高一数学必修 指数函数试题及答案
高一数学上册第二章--指数函数知识点及练习题(含答案)

课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。
高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析1.(本小题12分)不用计算器求下列各式的值⑴⑵【答案】(1)(2)【解析】(1)……6分(2)……12分【考点】本小题主要考查指数和对数的运算,考查学生的运算求解能力.点评:指数和对数的运算性质的灵活应用是解决此类问题的关键,另外也经常用到. 2.要使方程x+px+q = 0的两根a、b满足lg(a+b) = lga+lgb,试确定p和q应满足的关系.【答案】p+q = 0且q>0【解析】由已知得,又lg(a+b) = lga+lgb,即a+b = ab,再注意到a>0,b>0,可得-p = q>0,所以p和q满足的关系式为p+q = 0且q>0.3.计算:=【答案】【解析】原式4.当时,不等式恒成立,则实数的取值范围是()A.B.C.D.【答案】A【解析】,当时,,则,解得,故选A。
点睛:利用分离参数法得到,因为对任意的,不等式恒成立,则只需,解得,最后求得的取值范围。
函数恒成立问题,分离参数法是最常用的方法,属于含参函数题型的通法之一。
5.已知:,则__________.【答案】2【解析】由题意得.6.设,,,则的大小关系是()A.B.C.D.【答案】A【解析】∵在x>0时是增函数∴a>c又∵在x>0时是减函数,所以c>b故答案选A。
7.已知,,,则,,的大小关系是()A.B.C.D.【答案】C【解析】因为,,,所以,故选C.8.化简计算下列各式:(1);(2).【答案】(1);(2).【解析】(1)根据指数幂的运算法则即可求出;(2)根据对数的运算法则及特殊值的对数即可求解.试题解析:(1)原式.(2)原式.9.函数y=a x(-2≤x≤3)的最大值为2,则a=________.【答案】或【解析】当0<a<1时,y=a x在[-2,3]上是减函数,=a-2=2,得a=;所以ymax当a>1时,y=a x在[-2,3]上是增函数,=a3=2,解得a=.综上知a=或.所以ymax10.要得到函数y=21-2x的图像,只需将指数函数y=的图像()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位【答案】D【解析】,所以可以由图象右移个单位,故选D。
高中数学必修一《指数与指数函数》测试及答案2套

高中数学必修一《指数与指数函数》测试及答案2套单元测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a <14,则化简44a -12的结果是( )A.1-4aB.4a -1 C .-1-4aD .-4a -12.某林区的森林蓄积量每年比上一年平均增加110.4%,那么经过x 年可增长到原来的y 倍,则函数y =f (x )的图象大致是( )3.设f (x )=⎝ ⎛⎭⎪⎫12|x |,x ∈R ,那么f (x )是( )A .奇函数且在(0,+∞)上是增函数B .偶函数且在(0,+∞)上是增函数C .奇函数且在(0,+∞)上是减函数D .偶函数且在(0,+∞)上是减函数 4.若3a>1,则实数a 的取值范围为( )A .(-∞,0)B .(0,1)C .(0,+∞) D.(2,+∞) 5.函数y =2x-12x +1是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数6.函数y =⎝ ⎛⎭⎪⎫12 x 2-2的单调递减区间为( )A .(-∞,0]B .0,+∞)C .(-∞,2]D .2,+∞)7.函数y=⎝ ⎛⎭⎪⎫12-x 2+2x 的值域是( ) A .R B.⎣⎢⎡⎭⎪⎫12,+∞ C .(2,+∞)D .(0,+∞)8.设f (x )是定义在实数集R 上的函数,满足条件:y =f (x +1)是偶函数,且当x ≥1时,f (x )=5x,则f ⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫13的大小关系是( )A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32B .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫23C .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13 D .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13 9.函数y =|x |e-xx的图象的大致形状是( )10.下列函数中,与y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =|x |-1|x |C .y =-(2x +2-x)D .y =x 3-111.已知函数f (x )=⎩⎪⎨⎪⎧a xx <0,a -3x +4a x ≥0满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,14 B .(0,1) C.⎣⎢⎡⎭⎪⎫14,1 D .(0,3) 12.设函数f (x )=2-x 2+x +2 ,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K ,f x >K ,若对于函数f (x )=2-x 2+x +2定义域内的任意x ,恒有f K (x )=f (x ),则( )A .K 的最大值为2 2B .K 的最小值为2 2C .K 的最大值为1D .K 的最小值为1第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.2-12+-42+12-1-1-5=________.14.函数f (x )=2a x +1-3(a >0,且a ≠1)的图象经过的定点坐标是________.15.若函数f (x )=⎩⎪⎨⎪⎧1x ,x <0,⎝ ⎛⎭⎪⎫13x,x ≥0,则不等式|f (x )|≥13的解集为________.16.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x-3,则当x <0时,f (x )=________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)函数f (x )=k ·a -x(k ,a 为常数,a >0且a ≠1)的图象过点A (0,1),B (3,8). (1)求函数f (x )的解析式; (2)若函数g (x )=f x -1f x +1,试判断函数g (x )的奇偶性并给出证明.18.