高中数学-放缩法(详解)

合集下载

高考导数解答题中常见的放缩大法完整版.doc

高考导数解答题中常见的放缩大法完整版.doc

(高手必备)高考导数大题中最常用的放缩大法相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论⑴sin ,(0,)x x x π<∈,变形即为sin 1x x<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1.⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>.将这些不等式简单变形如下: exx ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。

例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(⋅≤>++=若对任意的设恒成立,求a 的取值范围。

放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x高考中最常见的放缩法可总结如下,供大家参考。

第一组:对数放缩(放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ⎛⎫<-> ⎪⎝⎭,()11ln 012x x x x ⎛⎫>-<< ⎪⎝⎭, )ln 1x x<>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102x x x x +≤--<<,()()21ln 102x x x x +≥-> (放缩成类反比例函数)1ln 1x x≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+第二组:指数放缩(放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥, (放缩成类反比例函数)()101x e x x ≤≤-,()10x e x x<-<, (放缩成二次函数)()21102x e x x x ≥++>,2311126x e x x x ≥+++, 第三组:指对放缩()()ln 112x e x x x -≥+--=第四组:三角函数放缩()sin tan 0x x x x <<>,21sin 2x x x ≥-,22111cos 1sin 22x x x -≤≤-. 第五组:以直线1y x =-为切线的函数ln y x =,11x y e -=-,2y x x =-,11y x=-,ln y x x =. 拓展阅读:为何高考中总是考这些超越函数呢?和x e xln 因为高考命题专家是大学老师,他们站在高观点下看高中数学,一览无遗。

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结在高中数学学习中,放缩法是一种常用的解题技巧,尤其在不等式证明和极限计算中应用广泛。

掌握好放缩法的技巧,可以帮助我们更好地解决数学问题,提高解题效率。

下面,我将对高中数学放缩法的技巧进行全面总结,希望能够帮助大家更好地掌握这一技巧。

首先,放缩法的基本思想是通过构造一个比原来更容易处理的不等式或者关系式,从而简化原问题的解决过程。

在实际运用中,我们可以通过加减变形、乘除变形、配方等方式进行放缩,下面我们来看一些常用的放缩法技巧。

一、加减变形。

在不等式证明中,我们常常会遇到需要证明一个不等式成立的情况。

这时,我们可以通过在两边同时加上或者减去一个特定的数,来改变原不等式的形式,使得原不等式更容易证明。

例如,在证明数学归纳法中的不等式时,我们常常会通过加减变形来简化证明过程,这是一种常见的放缩法技巧。

二、乘除变形。

在极限计算中,我们常常需要通过放缩法来证明一个极限存在或者不存在。

这时,我们可以通过乘除变形,将原极限问题转化为一个更容易处理的形式。

例如,当我们需要证明一个函数的极限不存在时,可以通过乘除变形将原函数转化为一个更容易处理的形式,从而简化证明过程。

三、配方。

在解决数学问题中,有时我们需要通过配方来进行放缩。

例如,在证明三角函数不等式时,我们可以通过对不等式进行配方,将原不等式转化为一个更容易处理的形式。

这种放缩法技巧在解决三角函数不等式问题中应用广泛,可以帮助我们更好地解决这类问题。

总结起来,放缩法是高中数学学习中常用的解题技巧,通过加减变形、乘除变形、配方等方式进行放缩,可以帮助我们更好地解决数学问题,提高解题效率。

希望以上总结的放缩法技巧对大家有所帮助,能够在高中数学学习中更好地运用这一技巧,提高数学成绩。

(完整版)高考导数解答题中常见的放缩大法

(完整版)高考导数解答题中常见的放缩大法

(高手必备)高考导数大题中最常用的放缩大法相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论⑴,变形即为sin1xx<,其几何意义为sin,(0,)y x xπ=∈上的的点sin,(0,)x x xπ<∈与原点连线斜率小于1.⑵1xe x>+⑶ln(1)x x>+⑷ln,0xx x e x<<>.将这些不等式简单变形如下:那么很多问题将迎刃而解。

exxexexexxxxx1ln,,1,1ln11-≥≥+≥-≤≤-例析:(2018年广州一模)恒成立,xexxfxxaxxf2)(,0,1ln)(⋅≤>++=若对任意的设求a的取值范围。

放缩法:由可得:1+≥xe x2)1(ln1ln2)1(ln)1(ln1ln ln22=+-++≥+-=+-=+-+xxxxxxexxxexxexxxx高考中最常见的放缩法可总结如下,供大家参考。

