板表面距离愈大则愈容 易发生干涉,所以铰链轴线应尽可能向车身宽度方向外移。但轴线外移 受上下铰链跨距的限制。从受力观点出发,上下铰链的跨距Z与车门长 度L之比Z/L>1/3。且上铰链的上轴衬到下铰链下轴衬之间的距离 ≥330mm。如图4、5所示。 铰链轴线的倾斜--为了车门有自闭趋势。为此,应使车门铰链轴线 内倾或后倾,内倾一般不大于4°。图6所示。 铰链的开启角度—铰链的设计开启角度比车门的最大开启角度大35°,其目的是防止限位器失效或过开门时门板与翼子板干涉。 车门间隙—建议车门开启的最少间隙在2.5mm以上,工艺水平高的 公司不小于2.车门最关键的附件系统,其升降系统的好 坏直接影响购买者对该车的评价,也是反映主机厂生产水平 高低的重要环节之一。 玻璃升降系统由支撑玻璃托架、导轨和玻璃升降器组成。 系统应满足如下要求: 1)玻璃升降平顺,工作可靠,无冲击和阻滞现象。 2)操作轻便省力。 3)具有防止玻璃受外力时升降器倒转的机构,防止人从车 外能够迫使玻璃滑下。
车门设计方法和规范

车门设计方法与规范1.范围本标准规定了公司白车身设计开发过程中车门设计的方法及应执行的设计规范2.标准引用文件GB/T 4780-2000 汽车车身术语GB 15743-1995 轿车侧门强度GB 15086-2006 汽车门锁及门铰链的性能要求和试验方法3.车门设计流程3.设计输入A.设计任务书、项目要求、计划及客户要求B.车身总布置方案中与车门有关的控制尺寸C.参考样车、样件、点云、参考资料及客户对车门附件的选用要求D.车门附件的样件、数模、图纸、性能参数;密封条和挡水条断面图E.内饰部门提供内饰件安装位置和相关控制尺寸F.电器部门提供电器件安装位置和外轮廓数模G.数字表面4.设计结构的熟悉及数据的采集A.样车拆解之前应观察样车车门结构,注意车门与侧围及内饰的密封及配合关系;外后视镜与车门的连接关系。
B.样车拆解之前应采集以下数据:车门开度及档位、铰链轴线的坐标位置、门缝尺寸及面差、玻璃与门外板面差、门内饰与侧围内饰配合尺寸、门与侧围密封面的配合尺寸、内外把手和车门的配合尺寸、缓冲块处门内板与侧围外板距离。
C.拆下门内饰板后应采集以下数据:玻璃上止点位置、玻璃下止点位置、玻璃行程、玻璃与门内板、外板、防撞梁、锁体之间的最小距离、玻璃升降器的设计位置等。
5.车门开口线的确定A.车门开口大小、形状和位置的基本尺寸由车身总布置确定,开口线的初步形状由造型部门根据车身总布置确定的基本尺寸按造型风格确定,也可以根据客户要求按样车逆向确定。
B.车门结构设计人员应及时对初步的开口线进行分析,校核其是否能满足铰链布置要求和车门运动间隙要求,做到及时发现问题、及时反馈问题。
C.门缝间隙应根据制造企业的生产水平确定,一般为4mm~5mm,车门下边间隙通常比车门其余周边间隙大1mm左右。
D.车门开口线最终由数字表面部门确定。
6.确定玻璃曲面A.玻璃曲面的曲率半径和倾斜度由车身总布置和造型风格确定;也可以按要求根据样车逆向确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车车门总体布体布置要求1 前言车门总成的总体布置设计是车门设计的重要环节,总布置质量的好坏将直接影响到车门总成的使用性能。
因此设计人员在进行车门总成的总体布置设计工作以前,应充分了解与掌握车门的构造与结构形式、主要性能参数和尺寸参数、车门附件的种类与性能以及它们的位置关系,在此基础上进行车门总成的布置工作。