(本小题满分12分) 已知函数f (x )=2x-4x.(1)求y =f (x )在-1,1]上的值域; (2)解不等式f (x )>16-9×2x;(3)若关于x 的方程f (x )+m -1=0在-1,1]上有解,求m 的取值范围.19.(本小题满分12分)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的关系近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式y =f (t );(2)进一步测定:每毫升血液中的含药量不少于0.25毫克时,药物对治疗疾病有效.求服药一次治疗疾病的有效时间.20.(本小题满分12分)已知函数f (x )=a 2+22x +1是奇函数.(1)求a 的值;(2)判断f (x )的单调性,并用定义加以证明; (3)求f (x )的值域.21.(本小题满分12分)已知函数f (x )=⎝ ⎛⎭⎪⎫13x ,x ∈-1,1],函数φ(x )=f (x )]2-2af (x )+3的最小值为h (a ).(1)求h (a );(2)是否存在实数m >n >3,当h (a )的定义域为n ,m ]时,值域为n 2,m 2]?若存在,求出m ,n 的值;若不存在,请说明理由.22.(本小题满分12分)定义在D 上的函数f (x ),如果满足:对任意x ∈D ,存在常数M >0,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ·⎝ ⎛⎭⎪⎫13x +⎝ ⎛⎭⎪⎫19x.(1)当a =-12时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在0,+∞)上是以4为上界的有界函数,求实数a 的取值范围.答案1.A 解析:∵a <14,∴4a -1<0,∴44a -12=1-4a .2.D 解析:经过x 年后y =(1+110.4%)x=2.104x.3.D 解析:函数f (x )的定义域R 关于原点对称,且f (-x )=⎝ ⎛⎭⎪⎫12|-x |=⎝ ⎛⎭⎪⎫12|x |=f (x ),所以f (x )是偶函数.又f (x )=⎝ ⎛⎭⎪⎫12|x |=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥0,2x ,x <0,所以f (x )在(0,+∞)上是减函数.4.C 解析:因为3a>1,所以3a>30,3>1,∴y =3a是增函数.∴a >0.5.A 解析:函数y =2x-12x +1的定义域(-∞,+∞)关于原点对称,且f (-x )=2-x-12-x +1=12x -112x +1=1-2x 1+2x =-f (x ),所以该函数是奇函数. 6.B 解析:函数y =⎝ ⎛⎭⎪⎫12u为R 上的减函数,欲求函数y =⎝ ⎛⎭⎪⎫12x 2-2的单调递减区间,只需求函数u =x 2-2的单调递增区间,而函数u =x 2-2的单调递增区间为0,+∞).7.B 解析:令t =-x 2+2x ,则t =-x 2+2x 的值域为(-∞,1],所以y =⎝ ⎛⎭⎪⎫12-x 2+2x=⎝ ⎛⎭⎪⎫12t 的值域为⎣⎢⎡⎭⎪⎫12,+∞. 解题技巧:本题主要考查了指数型函数的值域,解决本题的关键是先求出指数t =-x 2+2x 的值域,再根据复合函数的单调性求出指数型函数的值域.8.D 解析:∵y =f (x +1)是偶函数,∴y =f (x +1)的对称轴为x =0,∴y =f (x )的对称轴为x =1.又x ≥1时,f (x )=5x,∴f (x )=5x在1,+∞)上是增函数,∴f (x )在(-∞,1]上是减函数.∵f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫12,且23>12>13,∴f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13,即f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13.9.C 解析:由函数的表达式知,x ≠0,y =e -x|x |x =⎩⎪⎨⎪⎧e -x,x >0,-e -x,x <0,所以它的图象是这样得到的:保留y =e -x,x >0的部分,将x <0的图象关于x 轴对称.故选D.10.C 解析:设函数f (x )=y =-3|x |,x ∈R ,∴f (-x )=-3|-x |.∵f (x )=f (-x ),∴f (x )为偶函数.令t =|x |,∴t =|x |,x ∈(-∞,0)是减函数,由复合函数的单调性知,y=-3|x |在x ∈(-∞,0)为增函数.选项A 为奇函数,∴A 错;选项B 为偶函数但是在x ∈(-∞,0)为减函数,∴B 错;选项C 令g (x )=-(2x+2-x),g (-x )=-(2-x+2x),∴g (x )=g (-x ),∴g (x )为偶函数.由复合函数的单调性知,g (x )在x ∈(-∞,0)为增函数.故选C.11.A 解析:∵对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,∴f (x )是R 上的减函数.∴⎩⎪⎨⎪⎧0<a <1,a 0≥4a ,解得a ∈⎝ ⎛⎦⎥⎤0,14.故选A. 12.B 解析:∵函数f (x )=2-x 2+x +2的值域为1,22],又∵对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K ,f x >K ,若对于函数f (x )=2-x 2+x +2定义域内的任意x ,恒有f K (x )=f (x ),∴K ≥2 2.故选B.13.-22解析:2- 12+-42+12-1-1-5=12-42+2+11-1=-32+2=-22.14.(-1,-1) 解析:由指数函数恒过定点(0,1)可知,函数f (x )=2ax +1-3(a >0,且a ≠1)的图象恒过定点(-1,-1).15.-3,1] 解析:当x <0时,|f (x )|≥13,即1x ≤-13,∴x ≥-3;当x ≥0时,|f (x )|≥13,即⎝ ⎛⎭⎪⎫13x ≥13,∴x ≤1.综上不等式的解集是x ∈-3,1].解题技巧:本题主要考查了关于分段函数的不等式,解决本题的关键是分段求出不等式的解集,最后取并集.16.-2-x+3 解析:当x <0时,-x >0.∵当x >0时,f (x )=2x -3,∴f (-x )=2-x-3.