第5章_方差分析(第2节)
5章 方差分析

3、检验两个或多个因素间有无交互作用。
应用条件(P63)
1、各个样本是相互独立的随机样本; 2、各个样本来自正态总体; 3、各个处理组的总体方差方差相等, 即方差齐。
不满足应用条件时处理方法
1、进行变量变换,以达到方差齐或 正态的要求;
H0:三种卡环抗拉强度的总体均数相等;各区组 卡环抗拉强度的总体均数相等
H1:三种卡环抗拉强度的总体均数不全相等;各 区组卡环抗拉强度的总体均数不全相等
0.05
2、计算F值
方差分析表
──────────────────────────
变异来源 SS
V
MS
F
──────────────────────────
2、如果方差分析无差别,分析结束。
多样本均数之间的多重比较
两两比较,又称基于方差分析的后续 检验(post hoc test)。
LSD-t检验和SNK检验
多个样本均数的比较一般分为两种情况:
①证实性实验研究:在设计阶段就根据研究目的或专业 知识决定某些均数间的两两比较,例如多个处理组与 对照组的比较,处理后不同时间与处理前的比较等。
MS组内 2
1 nA
1 nB
a 指样本均数排序后,比较的两组间包含的组数。
例5-3,SNK多重比较:
处理组
甲组
乙组
丙组
丁组
xi
ni
组次
0.2913 8 1
1.0200 8 2
2.1488 8 3
2.2650 8 4
S xA xB
MS组内 2
假设检验与方差分析

三、假设检验的步骤
1、提出原假设(null hypothesis)和备择假设 (alternative hypothesis)
原假设为正待检验的假设:H0; 备择假设为可供选择的假设:H1 一般地,假设有三种形式:
(1)双侧检验:
H0 : 0; H1 :0 (2)左侧检验:
这两个例子中都是要对某种“陈述”做出判
断:
例1要判明工艺改革后零件平均 长度是否仍为4cm;
进行这种判断 的信息来自
例2要判明该批产品的次品率是 所抽取的样本
否低于3%。
所谓假设检验,就是事先对总体参数或总体分 布形式作出一个假设,然后利用样本信息来判断 原假设是否合理,即判断样本信息与原假设是否 有显著差异,从而决定是否接受或否定原假设
对比来构造检验统计量。
可以证明,若H0为真,则
2
(n 1)S 2
2 0
~
2 (n 1)
因此,可构造2 统计量进行总体方差
的假设检验。
当H0成立时,S2/02 接近于1,2的 值在一个适当的范围内,
当H0不成立时,S2/02远离1,2的值 相当大或相当小。
在例2中,由于所抽样本只为10,为小样本,因 此无法构造Z统 计量进行总体比例的假设检验。
如果总体X~N(,2),在方差已知的情况下,对总体均 值进行假设检验。
由于
因此,可通过构造Z统计量来进行假设检验:
注意: 如果总体方差未知,且总体分布未知,但如果是大样
本(n>=30),仍可通过 Z 统计量进行检验,只不过总体 方差需用样本方差 s 替代。
例3:根据以往的资料,某厂生产的产品的使用寿命服从正 态分布N(1020, 1002)。现从最近生产的一批产品中随机抽取16 件,测得样本平均寿命为1080小时。问这批产品的使用寿命 是否有显著提高(显著性水平:5%)?
spss方差分析报告操作示范-步骤-例子

第五节方差分析的SPSS操作一、完全随机设计的单因素方差分析1.数据采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。
数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):图 6-3 单因素方差分析数据输入将上述数据文件保存为“6-6-1.sav”。
2.理论分析要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。
从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。
单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。
3.单因素方差分析过程(1)主效应的检验假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。
①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:图6-4:One-Way Anova主对话框②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。
设置如下图6-5所示:图6-5:One-Way Anova的Options对话框点击Continue,返回主对话框。
③在主对话框中点击OK,得到单因素方差分析结果4.结果及解释(1)输出方差齐性检验结果Test of Homogeneity of VariancesMATHLevene Statistic df1 df2 Sig.1.238 4 35 .313上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。
第二节 单因素试验资料的方差分析