总布置工作的重要内容是:合理地、准确地选择车门附件并将其布置到车门总成的合适位置上。
2 车门的构造与设计要求2.1 车门的构造汽车车门由门体板金件、车门附件和内饰组成。
门体板金件包括车门外板、车门内板、车门窗框、车门内外加强板、防撞杆、铰链加强板、锁加强板、后视镜安装板等零件组成;车门附件包括铰链、锁系统、限位器、玻璃升降器、车门玻璃、密封条、扬声器、后视镜等组成;内饰由门护板骨架、蒙皮、内扶手、玻璃升降器开关等组成。
2.2车门设计的基本要求车门设计的基本要求如下:①车门开启时应保证乘员上下车方便性。
车门要停留在最大开度的位置上。
②车门开启的过程中不应和车身的其他部位发生位置干扰。
③车门关闭时,要锁止可靠、安全,行车中车门不会自动打开。
④车门机构操纵要方便,包括开关车门自如,玻璃升降轻便等。
⑤应具有良好的密封性能。
⑥具有大的透光面,满足侧向视野要求。
⑦门体应具有足够的强度和刚度。
⑧良好的车门制造,装配工艺。
3 车门附件的布置车门附件的设计与布置是车门设计的重要内容,其质量直接影响到车门的使用性能。
3.1铰链汽车车门依靠上下两个铰链支撑在车身骨架上,并实现车门的顺利开关(见图1)。
对车门铰链的布置要求是:图1 铰链布置图为实现车门耐久、可靠地进行工作,车门上下铰链之间一定要保证足够的距离。
对前门而言,由于使用频率、重量等因素,要求上下铰链的距离在320mm以上;后门则要求在300mm以上。
考虑到铰链轴线内倾角有利于车门的关闭,同时又使车门关闭时不产生过大的力,铰链内倾角要求0-3°之间。
考虑到车身的造型需要,车门门缝线的位置、尺寸与倾角以及门打开时与周围零件的最小间隙大小,车门铰链轴线的前、后倾角要求在0-1.5°之间。
门侧铰链安装面与车身坐标系Y轴方向的角度,考虑到车门内板的冲压工艺性要求,铰链安装面与Y轴方向的角度大于3°。
铰链限位角度,考虑铰链与限位器的运动关系,车门铰链的限位角度应大于限位器的限位角4°以上。
考虑到车身骨架、门总成的制造误差、使用过程中的变形情况以及为了实现车门的顺利开关,要求在车门开闭过程中,检查门与周围零件的最小距离,其值应大于3mm;前门检查与翼子板、A柱、铰链座本身的距离;后门检查与前门、B柱、铰链座本身的距离。
确定铰链在X方向的位置,考虑铰链安装在A、B柱时,工具进入的安装空间,即门缝线与铰链安装孔之间的最小距离大于安装工具的半径。
为了确定铰链在Z方向上的位置需要考虑以下两点:①铰链在Z轴方向上的确定,先定义下铰链的位置,为了保证车门的结构要求、车门内板的冲压工艺要求和铰链的安装空间,下铰链座最低位置与车门的下边缘的距离,一般应大于130mm。
②为了确保车门与车身骨架的连接刚度,除在门内板和立柱上设计必要的加强板外,布置时应尽量加大上下铰链的间距,减小作用在铰链上的力,提高铰链的使用耐久性;前门铰链距大于320mm,后门铰链距大于300mm。
确定铰链在Y轴方向上的位置,在车门铰链布置时,铰链应尽量靠近车门外板,以增大车门打开时,车门前端包边线与翼子板后翻边之间的最小间隙。
但是受门内板结构的限制,铰链座离车门外板(class-A表面)的最小距离不得小于10mm 。
由于车门开启时,整个车门的质量及作用在其上的力都作用在门铰链上,因此,应对铰链进行强度、刚度、耐久性分析,以保证车门的正常工作。