又f (x )是定义在R 上的奇函数,∴当x <0时,f (-x )=2-x-3=-f (x ),∴f (x )=-2-x+3.17.解:(1)由函数图案过点A (0,1)和B (3,8)知,⎩⎪⎨⎪⎧k =1,k ·a -3=8,解得⎩⎪⎨⎪⎧k =1,a =12,∴f (x )=2x.(2)函数g (x )=2x-12x +1为奇函数.证明如下:函数g (x )定义域为R ,关于原点对称;且对于任意x ∈R ,都有g (-x )=2-x-12-x +1=1-2x 1+2x =-2x-12x+1=-g (x )成立. ∴函数g (x )为奇函数.18.解:(1)设t =2x,因为x ∈-1,1],∴t ∈⎣⎢⎡⎦⎥⎤12,2,y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,∴t =12时,f (x )max =14,t =2时,f (x )min =-2.∴f (x )的值域为⎣⎢⎡⎦⎥⎤-2,14.(2)设t =2x ,由f (x )>16-9×2x 得t -t 2>16-9t , 即t 2-10t +16<0,∴2<t <8,即2<2x<8,∴1<x <3, ∴不等式的解集为(1,3).(3)方程有解等价于m 在1-f (x )的值域内,∴m 的取值范围为⎣⎢⎡⎦⎥⎤34,3.19.解:(1)当t ∈0,1]时,设函数的解析式为y =kt ,将M (1,4)代入,得k =4,∴ y =4t .又当t ∈(1,+∞)时,设函数的解析式为y =⎝ ⎛⎭⎪⎫12t -a,将点(3,1)代入得a =3,∴ y =⎝ ⎛⎭⎪⎫12t -3.综上,y =f (t )=⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝ ⎛⎭⎪⎫12t -3,t >1.(2)由f (t )≥0.25,解得116≤t ≤5.所以服药一次治疗疾病的有效时间为5-116=7916(小时).解题技巧:解题时,先观察图形,将图形语言转化成符号语言.由图形可知这是一个一次函数、指数函数相结合的题目.根据条件设出解析式,结合图象中的已知点求出函数解析式,再利用分段函数的知识即可求解服药一次治疗疾病的有效时间.20.解:(1)由题知,f (x )的定义域是R ,∵f (x )是奇函数,∴f (0)=0,即f (0)=a 2+220+1=0,解得a =-2.经验证可知,f (x )是奇函数, ∴a =-2.(3)f (x )=-1+22x +1,∵2x >0,∴2x+1>1,∴0<22x +1<2,-1<-1+22x +1<1,∴-1<y <1.故f (x )的值域为(-1,1).21.解:(1)因为x ∈-1,1],所以⎝ ⎛⎭⎪⎫13x ∈⎣⎢⎡⎦⎥⎤13,3.设t =⎝ ⎛⎭⎪⎫13x ,t ∈⎣⎢⎡⎦⎥⎤13,3,则φ(x )=t 2-2at +3=(t -a )2+3-a 2.当a <13时,y min =h (a )=φ⎝ ⎛⎭⎪⎫13=289-2a 3;当13≤a ≤3时,y min =h (a )=φ(a )=3-a 2; 当a >3时,y min =h (a )=φ(3)=12-6a .∴h (a )=⎩⎪⎨⎪⎧289-2a 3⎝ ⎛⎭⎪⎫a <13,3-a 2⎝ ⎛⎭⎪⎫13≤a ≤3,12-6a a >3.(2)假设满足题意的m ,n 存在,∵m >n >3,∴h (a )=12-6a 在(3,+∞)上是减函数. ∵h (a )的定义域为n ,m ],值域为n 2,m 2],∴⎩⎪⎨⎪⎧12-6m =n 2,12-6n =m 2,两式相减,得6(m -n )=(m -n )(m +n ).由m >n >3,∴m +n =6,但这与m >n >3矛盾,∴满足题意的m ,n 不存在.解题技巧:本题主要考查了指数型函数的值域、存在性问题;解决存在性问题的关键是先假设存在,把假设作为已知条件进行推理,若推理合理则存在,若推理不合理则不存在.22.解:(1)当a =-12时,f (x )=1-12×⎝ ⎛⎭⎪⎫13x +⎝ ⎛⎭⎪⎫19x .令t =⎝ ⎛⎭⎪⎫13x,∵x <0,∴t >1,f (t )=1-12t +t 2.∵f (t )=1-12t +t 2在(1,+∞)上单调递增,∴f (t )>32,即f (x )在(-∞,1)的值域为⎝ ⎛⎭⎪⎫32,+∞. 故不存在常数M >0,使|f (x )|≤M 成立,∴函数f (x )在(-∞,0)上不是有界函数.(2)由题意知,|f (x )|≤4,即-4≤f (x )≤4对x ∈0,+∞)恒成立.令t =⎝ ⎛⎭⎪⎫13x ,∵x ≥0,∴t ∈(0,1],∴-⎝ ⎛⎭⎪⎫t +5t ≤a ≤3t-t 对t ∈(0,1]恒成立,∴⎣⎢⎡⎦⎥⎤-⎝⎛⎭⎪⎫t +5t max ≤a ≤⎝ ⎛⎭⎪⎫3t -t min . 设h (t )=-⎝ ⎛⎭⎪⎫t +5t ,p (t )=3t-t ,t ∈(0,1].由于h (t )在t ∈(0,1]上递增,p (t )在t ∈(0,1]上递减,h (t )在t ∈(0,1]上的最大值为h (1)=-6,p (t )在1,+∞)上的最小值为p (1)=2,则实数a 的取值范围为-6,2].单元测试卷二(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(-2)2] - 12 的结果是( ) A. 2 B .- 2 C.22D .-222.⎝⎛⎭⎪⎫1120-(1-0.5-2)÷⎝⎛⎭⎪⎫27823的值为( )A.-13B.13C.43D.733.若a>1,则函数y=a x与y=(1-a)x2的图象可能是下列四个选项中的( )4.下列结论中正确的个数是( )①当a<0时,(a223=a3;②na n=|a|(n≥2,n∈N);③函数y=(x-2)12-(3x-7)0的定义域是2,+∞);④6-22=32.A.1 B.2 C.3 D.45.指数函数y=f(x)的图象经过点⎝⎛⎭⎪⎫-2,14,那么f(4)·f(2)等于( ) A.8 B.16 C.32 D.646.函数y=21x的值域是( )A.(0,+∞) B.(0,1)C.(0,1)∪(1,+∞) D.(1,+∞)7.函数y=|2x-2|的图象是( )8.a ,b 满足0<a <b <1,下列不等式中正确的是( ) A .a a<a bB .b a<b bC .a a<b aD .b b<a b9.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .ex +1B .ex -1C .e-x +1D .e-x -110.若函数y =a x+m -1(a >0,a ≠1)的图象在第一、三、四象限内,则( ) A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <111.