第二节单因素试验资料的方差分析在方差分析中,根据所研究试验因素的多少,可分为单因素、两因素和多因素试验资料的方差分析。
单因素试验资料的方差分析是其中最简单的一种,目的在于正确判断该试验因素各水平的优劣。
根据各处理内重复数是否相等,单因素方差分析又分为重复数相等和重复数不等两种情况。
上节讨论的是重复数相等的情况。
当重复数不等时,各项平方和与自由度的计算,多重比较中标准误的计算略有不同。
本节各举一例予以说明。
一、各处理重复数相等的方差分析【例6.3】抽测5个不同品种的若干头母猪的窝产仔数,结果见表6-12,试检验不同品种母猪平均窝产仔数的差异是否显著。
表6-12五个不同品种母猪的窝产仔数这是一个单因素试验,k=5,n=5。
现对此试验结果进行方差分析如下:1、计算各项平方和与自由度2、列出方差分析表,进行F检验表6-13不同品种母猪的窝产仔数的方差分析表根据df1=df t=4,df2=df e=20查临界F值得:F0.05(4,20)=2.87,F0.05(4,20)=4.43,因为F>F0.01(4,20),即P<0.01,表明品种间产仔数的差异达到1%显著水平。
3、多重比较采用新复极差法,各处理平均数多重比较表见表6-14。
表6-14不同品种母猪的平均窝产仔数多重比较表(SSR法)-8.2 -9.6因为MS e=3.14,n=5,所以为:根据df e=20,秩次距k=2,3,4,5由附表6查出α=0.05和α=0.01的各临界SSR 值,乘以=0.7925,即得各最小显著极差,所得结果列于表6-15。
表6-15SSR值及LSR值将表6-14中的差数与表6-15中相应的最小显著极差比较并标记检验结果。
检验结果表明:5号品种母猪的平均窝产仔数极显著高于2号品种母猪,显著高于4号和1号品种,但与3号品种差异不显著;3号品种母猪的平均窝产仔数极显著高于2号品种,与1号和4号品种差异不显著;1号、4号、2号品种母猪的平均窝产仔数间差异均不显著。
第二节 双因素方差分析 PPT课件

分析步骤
(构造检验的统计量)
计算均方(MS)
行因素的均方,记为MSR,计算公式为
MSR SSR k 1
列因素的均方,记为MSC ,计算公式为
MSC SSC r 1
误差项的均方,记为MSE ,计算公式为
MSE SSE (k 1)(r 1)
分析步骤
(构造检验的统计量)
replication )
双因素方差分析的基本假定
1. 每个总体都服从正态分布 对于因素的每一个水平,其观察值是来自正态分布
总体的简单随机样本
2. 各个总体的方差必须相同 对于各组观察数据,是从具有相同方差的总体中抽
取的
3. 观察值是独立的
无交互作用的双因素方差分析 (无重复双因0
343
340
品牌2
345
368
363
330
品牌3
358
323
353
343
品牌4
288
280
298
260
地区5 323 333 308 298
数据结构
分析步骤
(提出假设)
• 提出假设
– 对行因素提出的假设为
• H0:m1 = m2 = … = mi = …= mk (mi为第i个水平的
平方和 自由度 误差来源
均方
(SS) (df) (MS)
F值
P值
F 临界值
行因素 SSR
MSR k-1 MSR
MSE
列因素 SSC
MSC r-1 MSC
MSE
误差
SSE (k-1)(r-1) MSE
总和 SST kr-1
双因素方差分析
(例题分析)
方差分析法

19
系统误差 (systematic error) 由某些或某个因素按照某一确定的规律起作用而形成 的误差。当实验条件确定,系统误差就是客观上的 恒定值,不能通过多次实验值的平均值而减小。多 次重复试验不能消除系统误差。 砝码不准,刻度不均匀,个人读取刻度的习惯
标准偏差来衡量数据的分散程度。平方不 仅避免单次测量偏差相加时正负抵消,更 重要的是使大偏差能更显著地反映出来, 更好地表达数据的分散程度,表示测量的 精密度
当实验次数无穷大时,称为总体标准差。
18
实验误差的来源及分类
随机误差(random error) 以不可预知的规律变化着的误差,随机误差的出
9
例2:某样品质量的称量结果为58.7±0.2g,试求其相对误 差。
解:称量的绝对误差是0.2g,所以相对误差为ER=
X/X=0.2/58.7=0.3%
例3:已知由试验测得水在20摄氏度时的密度ρ是 997.9kg/m3,又已知其相对误差为0.05%,试求密度 ρ的范围。
解: ER= X/X=0.05% 所以X=997.9*0.05%=0.5kg/m3 ρ =997.9*(1±0.05%) kg/m3
21
21
系统误差的处理方法
当分析方法、仪器、试剂及操作者确定后,即
确定了一个分析系统,此分析系统的固有缺陷所
导致的误差即系统误差。因此,如果条件不变,
系统误差是恒定的。
选择较好的分析方法 校正仪器 提纯试剂
第5章 方差分析

