实验 4 系统的频率特性分析
线性定常系统的频率特性

一、实验目的
1、学习了解Matlab语言的实验环境。 学习了解Matlab语言的实验环境。 语言的实验环境 2、练习Matlab命令的基本操作。 练习Matlab命令的基本操作 命令的基本操作。 3、练习m文件的基本操作。 练习m文件的基本操作。 4、明确频率特性的概念及其物理意义。 明确频率特性的概念及其物理意义。 5、掌握频率特性的测试方法及原理; 掌握频率特性的测试方法及原理; 6、掌握频率特性的表示方法
Matlab工作界面窗口 Matlab工作界面窗口
在“command Window”命令窗口中命令提示 Window”命令窗口中命令提示 符位置键入如下命令: 符位置键入如下命令: help 显示Matlab的功能目录 显示Matlab的功能目录 help control 阅读控制系统工具箱命令清单。 阅读控制系统工具箱命令清单。 help step 阅读命令step的帮助文件内容 的帮助文件内容。 阅读命令step的帮助文件内容。
实验4 实验4 线性定常系统的频率特性
MATLAB软件是一套高性能的数值计算和可视化数 MATLAB软件是一套高性能的数值计算和可视化数 学软件, 学软件,具有强大的矩阵计算能力和良好的图形可视化 功能,为用户提供了非常直观和简洁的程序开发环境, 功能,为用户提供了非常直观和简洁的程序开发环境, 被誉为“巨人肩上的工具”以及“第四代计算机语言” 被誉为“巨人肩上的工具”以及“第四代计算机语言”, 在信号处理、图像处理、控制系统分析与设计、 在信号处理、图像处理、控制系统分析与设计、系统辨 识、工程优化、统计分析等许多学科领域都得到了广泛 工程优化、 的应用。 的应用。 MATLAB软件提供了专门的控制系统工具箱 MATLAB 软件提供了专门的控制系统工具箱 , 控制 软件提供了专门的控制系统工具箱, 系统中的许多应用( 如时域分析、 频域分析、 系统中的许多应用 ( 如时域分析 、 频域分析 、 根轨迹作 图等)都可以用一个简单的m函数命令来实现。 图等)都可以用一个简单的m函数命令来实现。尤其是所 提供的Simulink软件包 软件包, 提供的Simulink软件包,由于采用与传递函数动态框图非 常相似的结构图模型, 常相似的结构图模型 , 并采用类似于电子示波器的模块 显示仿真曲线, 因此特别适用于“ 自动控制理论” 显示仿真曲线 , 因此特别适用于 “ 自动控制理论 ” 课程 实验的系统仿真和分析。 实验的系统仿真和分析。
频率特性实验报告

一、实验目的1. 理解频率特性的基本概念和测量方法。
2. 掌握使用Bode图和尼奎斯特图分析系统频率特性的方法。
3. 了解频率特性在系统设计和稳定性分析中的应用。
二、实验原理频率特性描述了系统对正弦输入信号的响应,通常用幅频特性和相频特性来表示。
幅频特性表示输出信号幅度与输入信号幅度之间的关系,相频特性表示输出信号相位与输入信号相位之间的关系。
频率特性的测量通常通过以下步骤进行:1. 使用正弦信号发生器产生不同频率的正弦信号。
2. 将信号输入被测系统,并测量输出信号的幅度和相位。
3. 根据测量数据绘制幅频特性和相频特性曲线。
三、实验设备1. 正弦信号发生器2. 示波器3. 信号分析仪4. 被测系统(如电路、控制系统等)四、实验步骤1. 准备实验设备,确保各设备连接正确。
2. 设置正弦信号发生器,产生一系列不同频率的正弦信号。
3. 将正弦信号输入被测系统,并使用示波器或信号分析仪测量输出信号的幅度和相位。
4. 记录不同频率下的幅度和相位数据。
5. 使用绘图软件绘制幅频特性和相频特性曲线。
五、实验结果与分析1. 幅频特性分析通过绘制幅频特性曲线,可以观察到系统对不同频率信号的衰减程度。
一般来说,低频信号的衰减较小,高频信号的衰减较大。
根据幅频特性,可以判断系统的带宽和稳定性。
2. 相频特性分析通过绘制相频特性曲线,可以观察到系统对不同频率信号的相位延迟。
相频特性曲线通常呈现出滞后或超前特性。
根据相频特性,可以判断系统的相位裕度和增益裕度。
3. 系统稳定性分析根据幅频特性和相频特性,可以判断系统的稳定性。
如果系统的相位裕度和增益裕度都大于零,则系统是稳定的。
否则,系统可能是不稳定的。