函数f (x )=2x +2-4x,若x 2-x -6≤0,则f (x )的最大值和最小值分别是( ) A .4,-32 B .32,-4 C.23,0 D.43,1 12.若函数f (x )=3x+3-x与g (x )=3x-3-x的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D .f (x )为奇函数,g (x )为偶函数第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系为________.14.若方程⎝ ⎛⎭⎪⎫14x +⎝ ⎛⎭⎪⎫12x -1+a =0有正数解,则实数a 的取值范围是________.15.已知函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|,则f (x )的单调递增区间是________.16.定义区间x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数y =2|x |的定义域为a ,b ],值域为1,2],则区间a ,b ]的长度的最大值与最小值的差为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分) 解不等式a 2x +7<a3x -2(a >0,a ≠1).18.(本小题满分12分)已知函数f (x )=3x,且f (a )=2,g (x )=3ax-4x. (1)求g (x )的解析式;(2)当x ∈-2,1]时,求g (x )的值域.19.(本小题满分12分)已知函数f (x )=⎝ ⎛⎭⎪⎫12ax,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x-2,且g (x )=f (x ),求满足条件的x 的值.20.(本小题满分12分)已知函数f (x )=a ·2x +b ·3x,其中常数a ,b 为实数. (1)当a >0,b >0时,判断并证明函数f (x )的单调性; (2)当ab <0时,求f (x +1)>f (x )时x 的取值范围.21.(本小题满分12分)设a ∈R ,f (x )=a -22x +1(x ∈R ).(1)证明:对任意实数a ,f (x )为增函数; (2)试确定a 的值,使f (x )≤0恒成立.22.(本小题满分12分)已知定义域为R 的函数f (x )=-2x+b2x +1+2是奇函数.(1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.答案1.C 解析:(-2)2] - 12 =2- 12 =12=22.2.D 解析:原式=1-(1-22)÷⎝ ⎛⎭⎪⎫322=1-(-3)×49=73.故选D.3.C 解析:a >1,∴y =a x在R 上单调递增且过(0,1)点,排除B ,D , 又∵1-a <0,∴y =(1-a )x 2的开口向下.4.A 解析:在①中,a <0时,(a 2) 32 >0,而a 3<0,∴①不成立. 在②中,令a =-2,n =3,则3-23=-2≠|-2|,∴②不成立.在③中,定义域应为⎣⎢⎡⎭⎪⎫2,73∪⎝ ⎛⎭⎪⎫73,+∞,∴③不成立. ④式是正确的,∵6-22=622=32,∴④正确.5.D 解析:设f (x )=a x(a >0且a ≠1), 由已知得14=a -2,a 2=4,所以a =2,于是f (x )=2x,所以f (4)·f (2)=24·22=64.解题技巧:已知函数类型,求函数解析式,常用待定系数法,即先把函数设出来,再利用方程或方程组解出系数.6.C 解析:∵1x≠0,∴21x ≠1,∴函数y =21x的值域为(0,1)∪(1,+∞).7.B 解析:找两个特殊点,当x =0时,y =1,排除A ,C.当x =1时,y =0,排除D.故选B.8.C 解析:∵0<a <b <1,∴a a >a b ,故A 不成立,同理B 不成立,若a a <b a,则⎝ ⎛⎭⎪⎫a b a <1,∵0<a b<1,0<a <1, ∴⎝ ⎛⎭⎪⎫a ba <1成立,故选C. 9.D 解析:与曲线y =e x 关于y 轴对称的曲线为y =e -x ,函数y =e -x的图象向左平移一个单位长度即可得到函数f (x )的图象,即f (x )=e-(x +1)=e-x -1.解题技巧:函数图象的平移变换,要注意平移的方向和平移量.平移规律为:10.B 解析:由函数y =a x+m -1(a >0,a ≠1)的图象在第一、三象限知,a >1.知函数在第四象限,∴a 0+m -1<0,则有m <0.11.A 解析:f (x )=2x +2-4x =-(2x )2+4·2x =-(2x -2)2+4,又∵x 2-x -6≤0,∴-2≤x ≤3,∴14≤2x≤8.当2x =2时,f (x )max =4,当2x=8时,f (x )min =-32. 12.B 解析:因为f (-x )=3-x+3-(-x )=3-x +3x=f (x ),g (-x )=3-x -3-(-x )=3-x -3x =-g (x ),所以f (x )为偶函数,g (x )为奇函数.13.c >a >b 解析:由指数函数y =a x当0<a <1时为减函数知, 0.80.7>0.80.9,又1.20.8>1,0.80.7<1, ∴1.20.8>0.80.7>0.80.9,即c >a >b .14.(-3,0) 解析:令⎝ ⎛⎭⎪⎫12x=t ,∵方程有正根,∴t ∈(0,1).方程转化为t 2+2t +a =0, ∴a =1-(t +1)2.∵t ∈(0,1),∴a ∈(-3,0).15.(-∞,1] 解析:解法一:由指数函数的性质可知,f (x )=⎝ ⎛⎭⎪⎫12x在定义域上为减函数,故要求f (x )的单调递增区间,只需求y =|x -1|的单调递减区间.又y =|x -1|的单调递减区间为(-∞,1],所以f (x )的单调递增区间为(-∞,1].解法二:f (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1,x ≥1,2x -1,x <1.可画出f (x )的图象,并求其单调递增区间.解题技巧:既可以利用复合函数的“同增异减”法则求解,也可以去绝对值符号,转化为分段函数求解.16.1 解析:作出函数y =2|x |的图象(如图所示).当x =0时,y =20=1, 当x =-1时,y =2|-1|=2,当x =1时,y =21=2,所以当值域为1,2]时,区间a ,b ]的长度的最大值为2,最小值为1,它们的差为1. 17.解:当a >1时,a 2x +7<a3x -2等价于2x +7<3x -2,∴x >9; 当0<a <1时,a 2x +7<a3x -2等价于2x +7>3x -2.