第一组:对数放缩(放缩成一次函数),,ln1x x≤-ln x x<()ln1x x+≤(放缩成双撇函数),,()11ln12x x xx⎛⎫<->⎪⎝⎭()11ln012x x xx⎛⎫>-<<⎪⎝⎭,,)ln1x x<>)ln01x x><<(放缩成二次函数),,2ln x x x≤-()()21ln1102x x x x+≤--<<()()21ln102x x x x+≥->(放缩成类反比例函数),,1ln1xx≥-()()21ln11xx xx->>+,()()21ln011xx xx-<<<+,,()ln 11x x x +≥+()()2ln 101x x x x +>>+()()2ln 101x x x x +<<+第二组:指数放缩(放缩成一次函数),,,1x e x ≥+x e x >x e ex ≥(放缩成类反比例函数),,()101x e x x ≤≤-()10x e x x <-<(放缩成二次函数),,()21102x e x x x ≥++>2311126x e x x x ≥+++第三组:指对放缩()()ln 112x e x x x -≥+--=第四组:三角函数放缩,,. ()sin tan 0x x x x <<>21sin 2x x x ≥-22111cos 1sin 22x x x -≤≤-第五组:以直线为切线的函数1y x =-,,,,.ln y x =11x y e -=-2y x x =-11y x =-ln y x x =拓展阅读:为何高考中总是考因为高考命题专家是大学老师,这些超越函数呢?和x e xln 他们站在高观点下看高中数学,一览无遗。

导数中放缩法(切线放缩、对数均值不等式)

导数中放缩法(切线放缩、对数均值不等式)

导数中放缩法(切线放缩、对数均值不等式)导数证明中的常用放缩在导数证明中,常用的放缩方法有切线放缩、对数放缩、指数放缩、指对放缩和三角函数放缩等。

其中,常用的放缩公式包括对数放缩和指数放缩。

一、常用放缩公式1.对数放缩对数放缩常常可以将一个函数放缩成一次函数或双撇函数,常用的对数放缩公式包括:lnx≤x-1,lnx<x,ln(1+x)≤xlnxx-1/x,x>1lnxx/2,0<x<1lnx≤x^2-x,ln(1+x)≤x-x^2/2,-1<x<∞ln(1+x)≥x/(1+x),ln(1+x)>x/2,x>02.指数放缩指数放缩常常可以将一个函数放缩成一次函数或二次函数,常用的指数放缩公式包括:ex≥x+1,ex>x,ex≥ex,x≤0ex<1-x,ex<1-x+x^2/2,x<0ex≥1+x+x^2,ex≥1+x+x^2+x^3,x>03.指对放缩指对放缩常常可以将一个函数的导数放缩成一个常数,常用的指对放缩公式包括:ex-lnx≥(x+1)-(x-1)/2,x>04.三角函数放缩三角函数放缩常常可以将一个函数放缩成一个三角函数或二次函数,常用的三角函数放缩公式包括:XXX<x<tanx,sinx≥x-x^2,-1≤x≤1cosx≤1-sin^2x,-1≤x≤1二、经典例题以函数f(x)=lnx+ax^2+(2a+1)x为例,讨论其单调性和当a<0时的最大值。

1) 解f(x)的定义域为(0,∞),求导得f'(x)=1/x+2ax+2a+1.当a≥-1/2时,f'(x)>0,因此f(x)在(0,∞)上单调递增;当a<-1/2时,f'(x)<0,因此f(x)在(0,∞)上单调递减。

2) 当a0,因此g(x)在(0,∞)上单调递增,且有g(x)≤g(1)=ln1-2/3=-2/3.又因为f(x)可以表示为f(x)=g(x)+(2a+1)x+ax^2+2/3x,因此有f(x)≤g(1)+(2a+1)x+ax^2+2/3x=-2/3+(2a+1)x+ax^2+2/3x=2/3x+ax^2+(2a+1)x-2/3.当2/3x+ax^2+(2a+1)x-2/3取到最大值时,有x=-(2a+1)/(2a),此时f(x)的最大值为-2/3+(2a+1)^2/(4a)-a(2a+1)^2/(4a)=-3/4a。

放缩法大全

放缩法大全

a −1 + 1 − 2a − ln x 解(1):令g ( x) = f ( x) − ln x = ax + x 1 (a , x 1) 2 a − 1 1 ax 2 − x + 1 − a [ax − (1 − a)]( x − 1) g ( x) = a − 2 − = = 2 x x x x2 1 a[ x − ( − 1)]( x − 1) a g ( x) = 0 (或用二次函数图象分 析) 2 x
1 1 1 1 1 1 + + ... + dx + dx + ... + dx 2 3 n +1 1 x x x 2 n
n +1 2 3 n +1
n
=