六、实验结论通过本次实验,我们成功地测量了被测系统的频率特性,并分析了其幅频特性和相频特性。
实验结果表明,被测系统在低频段表现出较小的衰减,而在高频段表现出较大的衰减。
相频特性曲线显示出系统在低频段滞后,在高频段超前。
根据频率特性分析,可以得出被测系统是稳定的。
实验四 系统频率特性测量

实验四系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。
2、掌握系统及元件频率特性的测量方法。
二、实验设备1、D1CE-AT-∏型自动控制系统实验箱一台2、带串口计算机一台3、RS232串口线三、实验原理及电路1、被测系统的方块图及原理:系统(或环节)的频率特性G(jω)是一个复变量,可以表示成以角频率3为参数的幅值和相角:G(M=IG(%)I∕G(网本实验应用频率特性测试仪测量系统或环节的频率特牲。
图4-1所示系统的开环频率特性为:B(jω)B(ιω)B(jω)G3)GR3)H(j3)=叼舟I/追采用对数幅频特牲和相频特性表示,则式(4-2)表示为:(4—1) (4-2)图4-1被测系统方块图2。
IgGG3)G∕)Hg)H。
啕需I=2(Hg1BG3-2(Hg1EG3)I (4—3) C⅛Gω)G<jω)HGω)=/*线=∕BQω)-EGω)(4-4)E(j3)将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输人端Et)],然后分别测量相应的反馈信号[b⑴]和误差信号[e(t)]的对数幅值和相位。
频率特性测试仪测试数据经相关运算器后在显示器中显示。
根据式(4—3)和式(4—4)分别计算出各个频率下的开环对数幅值和相位,在半对数座标纸上作出实验曲线:开环对数幅频曲线和相频曲线。
根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。
所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符,如果测量所得的相位在高频(相对于转角频率)时不等于一900(q—p)[式中P和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。
系统频率测试实验报告(3篇)

第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。
2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。
3. 分析测试结果,确定系统的主要频率成分和频率响应特性。
二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。
幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。
频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。
三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。
五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。
这些峰值和谷值可能对应系统中的谐振频率或截止频率。
通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。
2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。
相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。
通过分析相位特性,可以了解系统的相位稳定性。
六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。
2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。
3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。
线性系统的频率特性实验报告