∴x <9.综上,当a >1时,不等式的解集为{x |x >9}; 当0<a <1时,不等式的解集为{x |x <9}. 解题技巧:注意按照底数进行分类讨论. 18.解:(1)由f (a )=2,得3a=2,a =log 32, ∴g (x )=(3a )x-4x=(3log 32)x -4x=2x-4x=-(2x )2+2x. ∴g (x )=-(2x )2+2x. (2)设2x=t ,∵x ∈-2,1], ∴14≤t ≤2. g (t )=-t 2+t =-⎝⎛⎭⎪⎫t -122+14,由g (t )在t ∈⎣⎢⎡⎦⎥⎤14,2上的图象可得, 当t =12,即x =-1时,g (x )有最大值14;当t =2,即x =1时,g (x )有最小值-2. 故g (x )的值域是⎣⎢⎡⎦⎥⎤-2,14.19.解:(1)由已知得⎝ ⎛⎭⎪⎫12-a=2,解得a =1.(2)由(1)知,f (x )=⎝ ⎛⎭⎪⎫12x ,又g (x )=f (x ),则4-x-2=⎝ ⎛⎭⎪⎫12x ,即⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x -2=0,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x 2-⎝ ⎛⎭⎪⎫12x-2=0. 令⎝ ⎛⎭⎪⎫12x =t ,则t 2-t -2=0,即(t -2)(t +1)=0. 又t >0,故t =2,即⎝ ⎛⎭⎪⎫12x=2,解得x =-1.20.解:(1)函数f (x )在R 上是增函数.证明如下:a >0,b >0,任取x 1,x 2∈R ,且x 1<x 2,(2)∵f (x +1)>f (x ), ∴f (x +1)-f (x )=(a ·2x +1+b ·3x +1)-(a ·2x+b ·3x)=a ·2x+2b ·3x>0,当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b , 当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,则x <log 1.5⎝ ⎛⎭⎪⎫-a 2b . 综上,当a <0,b >0时,x 的取值范围是⎝ ⎛⎭⎪⎫log 1.5⎝ ⎛⎭⎪⎫-a 2b ,+∞;当a >0,b <0时,x 的取值范围是⎝ ⎛⎭⎪⎫-∞,log 1.5⎝ ⎛⎭⎪⎫-a 2b . 21.(1)证明:任取x 1,x 2∈R ,且x 1<x 2,故对于任意实数a ,f (x )为增函数.(2)解:f (x )=a -22x +1≤0恒成立,只要a ≤22x +1恒成立,问题转化为只要a 不大于22x+1的最小值.∵x ∈R,2x>0恒成立,∴2x+1>1. ∴0<12x +1<1,0<22x +1<2,∴a ≤0.故当a ∈(-∞,0]时,f (x )≤0恒成立.22.解:(1)因为f (x )是奇函数,所以f (0)=0,即b -12+2=0,解得b =1.(3)因为f (x )是奇函数,f (t 2-2t )+f (2t 2-k )<0,则f (t 2-2t )<-f (2t 2-k )=f (k -2t 2), 因f (x )为减函数,由上式推得,t 2-2t >k -2t 2. 即对一切t ∈R 有3t 2-2t -k >0, 从而判别式Δ=4+12k <0,解得k <-13.故k 的取值范围是⎝ ⎛⎭⎪⎫-∞,-13.。
高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.三个数,,之间的大小关系()A.B.C.D.【答案】B【解析】对于,当时;对于,当时,;对于,当时,;故.【考点】对数函数,指数函数的性质.3..【答案】【解析】原式=【考点】指数与对数4.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.5.将函数的图像向左平移一个单位,得到图像,再将向上平移一个单位得到图像,作出关于直线对称的图像,则的解析式为 .【答案】【解析】根据平移口诀“上加下减”可得函数解析式为,函数解析式为,因为图像与图像关于直线对称,所以函数与函数互为反函数。
因为,所以,解得,所以,所以函数的反函数为,即的解析式为。
【考点】图像平移,指数和对数的互化。
6.已知,且,则A的值是()A.15B.C.±D.225【答案】B【解析】由得到代入到得:,利用换底法则得到,所以故选B【考点】指数函数综合题.7.三个数,之间的大小关系是A.B.C.D.【答案】C【解析】,所以;;。
所以。
故C正确。
【考点】指数函数和对数函数的单调性及运算。
8.计算:⑴ ;⑵.【答案】(1);(2).【解析】对于(1),主要是利用指数幂的运算性质进行化简求值;对于(2),主要是利用对数的运算性质进行化简求值,要求熟练的掌握指数幂和对数的运算性质.试题解析:(1)原式;(2)原式.【考点】本题主要考查了指数幂的运算性质和对数的运算性质,属于基础题..9.【答案】(1);(2)1.【解析】(1)由指数的运算法则,原式==;(2)由对数的运算法则,原式===1.试题解析:(1)原式= 5分= 7分(2)原式= 10分= 12分=1 14分考点:1、有理数指数幂的运算性质;2、对数的运算性质.10.已知,.(1)求的解析式;(2)解关于的方程(3)设,时,对任意总有成立,求的取值范围.【答案】(1)(2)当时,方程无解当时,解得若,则若,则(3)【解析】(1)利用换元法求解函数的解析式,设,则,代入即得解析式(2)依题意将方程中化简得,然后分和分别求解,(3)对任意总有成立,等价于当时,,然后分的取值来讨论.试题解析:解:(1)令即,则即(2)由化简得:即当时,方程无解当时,解得若,则若,则(3)对任意总有成立,等价于当时,令则令①当时,单调递增,此时,即(舍)②当时,单调递增此时,即③当时,在上单调递减,在上单调递增且即,综上:【考点】本题考查指数函数的性质及闭区间上的最值问题,考查了恒成立问题转化为求函数最值及分类讨论.11.计算 .【答案】14【解析】【考点】指数幂的运算;对数的运算12. (1)(2)计算【答案】(1) (2)【解析】(1)通过指数形式转化为对数的形式,让后再运算.(2)通过把除号改写为分数线,再把负指数化为正指数.再运算.试题解析:【考点】1.指数转化为对数形式.2.分式的运算.13.已知,则____________________.【答案】1【解析】由已知得,,,所以,,故.【考点】1.指数式与对数式之间的互化;2.对数运算.14.已知,则的增区间为_______________.【答案】(或)【解析】令函数,因为,,由函数零点存在性定理知,所以函数为减函数,又由函数的单调递减区间为,故所求函数的增区间为.