1
1 dx = ln( n + 1) x
1 n
n +1

n
1 dx = ln( n + 1) − ln n x
同理证右。
n +1 1 n ln( ) ln( ) n n n −1
所以:
ln n 2 f (n) − f (n − 1) 2 n

ln n 2 f (n) − f (n − 1) 2 n
取n=2,3,…,n累加
ln 2 2 ln 32 ln n 2 2n 2 − n − 1 + 2 + ... + 2 f (n) − f (1) = 2 2 3 n 2(n + 1)
1 m an = 4n − 3, { }前n项和为S n , 若S 2 n +1 − S n 恒成立, an 15 求整数m的最小值。
1 1 1 m 解: + + ... + 对n N + 恒成立, an +1 an + 2 a2 n +1 15 1 1 1 令f ( n ) = + + ... + , an +1 an + 2 a2 n +1 1 1 1 f (n − 1) = + + ... + an an +1 a2 n −1

高中数学导数放缩法

高中数学导数放缩法

高中数学导数放缩法导数作为数学中重要的概念,是微积分中的一个基础知识。

在高中数学中,导数是一个重要的内容,学生需要掌握导数的定义、性质和计算方法。

其中,导数的放缩法是导数的一种重要应用,能够帮助我们简化复杂的导数计算,提高计算的效率。

一、导数的定义及性质回顾在学习导数的放缩法之前,我们先来回顾一下导数的定义及性质。

在数学中,函数y = f(x)在点x处的导数定义为:f'(x) = lim(h->0)[f(x+h)-f(x)]/h这个极限表示当自变量在点x处偏离x时,函数值的变化情况。

导数有一些重要的性质,比如:1.常数函数的导数为0:即对于常数k,f(x) = k的导数为f'(x) = 02.和函数的导数:(u + v)' = u' + v'3.差函数的导数:(u - v)' = u' - v'4.常数倍函数的导数:(ku)' = ku'5.积函数的导数:(uv)' = u'v + uv'6.商函数的导数:(u/v)' = (u'v - uv')/v^2这些性质在导数的计算中起着非常重要的作用,能够帮助我们简化计算过程。

接下来,我们将介绍导数的放缩法,以及如何运用这一方法简化导数的计算。

二、导数的放缩法原理导数的放缩法是指根据导数的定义及性质,通过放缩函数的表达式,将复杂的导数计算化简为简单的计算。

具体来说,导数的放缩法主要有以下几种形式:1.基本放缩法:指利用导数的性质,将一个复杂函数拆分成几个简单函数的和、差、积或商,然后利用导数的性质求导,最后将得到的导数组合起来得到原函数的导数。