F检验
若实际计算的F值大于 F 0 . 0 5 ( d f , d f ) ,则 F 值在 α=0.05的水平上显著,我们以95% 的可靠性推断 2 2 St代表的处理间方差大于Se 代表的处理内方差。
1 2
这种用F值出现概率的大小推断两个总体方差 是否相等的方法称为 F检验。
F检验时,是将由试验资料所算得的F值与根 ,F 据df1=dft 和df2=dfe查表所得的临界F值F 相比较作出统计推断的。
1 1
k
n
x ) n (x i x )
2 2 1
k
(x
1 1
k
n
xi )
2
上式可简写成:SST=SSt+SSe 分别表示总 平方和,处理间平方和,处理内平方和。 即:总平方和=处理间平方和+处理内平
方和。
C=T2/kn:
SST
x C
2
1 2 SS t Ti C n SS e SS T SS t
P ( F F ) 1 F ( F )
F
f (F )d F
F表列出的是不同df1和df2下, P(F≥Fα)=0.05和P(F≥Fα)=0.01时的F值, 即右尾概率α=0.05和α=0.01时的临界F 值,一般记作F0.05(df1,df2), F0.01(df1,df2) 。
所以 d f T d f t d f e 综合以上各式得:
df T kn 1 df t k 1 df e df T df t
均方差,均方(mean square,MS)
变异程度除与离均差平方和的大小有关外, 还与其自由度有关,由于各部分自由度不相等, 因此各部分离均差平方和不能直接比较,须将 各部分离均差平方和除以相应自由度,其比值 称为均方差,简称均方 (mean square , MS )。组 间均方和组内均方的计算公式为 :
方差分析