实验四 线性系统的频率特性一、实验目的:1. 测量线性系统的幅频特性2. 复习巩固周期信号的频谱测量二、实验原理:我们讨论的确定性输入信号作用下的集总参数线性非时变系统,又简称线性系统。
线性系统的基本特性是齐次性与叠加性、时不变性、微分性以及因果性。
对线性系统的分析,系统的数学模型的求解,可分为时间域方法和变换域方法。
这里主要讨论以频率特性为主要研究对象,通过傅里叶变换以频率为独立变量。
设输入信号)(t v in ,其频谱)(ωj V in ;系统的单位冲激响应)(t h ,系统的频率特性)(ωj H ;输出信号)(t v out ,其频谱)(ωj V out ,则时间域中输入与输出的关系)()()(t h t v t v in out *=频率域中输入与输出的关系)()()(ωωωj H j V j V in out ⋅=时间域方法和变换域方法并没有本质区别,两种方法都是将输入信号分解为某种基本单元,在这些基本单元的作用下求得系统的响应,然后再叠加。
变换域方法可以将时域分析中的微分、积分运算转化为代数运算,将卷积积分变换为乘法;在信号处理时,将输入时间信号用一组变换系数(谱线)来表示,根据信号占有的频带与系统通带间的关系来分析信号传输,判别信号中带有特征性的分量,比时域法简便和直观。
三、实验方法:1. 输入信号的选取这里输入信号选取周期矩形信号,并且要求τT不为整数。
这是因为周期矩形信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。
周期矩形信号可以分解为直流分量和许多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零的频率点,周期矩形信号谐波幅度为零的频率点是ΩKT,其中1=K 、2、3、… 。
图11.1 输入的周期矩形信号时域波形t图11.2 输入的周期矩形信号幅度频谱2.线性系统的系统函数幅度频率特性分析 (1)RL 低通网络(a ) RL 电路 (b ) 幅频特性曲线图11.3 RL 电路及其幅频特性曲线)()()(t v dtt dv R L t v i o o =⋅+输入周期矩形信号,通过RL 低通网络的输出波形如下:图11.4 通过RL 低通网络的输入、输出信号V )(ωjV out)(s t μ)(s t μ对比输入、输出信号,可以看到输出信号的跳变部分被平滑,说明输入信号通过RL 低通网络后,滤除高频分量。
第四章系统的频率特性分析

第四章 频率特性分析4.1 什么是频率特性?解 对于线性定常系统,若输入为谐波函数,则其稳态输出一定是同频率的谐波函数,将输出的幅值与输入的幅值之比定义为系统的幅频特性;将输出的相位于输入的相位之差定义为系统的相频特性。
将系统的幅频特性和相频特性统称为系统的频率特性。
4.2 什么叫机械系统的动柔度,动刚度和静刚度?解 若机械系统的输入为力,输出为位移(变形),则机械系统的频率特性就是机械系统的动柔度;机械系统的频率特性的倒数就是机械系统的动刚度;当0=w 时,系统频率特性的倒数为系统的静刚度。
4.3已知机械系统在输入力作用下变形的传递函数为 12+s (mm/kg),求系统的动刚度,动柔度和静刚度。
解 根据动刚度和动柔度的定义有 动柔度()()()12+====jw jw s s G jw G jw λ mm/kg 动刚度 )(jw K =)(1jw G =21+jw kg/mm 静刚度 ()()5.0021010==+====K w jw w jw G w jw kg/mm4.4若系统输入为不同频率w 的正弦函数Asinwt,其稳态输出相应为Bsin(wt+ϕ).求该系统的频率特性。
解:由频率特性的定义有 G (jw )=AB e jw。
4.5已知系统的单位阶跃响应为)(。
t x =1-1.8te 4-+0.8te9-,试求系统的幅辐频特性与相频特性。
解:先求系统的传递函数,由已知条件有)(。
t x =1-1.8te 4-+0.8te9-(t 0≥))(S X i =s 1)(。
S X =s 1-1.841+s +0.891+s )(S G =)()(。
S X S X =()()9436++s s )(jw G =jw s s G =)(=()()jw jw ++9436)(w A =)(jw G =22811636ww +•+)(w ϕ=0-arctan 4w -arctan 9w =-arctan 4w -arctan 9w4.6 由质量、弹簧、阻尼器组成的机械系统如图所示。