2.递推放缩法:指通过递推的方式,将一个复杂函数的导数化简为一个或多个简单函数的导数,然后根据导数的性质组合起来得到原函数的导数。

3.反函数放缩法:指利用反函数的性质,将一个函数的导数与其反函数的导数之间建立联系,通过求导得到原函数的导数。

数学-高中数学常用放缩式

数学-高中数学常用放缩式

常用放缩不等式必备篇,进阶篇,拓展篇一:.必备篇(解析)①指数“0”线1.e x ≥x +1,(x ∈R )证明:f (x )=e x -x -1,令f (x )=e x -1=0,∴x 0=0∴f (x )≥f (0)=0∴e x ≥x +1,x ∈R 常见变式:Ⅰ.x n e x =e x +nlnx ≥x +nlnx +1,(x 0+nlnx 0=0)Ⅱ.e xxn =e x -nlnx ≥x -nlnx +1,(x 0-nlnx 0=0)Ⅲ.x ≥ln (x +1),证明:①式同取对数PS :千万注意Ⅰ和Ⅱ的取等条件!!!例如:e x x=e x -lnx ≥x -lnx +1,(经典的错误,标准的零分)x -lnx 取不到0正确:e xx =e (e x -lnx -1)≥e (x -lnx ),当x =1时:e x ≥ex2.xe x ≥x ,(x ∈R )证明:f (x )=xe x -x =x (e x -1)≥0,∴xe x ≥x ②指数“1”线1.e x ≥ex ,(x ∈R )证明:f (x )=e x -ex ,f (x )=e x -e =0,∴x 0=1∴f (x )≥f (1)=0,即e x ≥ex ,x ∈R 2.xe x ≥2ex -e ,(x ∈R )mst 涛哥数学证明:f (x )=xe x -2ex +e ,f (x )=(x +1)e x -2e∴f (x )在x ∈(-∞,1)上单调递减,在x ∈(1,+∞)上单调递增∴f (x )≥f (1)=0,即xe x ≥2ex -e ,x ∈R③对数“1”线:x 2-x ≥xlnx ≥x -1≥lnx ≥1-1x ≥lnxx,(x >0,x 0=1)1.x -1≥lnx证明:f (x )=x -1-lnx ,令f (x )=x -1x=0,∴x 0=1∴f (x )≥f (1)=0,∴x -1≥lnx ,x ∈(0,+∞)2.xlnx ≥x -1证明::f (x )=xlnx -x +1,令f (x )=lnx =0,∴x 0=1∴f (x )≥f (1)=0,∴xlnx ≥x -1,x ∈(0,+∞)3.x 2-x ≥xlnx ,证明:1式左右同乘x4.1-1x≥lnx x ,证明:1式左右同除x 5.lnx ≥1-1x,证明:2式左右同除x④:飘带函数:12(x -1x )≤lnx ≤2(x -1)x +1,0<x ≤12(x -1)x +1≤lnx ≤12(x -1x),x ≥1 PS :谐音记忆,12(x -1x)为飘带函数,x >1时,就飘了,所以最大考试证明:①:令f (x )=lnx -2(x -1)x +1,∴f(x )=1x -4x (x +1)2=(x -1)2x (x +1)2≥0∴f (x )在x ∈(0,+∞)上单调递增,∵f (1)=0∴当0<x ≤1时,f (x )≤f (1)=0,即lnx ≤2(x -1)x +1∴当x ≥1时,f (x )≥f (1)=0,即lnx ≥2(x -1)x +1∴原式得证!mst 涛哥数学②:令g (x )=lnx -12(x -1x ),∴g(x )=-(x -1)22x2≤0∴g (x )在x ∈(0,+∞)上单调递减,∵f (1)=0∴当0<x ≤1时,f (x )≥f (1)=0,即lnx ≥12(x -1x )∴当x ≥1时,f (x )≤f (1)=0,即lnx ≤12(x -1x )∴原式得证!⑤:对数均值不等式:x 1x 2<x 2-x 1lnx 2-lnx 1<x 1+x 221.左式证明:不妨设x 2>x 1,x 2x 1>1,由飘带函数得(过程需读者自证)∵lnt <12(t -1t ),t >1,∴ln x 2x 1<12(x 2x 1-x 1x 2)∴lnx 2-lnx 1<x 2x 1-x 1x 2=x 2-x 1x 1x 2∴x 1x 2<x 2-x 1lnx 2-lnx 1,∴原式得证!2.右式证明:不妨设x 2>x 1,x 2x 1>1,由飘带函数得(过程需读者自证)∵lnt>2(t-1)t+1,t>1,∴lnx2x1>2(x2x1-1)x2x1+1=2(x2-x1)x2+x1∴x2-x1lnx2-lnx1<x1+x22∴原式得证!