3.2锁系统车门锁系统包括锁体结构、锁扣、锁芯、锁传动机构、锁止结构、内外手柄等组成(见图2)。
锁系统的布置要求如下:图2 锁系统3.2.1锁安装面的角度,考虑到锁的工作要求以及车门内板的冲压工艺性要求,锁安装面与Y轴方向的角度应大于4°。
3.2.2为保证锁系统有足够的使用寿命,锁在关闭的瞬间锁钩进入锁扣内的切入角度应控制在90±3°以内。
3.2.3为保证锁系统能正常地工作,锁与玻璃导轨之间的最小距离应大于6mm。
3.2.4为保证锁传动结构能正常有效地工作,锁传动结构与玻璃导轨、玻璃、门里板之间的最小距离应大于6mm,同时应对锁传动机构进行传动可靠性分析、工作稳定性分析、结构强度、刚度分析。
3.2.5为保证车门在关闭时,车门工作的可靠性和稳定性,锁在高度方向上的布置应尽量布置在上、下门铰链中间的位置或中间向上偏移一段距离的位置上。
3.2.6为保证锁芯能可靠地工作,锁芯和玻璃外表面之间的距离应大于9mm,这主要考虑门玻璃在升降时,玻璃在玻璃泥槽里有一定的晃动量和玻璃运动的不稳定性。
3.2.7锁的开启行程的校核,为保证锁系统能正常有效地工作,锁开启机构(外把手、内扣手、锁止结构、锁芯)的开启行程应大于锁体工作行程4mm以上;这主要考虑锁传动机构在工作过程中的变形、零件的制造、装配误差以及零件之间的间隙等因素。
3.3升降器玻璃升降器是实现车门玻璃升降运动的车门附件。
通过玻璃升降器带动玻璃托架作上下运动,从而使车门玻璃沿着导轨作升降运动。
3.3.1 玻璃升降器应具备以下三个方面的要求:①玻璃升降平顺、工作可靠、无冲击和阻滞现象。
②操作轻便、省力。
③具有防止玻璃升降器倒转的制动装置。
3.3.2升降器布置时应考虑的问题目前常用的玻璃升降器有臂式玻璃升降器和绳索式升降器。
臂式玻璃升降器可分为单臂式升降器和双臂式玻璃升降器;绳索式升降器可分为单导轨式升降器和双导轨式玻璃升降器。
玻璃升降器应根据玻璃曲率半径的大小、玻璃升降行程大小和玻璃的质量大小来选择。
当玻璃横向断面的弦高尺寸大于15mm时,为了玻璃能顺利地升降,应选择绳索式升降器;当玻璃横向断面的弦高尺寸小于15mm时,可选择绳索式升降器和臂式玻璃升降器。
前门升降器由于使用频率高和前门玻璃重量相对较重等原因,一般选择双臂式玻璃升降器和双导轨式玻璃升降器;后门升降器,一般选择单臂式玻璃升降器和单导轨式玻璃升降器。
玻璃升降器布置时应注意的问题。
当玻璃升到最高位置时,玻璃下端与水切口上端之间的距离值应大于50mm,以确保玻璃的稳定性。
当玻璃下降到最低位置时,玻璃下端与门里板下框之间的最小距离值应大于15mm;玻璃上端高出水切口0—2 mm。
升降器与限位器在运动过程中的最小距离值应大于6 mm,以确保车门附件能正常地工作。
要充分检查升降器电机的有关参数,以确认参数的合理性。
合理确定玻璃升降器活动导轨在最高位置、中部位置、最低位置的布置,并检查滑轮与导轨之间位置的合理性。
合理定义臂式玻璃升降器的压缩量和拉伸量。
由于臂式升降器的理论运动轨迹是平面,而玻璃运动则是曲面运动。
为了能使玻璃实现顺利地升降运动,必须要消除平面运动和曲面运动的弦高误差,这些误差是通过玻璃升降器的臂的变形和滑轮的转动来实现的。
也就是说玻璃处于最高、最低位置时,玻璃升降器的臂会出现压缩变形,而玻璃处于中间位置时,玻璃升降器的臂会出现拉伸变形。