频率特性的测试实验报告

频率特性的测试实验报告频率特性的测试实验报告摘要:频率特性是描述系统对不同频率信号的响应能力的重要参数。
本实验旨在通过测试不同频率下的信号输入和输出,分析系统的频率特性。
实验结果表明,系统在不同频率下的响应存在一定的差异,频率特性测试可以有效评估系统的性能。
引言:频率特性是衡量系统对不同频率信号的响应能力的重要指标,对于各种电子设备和通信系统的设计和性能评估具有重要意义。
频率特性测试可以帮助我们了解系统在不同频率下的工作情况,为系统优化和故障排除提供依据。
实验方法:1. 实验器材准备:使用函数发生器作为信号源,连接到待测试系统的输入端;使用示波器连接到待测试系统的输出端,用于观测信号响应。
2. 实验参数设置:选择一系列不同频率的信号作为输入信号,设置函数发生器的频率范围和幅度。
3. 实验过程:逐一调节函数发生器的频率,观察示波器上输出信号的变化,并记录下输入信号和输出信号的幅度、相位差等参数。
4. 实验数据处理:根据记录的数据,绘制频率特性曲线,分析系统在不同频率下的响应情况。
实验结果:通过实验测试,我们得到了系统在不同频率下的响应数据,并绘制了频率特性曲线。
以下是实验结果的总结:1. 幅频特性:我们观察到系统在低频时具有较高的增益,随着频率的增加,增益逐渐下降。
在高频范围内,增益趋于平缓或下降较快,这可能是由于系统的带宽限制所致。
2. 相频特性:我们发现系统在不同频率下的相位差存在一定的变化。
在低频时,相位差较小,随着频率的增加,相位差逐渐增大。
这可能是由于系统的传递函数导致的相位延迟效应。
3. 频率响应范围:通过绘制频率特性曲线,我们可以确定系统的频率响应范围。
在曲线上观察到的3dB降低点可以作为系统的截止频率,超过该频率的信号将受到较大的衰减。
讨论与分析:频率特性测试结果对于系统的性能评估和优化具有重要意义。
通过分析实验结果,我们可以得出以下结论和建议:1. 频率特性的变化可能是由于系统中的电容、电感等元件的频率响应特性导致的。
第四章系统的频率特性分析

第四章系统的频率特性分析第四章系统的频率特性分析时间响应分析:主要用于分析线性系统的过渡过程,以时间t为独立变量,通过阶跃或脉冲输入作用下系统的瞬态时间响应来研究系统的性能;依据的数学模型为G(s)频率特性分析:以频率ω为独立变量,通过分析不同的谐波输入时系统的稳态响应来研究系统的性能;依据的数学模型为G(jω)频域分析的基本思想:把系统输入看成由许多不同频率的正弦信号组成,输出就是系统对不同频率信号响应的总和。
4.1频率特性概述1.频率响应与频率特性(1)频率响应:线性定常系统对谐波输入的稳态响应。
(frequencyresponse)对稳定的线性定常系统输入一谐波信号xi(t)=Xisin?t稳态输出(频率响应):xo(t)=Xo(?)sin[ωt+?(ω)]【例】设系统的传递函数为输入谐波信号xi(t)=Xisin?t 则稳态输出(频率响应)与输入信号的幅值成正比与输入同频率,相位不同进行laplace逆变换,整理得同频率?幅值比A(?)相位差?(?)ω的非线性函数(揭示了系统的频率响应特性)输入:xi(t)=Xisinωt稳态输出(频率响应):xo(t)=XiA(?)sin[ωt+?(ω)]幅频特性:稳态输出与输入谐波的幅值比相频特性:稳态输出与输入谐波的相位差?(?)[s]A(?)?(?)(2)频率特性:对系统频率响应特性的描述(frequencycharacteristic)频率特性定义为ω的复变函数,幅值为A(?),相位为?(?)。
输入谐波函数xi(t)=Xisin?t,其拉式变换为2.频率特性与传递函数的关系设系统的微分方程为:则系统的传递函数为:则由数学推导可得出系统的稳态响应为根据频率特性定义,幅频特性和相频特性分别为故G(j?)=?G(j?)?ej?G(j?)就是系统的频率特性如例1,系统的传递函数为所以3.频率特性的求法(1)频率响应→频率特性稳态输出(频率响应)故系统的频率特性为或表示为(2)传递函数→频率特性将传递函数G(s)中的s换成jω,得到频率特性G(jω)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验 4 系统的频率特性分析