⑥:指数均值不等式:e m+n2<em-e nm-n<e m+e n2证明:由对数均值不等式得x1x2<x2-x1lnx2-lnx1<x1+x22∴令x2=e m,x1=e n,m>n∴e m e n<e m-e nlne m-lne n <e m+e n2∴e m+n2<e m-e nm-n<e m+e n2,∴原式得证!对均:21a+1b<ab<a-blna-lnb<a+b2<a2+b22指均:e m+n2<em-e nm-n<e m+e n2二:进阶篇(120+)由带有佩亚诺余项(o (x n ))的麦克劳林(Maclaurin)公式:f (x )=f (0)+f (0)1!x +f 0 2!x 2+⋯⋯+f n (0)n !x n+o (x n )得到以mst 涛哥数学下常用函数的展开式e x=1+x +x 22+x 36+⋯⋯⋯⋯+x n n !+o (x n)ln (x +1)=x -x 22+x 33+⋯⋯+(-1)n -1x nn+o (x n )sinx =x -x 36+x 5120⋯⋯⋯⋯+(-1)n -1x 2n -1(2n -1)!+o (x 2n -1)cosx =1-x 22+x 424+⋯⋯⋯⋯+(-1)n x 2n (2n )!+o (x 2n)tanx =x +x 33+x 515⋯⋯⋯⋯⋯+o (x 5)(1+x )a=1+ax +a (a -1)2x 2+⋯⋯+a !n !(n -1)!x n +o (x n )PS :记忆和注意1.sinx 是奇函数,只有奇次幂;cosx 是偶函数,只有偶次幂,ln (x +1)分母无阶乘2.建议读者最多只需掌握,指对前三项,三角前两项,无需背通式3.o (x n ):x →0时比x n 高阶的无穷小,简单理解为展开式与原函数的误差量即可①指数“0”线1.e x≥x 22+x +1,(x >0)证明:f (x )=e x-x 22-x -1,f (x )=e x -x -1≥0∴当x ≤0时,f (x )≤f (0)=0,即e x≤x 22+x +1∴当x ≥0时,f (x )≥f (0)=0,即e x≥x 22+x +12.e x -e -x ≥2x ,(x >0)证明:f (x )=e x -e -x -2x ,f (x )=e x +e -x -2≥2e x e -x -2=0,∴x 0=0∴f (x )在x ∈R 上单调递增,f (0)=0∴当x ≤0时,f (x )≤f (0)=0,即e x -e -x ≤2x ∴当x ≥0时,f (x )≥f (0)=0,即e x -e -x ≥2x3.e x+e-x≥x2+2,(x∈R)证明:f(x)=e x+e-x-x2-2,∵f x =e x-e-x-2x,f (0)=0由2得∴f(x)在x∈(-∞,0)上单调递减,在x∈(0,+∞)上单调递增∴f(x)≥f(0)=0,即e x+e-x≥x2+24.e x-e-x≥13x3+2x,(x>0)证明:f(x)=e x-e-x-13x3-2x,∵f (x)=e x+e-x-x2-2由3得∴f(x)在x∈R上单调递增,f0 =0∴当x≤0时,f(x)≤f(0)=0,即e x-e-x≤13x3+2x ∴当x≥0时,f(x)≥f(0)=0,即e x-e-x≥13x3+2x PS:利用泰勒快速推导e x≥1+x,x∈Re x≥1+x+x22,x≥0e x≥1+x+x22+x36,x∈R1.e x≥1+x+x22e-x≤1-x+x22e x-e-x≥2x,x≥02.e x≥1+x+x22+x36e-x≥1-x+x22-x36e x+e-x≥x2+2,x∈R3.e x≥1+x+x22+x36+x424e-x≤1-x+x22-x36+x424e x-e-x≥x33+2x,x≥0②:对数“0”线1.x-x22≤ln(x+1)≤x,(x≥0)证明:f(x)=ln(x+1)-x+x22,f(x)=1x+1+x+1-2≥0(基本不等式)∴f(x)在x∈(-1,+∞)上单调递增,∵f(1)=0∴当-1<x≤0时,f(x)≤f(0)=0,即ln(x+1)≤x-x2 2∴当x≥0时,f(x)≥f(1)=0,即ln(x+1)≥x-x22③:指数“1”线1.e x≥ex+(x-1)2,(x≥0,x=0/x=1)证明:f(x)=e x-ex-(x-1)2,f (x)=e x-e-2(x-1)令f (x)=e x-2=0,∴x0=ln2∴f (x)在x∈(-∞,ln2)上单调递减,在x∈(ln2,+∞)上单调递增∵f (0)=3-e>0,f(ln2)<f(1)=0∴∃x1∈(0,ln2),x2=1,使得f (x1)=f (x2)=0∴f(x)在x∈(-∞,x1),(1,+∞)上单调递增,在x∈(x1,1)上单调递减∴当x≥0时,f(x)≥0,即e x≥ex+(x-1)2∴当x≤0时,f(x)≤0,即e x≤ex+(x-1)22.e x≥ex+e2(x-1)2,(x≥1) e x≥e2x2+e2,(x≥1)证明:f(x)=e x-ex-e2(x-1)2,f (x)=e x-ex≥0,(必备篇)∴f(x)在x∈R上单调递增,∵f(1)=0∴当x≥1时,f(x)≥f(1)=0,即e x≥ex+e2(x-1)2∴当x≤1时,f(x)≤f(x)=0,即e x≤ex+e2(x-1)23.