其压缩量的分配见图3所示。
活动导轨处在最高位置时的压缩量L1<13mm,活动导轨处在最低位置时的压缩量L2<15mm,活动导轨处在中间位置时的拉伸量L3<10mm。
三者的比例关系为:L1:L2:L3=8:5:10。
图3臂式升降器压缩量分布图玻璃升降器布置步骤:玻璃升降器布置步骤见图4所示,具体步骤如下:①布置玻璃升降器的最高位置,当玻璃处于最高位置时,玻璃下端距水切口上端的距离大于50MM,玻璃夹持器处于水平位置;滑轮位置的确定,玻璃在运动的时候,玻璃的质心必须在两滑轮中心线以内,保持玻璃升降运动的平稳性。
②布置玻璃升降器的最低位置,对前门玻璃升降器而言,由玻璃的高度确定玻璃升降器的工作行程,根据玻璃升降器的最高位置和升降行程定义玻璃升降器导轨的最低位置,玻璃上端高出水切口上端0—2 mm之间。
对后门玻璃升降器而言,当玻璃下降到最低位置时,玻璃下端与门里板下框之间的最小距离值应大于15mm来确定玻璃的最低位置。
图4 臂式升降器平面布置图3.4限位器限位器是一种控制车门开度,并能使车门停留在设计所需的位置上的运动机构。
限位器布置要求如下(见图5):图5 限位器布置图3.4.1 为实现车门顺利开关,限位器旋动轴线应与铰链轴线平行。
3.4.2 限位器的限位角度一般定义在60°-70°之间,其值与门的宽度参数有关,车门宽度越大,设计的角度可以越小。
3.4.3 限位器在高度方向上的布置应尽量布置在上、下铰链中间的位置上或向下偏离一段距离。
3.4.4 在车门开闭过程中,限位器与门玻璃、玻璃导轨、玻璃升降器之间的最小距离为6mm,以确保车门附件的正常工作。
3.4.5限位器的限位角度一般定义为二挡或三挡,以实现车门的不同开度,这通过在限位器臂上设计凹槽结构来完成,凹槽的位置通过运动分析模拟来确定。
4.5门框滚压件在门框滚压件布置设计时,应考虑如下问题:4.5.1滚压件的断面形状必须与密封条断面形状相匹配,以保证密封条的安装需要。
4.5.2滚压件的断面形状必须与玻璃导轨断面形状相匹配,以保证滚压件、玻璃导轨的焊接关系和安装玻璃泥槽的需要。
4.5.3滚压件进入门里板内的伸入量应大于100mm,保证滚压件与门内板至少有二个焊点存在,使滚压件与门内板有足够的连接强度和刚度,确保车门的整体刚度。
4.5.4选择的滚压件一定要选择成熟的产品,具有足够的强度与刚度,保证车门的整体刚性要求。
4.6玻璃导轨在玻璃导轨布置设计时,应考虑如下问题:4.6.1玻璃导轨的断面形状必须与门框滚压件的断面形状相匹配4.6.2玻璃导轨的形状必须与玻璃形状相匹配,以确保玻璃的顺利升降。
4.6.3玻璃导轨的断面形状必须与玻璃泥槽的断面形状相匹配,以确保玻璃导轨与玻璃泥槽准确的安装关系和密封效果。
4.6.4玻璃后导轨一般设计成上下二段,上半部分设计成焊接结构,下半部分设计成活动导轨,以便于锁体的拆装性。
4.6.5玻璃导轨与锁体之间的距离大于6mm,避免因制造、装配误差和汽车行驶过程中的变形与振动,影响其功能的发挥。
4.6.6在门开闭过程中,玻璃导轨与门限位器的最小距离大于6mm。
4.7防撞杠防撞杆是车门碰撞时,防止车门发生变形的结构件。
其结构形式一般有二种:其一是:二端支架、中间圆管的焊接形式,圆管直径一般选择为28—32mm,材料一般选择高强度低合金型材;其二是:整体冲压件,结构形式设计成防撞的波状结构,材料一般选择高强度低合金钢板。