【考点】1.函数的零点;2.指数函数;3.二次函数.15.函数的图象可能是()【答案】D【解析】,,排除A;当时,排除B;当时,排除C.故选D.【考点】指数函数的图像变换16.对于函数)中任意的有如下结论:①;②;③;④;⑤.当时,上述结论中正确结论的个数是( )A.2个B.3个C.4个D.5个【答案】B【解析】当时,,①错误;,②正确;,③正确;当时,,④错误;因为是上的递增函数,即:时,,或时,,因此与同号,所以,⑤正确.【考点】指数函数的性质17.化简或求值:(1);(2)计算.【答案】(1);(2)1.【解析】(1)将小数化成分数,利用指数幂的运算法则;(2)对于比较复杂的式子,把它拆成几部分分别化简或计算.本小题利用对数的运算法则分别对分子和分母进行求值.试题解析:(1)原式= 3分. 6分(2)分子=; 9分分母=;原式=. 12分【考点】指数幂与对数的运算法则.18.指数函数f(x)的图象上一点的坐标是(-3,),则f(2)=______________.【答案】4【解析】令指数函数为,其过点(-3,),则,求得,所以,f(2)=。
高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.函数的图像过一个定点,则定点的坐标是【答案】(2,2)【解析】当x=2时,f(2)=a2-2+1=a0+1=2,∴函数y=a x-2+1的图象一定经过定点(2,2).故答案为:(2,2).【考点】含有参数的函数过定点的问题.2.函数的图象与函数的图象所有交点的横坐标之和等于()A.4B.6C.8D.10【答案】C【解析】由数形结合可知,两函数图像在直线两侧各有4个交点,其两两关于对称。
不妨令。
则所有交点横坐标之和为。
故C正确。
【考点】1函数图像;2余弦函数的周期;3数形结合思想。
3.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算4.(1)计算.(2)若,求的值.【答案】(1);(2).【解析】(1)利用对数恒等式、换底公式、对数的运算性质进行计算;(2)首先对已知等式进行平方求得的值,再对其平方可求得的值,最后代入所求式即可求得结果.试题解析:(1)原式=.(2)∵,∴,∴,∴,∴,∴原式.【考点】1、对数的运算性质;2、对数的换底公式;3、指数的运算性质.5.已知函数,则=.【答案】【解析】根据题题意:,,故.【考点】1.分段函数;2.指数、对数运算.6.三个数,,的大小顺序是 ( )A.B.C.D.【答案】C【解析】因为,,,所以,故选C.【考点】1.指数函数的单调性;2.对数函数的单调性.7.计算的值为_________.【答案】2【解析】原式【考点】根式、指数、对数的运算8.三个数大小的顺序是()A.B.C.D.【答案】A【解析】由题意得,.,,,,故选A【考点】考察指数函数,和对数函数,分别与1和0的之对比.9.若实数,满足,则关于的函数的图象形状大致是()【答案】B【解析】由等式,可得,根据指数函数的图像可知(或者根据函数的奇偶性、单调性、特殊值来判断),正确答案为B.【考点】1.对数式与指数式的互化;2.指数函数图像、奇偶性、单调性.10.若a<0,>1,则( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<0【答案】D【解析】是上的增函数,由,所以是上的减函数, 由,所以故选D【考点】指数函数,对数函数的单调性.11.三个数的大小关系为()A.B.C.D.【答案】D【解析】判断几个数的大小多用构造函数单调性来解题.因为是上的减函数,所以因为是上的减函数,所以因为是上的增函数,所以故选D【考点】用指数函数与对数函数单调性比较大小,转化思想应用.12.若,则函数的图象一定过点_______________.【答案】【解析】由函数过定点,令,即时,恒等于-3,故函数图像过定点;故答案为:.【考点】指数函数的图像和性质.13.设,,,则的大小关系是()A.B.C.D.【答案】D【解析】由对数函数的性质知:,所以答案选.【考点】1.指数大小比较;2.对数函数的性质.14.计算:(1);(2)【答案】(1)6;(2).【解析】(1)直接采用换底公式计算即可;(2)利用指数幂的运算性质逐个运算即可.试题解析:(1)原式=(2)原式=【考点】1.换底公式的应用;2.指数幂的化简求值.15.函数的图象一定过点()A.B.C.D.【答案】B【解析】根据题意,由于函数,令x-1=0,x=1,可知函数值为2,故可知函数一定过点,选B.【考点】指数函数点评:本试题主要是考查了指数函数恒过(0,1)点的运用,属于基础题。
高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析1.若函数的图像经过第二,第三和第四象限,则一定有A.B.C.D.【答案】A【解析】根据指数函数的图象可知要使函数的图象经过第二,第三和第四象限,需要,即.【考点】本小题主要考查指数函数的图象和平移,考查学生对函数图象平移的掌握.点评:解决此类问题,一定要画出函数的图象,数形结合是解决问题的有力工具,要灵活应用.2.(本小题满分12分)(1)化简(2)计算的值【答案】(1)(2)【解析】(1)原式=. ……6分(2)原式=. ……12分【考点】本小题主要考查指数、对数的化简求值,考查学生的运算求解能力.点评:要解决此类问题,需要正确灵活的应用指数、对数的运算公式和运算性质.3.已求函数的单调区间.【答案】当0<a<1时,函数在上是减函数,在上是增函数;当a>1时,函数在上是增函数,在上是减函数.【解析】解:由>0得0<x<1,所以函数的定义域是(0,1)因为0<=,所以,当0<a<1时,函数的值域为;当a>1时,函数的值域为当0<a<1时,函数在上是减函数,在上是增函数;当a>1时,函数在上是增函数,在上是减函数.4.已知2x=5y=10,则+=________【答案】1【解析】由2x=5y=10得x=log210,y=log510,+=+=lg2+lg5=1.5.计算:=【答案】【解析】原式6.已知函数f (x)的定义域是(1,2),则函数的定义域是【答案】(0,1)【解析】由函数f (x)的定义域是(1,2)得;则函数的定义域为(0,1)7.函数y=()(-3)的值域是_____________【答案】[()9,39]【解析】;所以又是减函数;所以即所以函数y=()(-3)的值域是[()9,39]。