(x-1)e x≥12x2-1证明:f(x)=(x-1)e x-12x2+1,f (x)=x(e x-1)≥0,(必备篇)∴f(x)在x∈R上单调递增,∵f(0)=0∴当x≥0时,f(x)≥f(0)=0,即(x-1)e x≥12x2-1∴当x≤0时,f(x)≤f(0)=0,即(x-1)e x≥12x2-1飘带函数找点1已知函数:f (x )=lnx -ax -1x +1,讨论函数f (x )的零点个数,并说明理由【解析】PS :飘带函数隐藏性质:f (1x )=-lnx -a1-x 1+x ,∴f (x )+f (1x)=0,即两零点之积为1∵f(x )=1x -2a (x +1)2=x 2+(2-2a )x +1x (x +1)2设函数f (x )的极值点为x 1,x 2,零点为x 3,x 4,x 5①当a ≤0时∴f (x )在x ∈(0,+∞)上单调递增,∵f (1)=0,∴f (x )有且仅有一个零点②当0<a ≤2时∵g (x )=x 2+(2-2a )x +1,∴∆=4a (a -2)≤0∴f (x )在x ∈(0,+∞)上单调递增,∵f (1)=0,∴f (x )有且仅有一个零点③当a >2时,x 1x 2=1x 1+x 2=2a -2∆=4a (a -2)≥0∴x 1∈(0,1),x 2∈(1,+∞)∴f (x )在x ∈(0,x 1)和(x 2,+∞)上单调递增,在x ∈(x 1,x 2)上单调递减.第一个:∵f (1)=0,∴x 4=1(显零点)第二个:∵f (e a)=a -a e a -1e a+1=2a e a +1>0,∵e a >1,∴存在唯一零点x 5∈(x 2,e a ),使得f (x 5)=0第三个:方法1:∵f (1e a )=-a -a 1-e a 1+e a =-2a 1+e a <0,∵1ea <1∴存在唯一零点x 3∈(1ea ,x 1),使得f (x 3)=0方法2:∵x 3x 5=1∴存在唯一零点x 3∈(1e a,x 1),使得f (x 3)=0∴综上当a ≤2时,f (x )存在唯一零点当a >2时,f (x )存在三个零点x 4(1,0)x 11e ax 3x 2x 5e a飘带函数找点2已知函数f (x )=x -a (x -1x),ln 讨论函数f (x )的零点个数,并说明理由【解析】PS 1:飘带函数隐藏性质:f (1x )=-x ln -a (1x -x ),∴f (x )+f (1x )=0,即两零点之积为1PS 2:飘带变形x ln ≤x -1x ,x ∈(1,+∞)∵f(x )=1x -a (1+1x 2)=-ax 2+x -a x 2设函数f (x )的极值点x 1,x 2,零点为x 3,x 4,x 5①:当a ≤0时f (x )在x ∈(0,+∞)上单调递增,∵f (1)=0,∴f (x )有且仅有一个零点②:当a ≥12时,△=1-4a 2≤0f (x )在x ∈(0,+∞)上单调递减,∵f (1)=0,∴f (x )有且仅有一个零点③:当0<a <12时,x 1x 2=1x 1+x 2=1a ∆=1-4a 2>0 ∴x 1∈(0,1),x 2∈(1,+∞)∴f (x )在x ∈(0,x 1)和(x 2,+∞)上单调递减,在x ∈(x 1,x 2)上单调递增.第一个:∵f (1)=0,∴x 4=1(显零点)第二个:∴f (x )<(x -1)(1x-a (x +1)x )∴f (1a 2-1)<0,∵1a2-1>1∴存在唯一零点x 5∈(x 2,1-a 2a2),使得f (x 5)=0第三个:∵x 3x 5=1∴存在唯一零点x 3∈(a 21-a 2,x 1),使得f (x 3)=0综上当a ≤0或a >0时,f (x )存在唯一零点当0<a <12时,f (x )存在三个零点x 4(1,0)x 2x 1x 51-a 2a 2x 3a 21-a 2④:三角放缩1正弦:x≥sinx≥x-x36,(x>0)左式证明:f(x)=sinx-x,f (x)=cosx-1≤0,f (x0)=0∴f(x)在x∈R上单调递减∴当x≤0时,f(x)≥f(0)=0,即sinx≥x∴当x≥0时,f(x)≤f(0)=0,即sinx≤x右式证明:g(x)=sinx-x+x36,g(x)=cosx-1+x22,且g(x0)=0∵g (x)=x-sinx,由左式得∴g (x)在x∈(-∞,0)上单调递减,在x∈(0,+∞)上单调递增∴g(x)在x∈mst涛哥数学R上单调递增∴当x≤0时,g(x)≤g(0)=0,即sinx≤x-x36∴当x≥0时,g(x)≥g(0)=0,即sinx≥x-x362余弦:1-x22≤cosx≤1,(x∈R)左式证明:f(x)=cosx-1+x22,f(x)=x-sinx∵由1式得f(x)在x∈(-∞,0)上单调递减,在x∈(0,+∞)上单调递增∴f(x)≥f(0)=0,即cosx≥1-x2 23正切:tanx≥x,(0≤x<π2)证明:f(x)=tanx-x,∴f (x)=1cos2x-1≥0∴f(x)在x∈R上单调递增∴当-π2<x≤0时,f(x)≤f(0)=0,即tanx≤x ∴当0≤x<π2时,f(x)≥f(0)=0,即tanx≥x4正切:tanx≥x+13x3,(0≤x<π2)证明:f(x)=tanx-x-x33,f(x)=1cos2x-1-x2=tan2x-x2≥0∴f(x)在x∈(-π2,π2)上单调递增∴当-π2<x≤0时,f(x)≤f(0)=0,即tanx≤x+13x3∴当0≤x<π2时,f(x)≥f(0)=0,即tanx≥x+13x3 PS:tan2x+1=sec2x=1cos2x常见变式:1.sinx≥2πx,(0≤x≤π2)证明:(小题)几何作图法:割线2.sinx-xcosx≥0,(0≤x≤π2)证明:f(x)=sinx-xcosx=cosx tanx-x由3得:tanx~x,∵x∈-π2,π2时,cosx≥0∴当0≤x≤π2时,f(x)≥f(0)=0,即sinx-xcosx≥0∴当-π2≤x≤0时,f(x)≤f(0)=0,即sinx-xcosx≤03.xcosx+2x-3sinx≥0,(x≥0)证明:f(x)=x3-sinx2+cosx,f(x)=(1-cosx)23(2+cosx)2≥0∴f(x)在x∈R上单调递增,∵f(0)=0∴当x≤0时,f(x)≤f(0)=0,即xcosx+2x-3sinx≤0∴当x≥0时,f(x)≥f(0)=0,即xcosx+2x-3sinx≥0PS:x3是sinx2+cosx在0处的切线(π2,1)y=sinxl:y=2πxe x -e -x 2e x +e x 2e x 2e -x 2-e x 2拔高篇(130-140)一.130以下无需掌握:1.双曲正余切双曲正弦函数:shx =e x -e -x 2,奇函数双曲余弦函数:chx =e x +e -x 2,偶函数双曲正切函数:thx =shx chx =e x -e -x e x +e -x PS :有以下常用结论:1.th 2x =1-1ch 2x ,ch 2x -sh 2x =12.(shx ) =chx ,(chx ) =shx ,(thx ) =1ch 2x3.shx ,chx ,在第一象限无限趋近于e x 2,无渐进线4.sh (x +y )=shxchy +chxshy sh (x -y )=shxchy -chxshysh (2x)=2shxchx ch (x +y )=chxchy +shxshy ch (x -y )=chxchy -shxshy ch (2x )=ch 2x +sh 2x【解析】:由结论易知A 正确,B 错误,D 错误;C :设A (t ,e t +e -t 2),B (t ,e t -e -t 2),∴AB =1et 为减函数,∴C 正确;综上AC 正确2.x-1x<lnx≤4(x-1)x+1,0<x≤1 4(x-1)x+1<lnx<x-1x,x>1证明:将x→x代入飘带放缩即可3.(2-x)e x≥2+x,x≤0(2-x)e x<2+x,x>0证明:将x→e x代入飘带放缩即可3.(140以下无需掌握)1.lnx<(x-1)(x+5)4x+2,(x>0)证明:f(x)=lnx-(x-1)(x+5)4x+2,∴f(x)=1x-x2+x+7(2x+1)2=(1-x)3x(2x+1)2∴f(x)在x∈(0,1)上单调递增,在x∈(1,+∞)上单调递减∴f(x)≤f(1)=0,即lnx<(x-1)(x+5)4x+2,(x>0)2.lnx≥3x2-3x2+4x+1,(x≥1)证明:f(x)=lnx-3x2-3x2+4x+1,f(x)=(x-1)4x(x2+4x+1)2≥0∴f(x)在x>0上单调递增,∵f(1)=0∴当x≥1时,f(x)≥f(1)=0,即lnx≥3x2-3x2+4x+1 3.e x≥ax2+1,x≥0,(a≈1.5441)通常取a=32,即ex≥32x2+14..ln1+x1-x≥2x+23x3,x≥0证明:∵ln(1+x)≥x-x22+x33-x44,ln(1-x)≤-x-x22-x33-x44∴ln(1+x)-ln(1-x)=ln1+x1-x≥2x+23x3,x≥0帕德逼近:。