一、实验目的
(1)为学习和掌握利用MATLAB 绘制系统Nyquist 图和Bode 图的方法。
(2)为学习和掌握利用系统的频率特性分析系统的性能。
二、实验原理
系统的频率特性是一种图解方法,运用系统的开环频率特性曲线,分析闭环系统的性
能,如系统的稳态性能、暂态性能。
常用的频率特性曲线有Nyquist 图和Bode 图。
在MATLAB 中,提供了绘制Nyquist 图和Bode 图的专门函数。
1. Nyquist 图
nyquist 函数可以用于计算或绘制连续时间LTI 系统的Nyquist 频率曲线,其使用方法如下:
nyquist(sys) 绘制系统的Nyquist 曲线。
nyquist(sys,w) 利用给定的频率向量w 来绘制系统的Nyquist 曲线。
[re,im]=nyquist(sys,w) 返回Nyquist 曲线的实部re 和虚部im,不绘图。
2. Bode 图
bode 函数可以用于计算或绘制连续时间LTI 系统的Bode 图,其使用方法如下:
bode(sys) 绘制系统的Bode 图。
bode(sys,w) 利用给定的频率向量w 来绘制系统Bode 图。
[mag,phase]=bode(sys,w) 返回Bode 图数据的幅度mag 和相位phase,不绘图。
3. 幅值裕度和相位裕度计算
margin 函数可以用于从频率响应数据中计算出幅值裕度、相位裕度及其对应的角频率,其使用方法如下:
margin(sys)
margin(mag,phase,w)
[Gm,Pm,Wcg,Wcp] = margin(sys)
[Gm,Pm,Wcg,Wcp] = margin(mag,phase,w)
其中不带输出参数时,可绘制出标有幅值裕度和相位裕度的Bode 图;带输出参数时,返回幅值裕度Gm、相位裕度Pm 及其对应的角频率Wcg 和Wcp。
三、实验内容
1.已知系统开环传递函数为
绘制系统的Nyquist 图,并讨论其稳定性。
代码如下:
num1=[1000];
den1=[1 3 2];
G1=tf(num1,den1);
num2=[1];
den2=[1 5];
G2=tf(num2,den2);
G=G1*G2;
nyquist(G);
运行结果如下:
2.已知单位负反馈系统的开环传递函数为
(1)绘制闭环系统的零极点图,根据零极点分布判断系统的稳定性。
(2)绘制系统Bode 图,求出幅值裕度和相位裕度,判断闭环系统的稳定性。
(1)代码如下:
num1=10*[25/16 5/4 1];
den1=conv([1,0,0],conv([10/3,1],conv([0.2/3,1],[1/40,1]))); G1=tf(num1,den1);
H=tf(1);
pzmap(feedback(G1,H));
grid on;
运行结果如下:
极点全部在左半平面,所以系统是稳定的。
(2)
bode(G1);
margin(G1);
结果分析:
在开环幅频特性大于0dB的所有频段内,相频特性曲线对-180度线的正负穿越次数之差为0,可以判断出系统是稳定的。
3.已知系统的开环传递函数为
分别判断当开环放大系数K=5 和K=20 时闭环系统的稳定性,并求出幅值裕度和相位裕度。
代码如下:
k=input('k=');
num1=[k];
den1=conv([1,0],conv([1,1],[0.1,1]));
G1=tf(num1,den1);
bode(G1);
margin(G1);
K=5
运行结果如下:
K=5时,在开环幅频特性大于0dB的所有频段内,相频特性曲线对-180度线的正负穿越次数之差为0,可以判断出系统是稳定的。
幅值裕度:6.85db 相位裕度:13.6度
K=20;
K=20时,在开环幅频特性大于0dB的所有频段内,相频特性曲线对-180度线的正负穿越次数之差为-1,可以判断出系统是不稳定的。
幅值裕度:-5.19db 相位裕度:-9.66度
四、实验体会
这次实验通过绘制频率特性图:奈奎斯特图和波特图,来分析系统的稳定性。
这需要用到理论课上学到的知识,如何用这两种图来判断系统的稳定性。
经过实验后,我对频率特性图有了更深的认识,对MATLAB操作也更加熟练了。