8.定义运算为:,例如:,则的取值范围是__________.【答案】【解析】由题意可得,,∵时,,综上可得,的取值范围是,故答案为.9.已知,则三者的大小关系是A.B.C.D.【答案】A【解析】由函数的图象与性质可知:;由函数的图象与性质可知:;∴故选:A10.若,则等于A.B.C.D.【答案】A【解析】因为,故选A.11.(1)计算;(2)已知,,试用表示.【答案】(1)4;(2).【解析】(1)由题意结合分数指数幂的运算法则计算可得原式的值为4;(2)由题意结合换底公式可得.试题解析:(1).(2).12.已知,,,则,,的大小关系是()A.B.C.D.【答案】C【解析】因为,,,所以,故选C.13.的值为________.【答案】【解析】。
高中数学指数函数测试题(含答案)

高中数学指数函数测试题(含答案) 高一数学同步测试指数函数一、选择题:1.化简[3 ]的结果为()A.5 B. C.- D.-52.化简的结果为()A.a16 B.a8 C.a4 D.a23.设函数()A.(-1,1) B.(-1,+ )C. D.4.设,则()A.y3>y1>y2 B.y2>y1>y3 C.y1>y2>y3 D.y1>y3>y25.当x[-2,2 时,y=3-x-1的值域是()A.[-, 8] B.[-,8] C.( ,9) D.[,9]6.在下列图象中,二次函数y=ax2+bx+c与函数y=( )x 的图象可能是()7.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1) B.( ,1 ) C.(-,0) D.(0,+)8.若,则等于()A.2 -1 B.2-2 C.2 +1 D.+19.设f(x)满足f(x)=f(4-x),且当x>2时f(x)是增函数,则a=f(1.10.9),b=f(0.91.1),c=的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>b>a10.若集合,则MP= ()A. B. C. D.11.若集合S={y|y=3x,xR},T={y|y=x2-1,xR},则ST是()A.S B.T C. D.有限集12.下列说法中,正确的是()①任取xR都有3x>2x②当a>1时,任取xR都有ax>a-x③y=( )-x是增函数④y=2|x|的最小值为1⑤在同一坐标系中,y=2x与y=2-x的图象对称于y 轴A.①②④ B.④⑤ C.②③④ D.①⑤二、填空题:13.计算:=.14.函数在上的最大值与最小值的和为3,则.15.函数y= 的值域是________.16.不等式的解集是.三、解答题:17.已知函数f(x)=ax+b的图象过点(1,3),且它的反函数f-1(x)的图象过(2,0)点,试确定f(x)的解析式.18.已知求的值.19.求函数y=3 的定义域、值域和单调区间.20.若函数 y=a2x+b+1(a>0且 a1,b为实数)的图象恒过定点(1,2),求b的值.21.设02,求函数y= 的最大值和最小值.22.设是实数,,试证明:对于任意在上为增函数.参考答案一、选择题:BCDDAACADCAB二、填空题:13. ,1 4.2,15.(0,1),16. .三、解答题:17.解析:由已知f(1)=3,即a+b=3①?又反函数f-1(x)的图象过(2,0)点即f(x)的图象过(0,2)点.?即f(0)=21+b=2?b=1代入①可得a=2因此f(x)=2x+118.解析:由可得x+x-1=7=27= 18,故原式=219.解析:(1)定义域显然为(-,+).(2) 是u的增函数,当x=1时,ymax=f(1)=81,而y= >0.(3)当x1时,u=f(x)为增函数,是u的增函数,由xuy即原函数单调增区间为(-,1];当x>1时,u=f(x)为减函数,是u的增函数,由xuy即原函数单调减区间为[1,+ .20.解析:∵x=-时,y=a0+1=2y=a2x+b+1的图象恒过定点(-,2)- =1,即b=-221.解析:设2x=t,∵02,14原式化为:y= (t-a)2+1当a1时,ymin= ;当1<a 时,ymin=1,ymax= ;当a4时,ymin= .22.证明:设,则,由于指数函数在上是增函数,且,所以即,又由,得,,即,所以,对于任意在上为增函数.。
高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析1.函数的单调递减区间【答案】【解析】因为,根据复合函数的单调性可知该函数的单调递减区间为.【考点】本小题主要考查复合函数的单调区间的求法.点评:考查复合函数的单调性时,要注意“同增异减”,还要注意函数的定义域.2.设a,b,c∈R,且3= 4= 6,则( ).A.=+B.=+C.=+D.=+【答案】B【解析】设3= 4= 6= k,则a = log k,b= log k,c = log k,从而= log 6 = log3+log 4 =+,故=+,所以选(B).3.设指数函数,则下列等式中不正确的是()A.f(x+y)=f(x)·f(y)B.C.D.【答案】D【解析】根据指数幂的运算律知:A,B,C正确;。
故选D4.若函数是定义在R上的奇函数,则函数的图象关于()A.轴对称B.轴对称C.原点对称D.以上均不对【答案】B【解析】因为函数是定义在R上的奇函数,所以则所以是偶函数。
故选B5.三个数,,之间的大小关系为()A.B.C.D.【答案】B【解析】因为,,,所以,故应选.【考点】1、指数与指数函数;2、对数与对数函数;6.定义运算为:,例如:,则的取值范围是__________.【答案】【解析】由题意可得,,∵时,,综上可得,的取值范围是,故答案为.7.已知,则三者的大小关系是A.B.C.D.【答案】A【解析】由函数的图象与性质可知:;由函数的图象与性质可知:;∴故选:A8.若,则等于A.B.C.D.【答案】A【解析】因为,故选A.9.已知函数(,且).(1)若函数在上的最大值为2,求的值;(2)若,求使得成立的的取值范围.【答案】(1)或;(2).【解析】(1)分类讨论和两种情况,结合函数的单调性可得:或;(2)结合函数的解析式,利用指数函数的单调性可得,求解对数不等式可得的取值范围是.试题解析:(1)当时,在上单调递增,因此,,即;当时,在上单调递减,因此,,即.综上,或.(2)不等式即.又,则,即,所以.10.已知,,,则,,的大小关系是()A.B.C.D.【答案】C【解析】因为,,,所以,故选C.11.若3<a<4,化简的结果是()A.7-2a B.2a-7C.1D.-1【答案】C【解析】∵,∴,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1指数函数试题及答案
1.已知集合M={-1,1},N=x12<2x+1<4,x∈Z,则M∩N等于( ) A.{-1,1} B.{-1}
C.{0} D.{-1,0}
【解析】因为N={x|2-1<2x+1<22,x∈Z},
又函数y=2x在R上为增函数,
∴N={x|-1<x+1<2,x∈Z}
={x|-2<x<1,x∈Z}={-1,0}.