高中数学-放缩法(详解)

高中数学-放缩法(详解)

放缩技巧放缩法:将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。

放缩法的方法有:⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n⑷利用常用结论: Ⅰ、kkk k k 21111<++=-+; Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) 1.若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a【巧证】:记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R+∴1=+++++++++++++++>cb a d db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n3.求证:213121112222<++++n【巧证】:nn n n n 111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n巧练一:设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b 巧练一:【巧证】:yyx x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9•lg11 < 1巧练二:【巧证】:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅巧练三:1)1(log )1(log <+-n n n n巧练三:【巧证】: 222)1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-≤+-n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n 巧练四:若a > b > c , 则0411≥-+-+-ac c b b a 巧练四: 【巧证】: c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((12112巧练五:)2,(11211112≥∈>+++++++n R n nn n n巧练五:【巧证】:左边11111122222=-+=++++>n nn n n n n n 巧练六:121211121<+++++≤nn n 巧练六:【巧证】: 11121<⋅+≤≤⋅n n n n 中式 巧练七:已知a , b , c > 0, 且a 2+ b 2= c 2,求证:a n + b n < c n (n ≥3, n ∈R *)巧练七:【巧证】: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0,∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n ∴1=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛nn c b c a证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查知识的潜能与后继能力,因而成为压轴题及各级各类竞赛试题命题的极好素材。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

放缩技巧放缩法:将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。

放缩法的方法有:⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n⑷利用常用结论: Ⅰ、kkk k k 21111<++=-+; Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) 1.若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a【巧证】:记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R+∴1=+++++++++++++++>cb a d db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n3.求证:213121112222<++++n【巧证】:nn n n n 111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n巧练一:设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b 巧练一:【巧证】:yyx x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9•lg11 < 1巧练二:【巧证】:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅巧练三:1)1(log )1(log <+-n n n n巧练三:【巧证】: 222)1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-≤+-n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n 巧练四:若a > b > c , 则0411≥-+-+-ac c b b a 巧练四: 【巧证】: c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((12112巧练五:)2,(11211112≥∈>+++++++n R n nn n n巧练五:【巧证】:左边11111122222=-+=++++>n nn n n n n n 巧练六:121211121<+++++≤nn n 巧练六:【巧证】: 11121<⋅+≤≤⋅n n n n 中式 巧练七:已知a , b , c > 0, 且a 2+ b 2= c 2,求证:a n + b n < c n (n ≥3, n ∈R *)巧练七:【巧证】: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0,∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n ∴1=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛nn c b c a证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查知识的潜能与后继能力,因而成为压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、 裂项放缩1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k . 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n knk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n , 所以3532112112151312111=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C nn(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn21121)12(21--=-(6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n(8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n11112111111+--<-++⋅⎪⎭⎫⎝⎛+--=n n nn n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k)2(1)1(1≥--<+n n n n n (15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i2. 证明:.13)2311()711)(411)(11(3+>-++++n n解析: 运用两次次分式放缩:1338956.232313784512-⋅⋅⋅⋅>--⋅⋅⋅⋅n n n n (加1)nn n n 31391067.342313784512+⋅⋅⋅⋅>--⋅⋅⋅⋅ (加2)相乘,可以得到:)13(1323875421131381057.2423137845122+⋅--⋅⋅⋅⋅=-+⋅⋅⋅⋅>⎪⎭⎫ ⎝⎛--⋅⋅⋅⋅n n n n n n n 所以有.13)2311()711)(411)(11(3+>-++++n n(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n , 所以)12131(211)12131(211)12(11--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合n n n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n4.设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |111115.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n nn111111111])1([01)2()1()1(所以要证 1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m nk m m k k n n n n n k m k k111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kkm kkm而正是成立的,所以原命题成立.6.已知n n n a 24-=,nnna a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T ⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+ 证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以 *))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n+++--<++++ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6553ln 4ln 3ln 2ln +n n n n n9. 10.所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n另一方面⎰->ni n ABDExS 1,从而有)ln(ln |ln 11i n n x x i in n i n nin --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n , 所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++ 11.求证:en <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 . 解析:构造函数后即可证明12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 14. 已知112111,(1).2n n n aa a n n +==+++证明2n a e <. 解析: n n n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n n n a n n a )2111(21⇒++++≤+nnn a n n a ln )2111ln(ln 21n n n n a 211ln 2+++≤。

相关文档
最新文档