∴M∩N={-1,1}∩{-1,0}={-1}.故选B.
【答案】 B
2.设14<14b<14a<1,那么( )
A.aa<ab<ba B.aa<ba<ab
C.ab<aa<ba D.ab<ba<aa
【解析】由已知及函数y=14x是R上的减函数,
得0<a<b<1.
由y=ax(0<a<1)的单调性及a<b,得ab<aa.
由0<a<b<1知0<ab<1.
∵aba<ab0=1.∴aa<ba.故选C.
也可采用特殊值法,如取a=13,b=12.
【答案】 C
3.已知函数f(x)=a-12x+1,若f(x)为奇函数,则a=________. 【解析】解法1:∵f(x)的定义域为R,又∵f(x)为奇函数,
∴f(0)=0,即a-120+1=0.∴a=12.
解法2:∵f(x)为奇函数,∴f(-x)=-f(x),
即a-12-x+1=12x+1-a,解得a=12.
【答案】12
4.函数y=2-x2+ax-1在区间(-∞,3)内递增,求a的取值范围.【解析】对u=-x2+ax-1=-x-a22+a24-1,增区间为-∞,a2,∴y的增区间为-∞,a2,由题意知3≤a2,∴a≥6.
∴a的取值范围是a≥6.
一、选择题(每小题5分,共20分)
1.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )
A.y3>y1>y2 B.y2>y1>y3
C.y1>y2>y3 D.y1>y3>y2
【解析】y1=40.9=21.8,y2=80.48=21.44,
y3=(12)-1.5=21.5,
∵y=2x在定义域内为增函数,
且1.8>1.5>1.44,
∴y1>y3>y2.
【答案】 D
2.若142a+1<143-2a,则实数a的取值范围是( )
A.12,+∞
B.1,+∞
C.(-∞,1) D.-∞,12
【解析】函数y=14x在R上为减函数,
∴2a+1>3-2a,∴a>12.故选A.
【答案】 A
3.设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x-1,则有( )
A.f(13)<f(32)<f(23)
B.f(23)<f(32)<f(13)
C.f(23)<f(13)<f(32)
D.f(32)<f(23)<f(13)
【解析】因为f(x)的图象关于直线x=1对称,所以f(13)=f(53),f(23)=f(43),因为函数f(x)=3x-1在[1,+∞)上是增函数,所以f(53)>f(32)>f(43),即
f(23)<f(32)<f(13).故选B.
【答案】 B
4.如果函数f(x)=(1-2a)x在实数集R上是减函数,那么实数a的取值范围是( ) A.(0,12) B.(12,+∞)
C.(-∞,12) D.(-12,12)
【解析】根据指数函数的概念及性质求解.
由已知得,实数a应满足1-2a>01-2a<1,解得a<12a>0,
即a∈(0,12).故选A.
【答案】 A
二、填空题(每小题5分,共10分)
5.设a>0,f(x)=exa+aex(e>1),是R上的偶函数,则a=________.
【解析】依题意,对一切x∈R,都有f(x)=f(-x),
∴exa+aex=1aex+aex,
∴(a-1a)(ex-1ex)=0.
∴a-1a=0,即a2=1.
又a>0,∴a=1.
【答案】 1
6.下列空格中填“>、<或=”.
(1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.
【解析】(1)考察指数函数y=1.5x.
因为1.5>1,所以y=1.5x在R上是单调增函数.
又因为2.5<3.2,所以1.52.5<1.53.2.
(2)考察指数函数y=0.5x.
因为0<0.5<1,所以y=0.5x在R上是单调减函数.
又因为-1.2>-1.5,所以0.5-1.2<0.5-1.5.
【答案】<,<
三、解答题(每小题10分,共20分)
7.根据下列条件确定实数x的取值范围:a<1a1-2x(a>0且a≠1).
【解析】原不等式可以化为a2x-1>a12,因为函数y=ax(a>0且a≠1)当底数a大于1时在R上是增函数;当底数a大于0小于1时在R上是减函数,
所以当a>1时,由2x-1>12,解得x>34;
当0<a<1时,由2x-1<12,解得x<34.
综上可知:当a>1时,x>34;当0<a<1时,x<34.
8.已知a>0且a≠1,讨论f(x)=a-x2+3x+2的单调性.
【解析】设u=-x2+3x+2=-x-322+174,
则当x≥32时,u是减函数,当x≤32时,u是增函数.
又当a>1时,y=au是增函数,当0<a<1时,y=au是减函数,
所以当a>1时,原函数f(x)=a-x2+3x+2在32,+∞上是减函数,在-∞,32上是增函数.
当0<a<1时,原函数f(x)=a-x2+3x+2在32,+∞上是增函数,在-∞,32上是减函数.
9.(10分)已知函数f(x)=3x+3-x.
(1)判断函数的奇偶性;
(2)求函数的单调增区间,并证明.
【解析】(1)f(-x)=3-x+3-(-x)=3-x+3x=f(x)且x∈R,
∴函数f(x)=3x+3-x是偶函数.
(2)由(1)知,函数的单调区间为(-∞,0]及[0,+∞),且[0,+∞)是单调增区间.
现证明如下:
设0≤x1<x2,则f(x1)-f(x2)=3x1+3-x1-3x2-2-x2
=3x1-3x2+13x1-13x2=3x1-3x2+3x2-3x13x13x2
=(3x2-3x1)?1-3x1+x23x1+x2.
∵0≤x1<x2,∴3x2>3x1,3x1+x2>1,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴函数在[0,+∞)上单调递增,
即函数的单调增区间为[0,+∞).。