第九章方差分析第一节方差分析的一般问题一、方差分析的意义在工农业生产和科学研究中,经常要搞一些试验活动。
比如,为了解某个新品种的种植效果,需要在土壤条件、温度、湿度、施肥、灌溉等因素相同的情况下,将新品种与其他同类品种的种植结果作比较。
商品的包装方式和在商场里的摆放位置,对吸引顾客是有帮助的,那么为确定某商品合适的包装和销售位置,也可以进行观察试验。
在化工生产中,原料的成分、反应温度、压力、时间、催化剂、设备水平、操作规程等,对产品的得率和质量有很大的影响,通过实验研究,可以帮助我们找到一个最优的生产方案。
在试验基础上取得的数据,称为试验数据。
方差分析技术是对试验数据进行分析的一种比较有效的统计方法。
方差分析是费暄在马铃薯种植试验中首先提出来的,当初他采用的处理方法是,把观察数据看作是马铃薯品种与试验误差共同影响的总和,然后把条件(马铃薯品种)变异和随机试验误差进行比较,以此分析马铃薯品种之间是否存在显著的差异。
后来费暄给出的总结性意见是,方差分析是在若干个能够互相比较的资料组中,把产生变异的原因(主要是条件因素和随机因素)加以明确区分的方法和技术。
二十世纪二十年代,费暄又对方差分析作了系统的研究,并把他的研究成果写在《供研究人员用统计方法》等著作中。
关于单个总体均值和两总体均值差的检验内容,我们在前面已作了比较系统的介绍。
从形式上看,方差分析把这一类检验问题向前拓展了一步,它能够同时对若干个总体均值是否相等的假设进行检验,从而大大提高了统计分析的效率。
另外,方差分析对样本的大小没有更多的限制。
无论是大样本还是小样本,均可以使用方差分析方法。
方差分析方法的最大好处在于,在资料分析过程中所带来的种种便利性,其一,它能够使资料的层次结构清晰有序,其二,它能把一切需要进行的假设检验归结成一种共同格式。
有鉴于此,方差分析的思想逐渐渗透到统计学的许多方法之中。
比如,我们在相关与回归分析一章中所述的总离差平方和的分解,实际上就是方差分析思想的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、三角形法 此法是将多重比较结果直接标记在平均数 多重比较表上,如表5-4、表5-5所示。由于 在多重比较表中各个平均数差数构成一个三角 形阵列,故称为三角形法。此法的优点是简便 直观,缺点是占的篇幅较大。
2、标记字母法
先将各处理平均数由大到小自上而下 排列;然后在最大平均数后标记字母a,并 将该平均数与以下各平均数依次相比 ,凡 差异不显著标记同一 字母a,直到某一与 其差异显著的平均数标记字母 b 为止;
在利用字母标记法表示多重比较结果时, 常在三角形法的基础上进行。此法的优点是占 篇幅小,在科技文献中常见。 对于【例5·1】,根据表5-4所表示的用
SSR法进行的多重比较结果,用字母标记如表
5-8所示。
表5-8 表5-4多重比较结果的字母标记 (SSR测验)
处 理 平均产量 (克/盆) 31.5 28.5
上一张 下一张 主 页
退 出
式中 μ为总平均数; αi,βj分别为Ai、Bj的效应: αi=μi-μ,βj=μj-μ μi、μj分别为Ai、Bj观测值总体平均数, 且Σαi=0,Σβj=0; εij为随机误差 ,相互独立 , 且服从N (0,σ2)。
上一张 下一张 主 页 退 出
交叉分组两因素单个观测值的试验,A因
4
5
3.18
3.25
4.33
4.40
1.988
2.031
2.706
2.750
表5-19 5个玉米品种平均穗长多重比较表(SSR法)
品种 平均数
B1
B4
20.2
19.6
3.6**
3.0**
3.0**
2.4*
1.9
1.3
0.6
B3
B2
18.3
17.2
1.7
0.6
1.1
B5
16.6
多重比较结果表明:
B1、B4品种的平均穗长极显著或显著高于 B2、B5品种的平均穗长,其余不同品种平均
3、多重比较
计算标准误
MSe 6.5333, df e 20, n 6
sx MSe n 6.5333 6 1.0435
最小显著极差LSR值的计算
LSR0.05 SSR0.05( k , df ) S x
e
LSR0.01 SSR0.01( k , df ) S x
e
2 2 2 2 2 2
25 (5 1)
4.96
Sx
MSe n0
1.94 4.96
0.625 2 1.94 4.96
(LSR法)
Sx
2 MSe n0
i x j
0.884
(LSD法)
根据dfe=20,秩次距k=2,3,4,5,从
SSR表中查出α=0.05与0.01的临界SSR值,
检验结果表明: 小麦品系04-4的平均产量极显著高于042,但与04-3和04-1差异不显著; 小麦品系04-2、04-3、04-1的平均产量
间差异不显著。
四个小麦新品系以04-4号的产量最高。
二、各处理重复数不等的方差分析
若k个处理中的观测值数目不等,分别为 n1, n2, …, nk。 平方和与自由度的计算
乘以 =0.625, 即 得 各 最 小显极差, Sx
所得结果列于表5-20。
将表5-19中的各个差数与表 5-20中相
应的最小显著极差比较,作出推断。检验结
果已标记在表5-19中。
表5-20 SSR值及LSR值表
dfe
秩次距(k) SSR0.05 SSR0.01 LSR0.05 LSR0.01 2 20 3 2.95 3.10 4.02 4.22 1.844 1.938 2.513 2.638
2、列出方差分析表,进行F检验。
F捡验结果表明四个小麦品系产量间差 异达到5%显著水平。
表5-14 四个不同小麦品系产量方差分析表
变异来源 品系间 平方和 67.1667 自由度 3 均方 22.3889
F值
3.4269*
误差 总变异
130.6666 197.8333
20 23
6.5333
F0.05(3,20) =3.10, F0.01(3,20) =4.94
SSt 1 n
xi C
2
1 6
(82 72 84 100 ) 4760.1667
2 2 2 2
4827.3333 4760.1667 67.1667
SSe SST SSt 197.8333 67.1667 130.6666
dfT kn 1 4 6 1 23 df t k 1 4 1 3 df e dfT df t 23 3 20
x b
j 1 a
1
b
ij
x j x
x
i 1 a b i 1
1
ij
x a
i 1
ij
x
j 1
ij
x ab
i 1 j 1
1
a
b
ij
上一张 下一张 主 页
退 出
两因素单个观测值试验的数学模型为:
xij i j ij (i 1, 2, , a; j 1, 2, , b)
表5-13 四个不同小麦品系的产量
品种号 04-1 04-2 04-3 04-4 合计 观测值xij (㎏/20m2) 12 10 14 8 10 12 16 14 16 16 12 12 10 14 18 16 15 16 合计 x i 82 72 84 100 平均 x i 13.6667 12.0000 14.0000 16.6667
(一) 两因素单个观测值试验资料的 方差分析 对于A、B 两个试验因素的全部ab个
水平组合,每个水平组合只有一个观测值, 全试验共有ab个观测值,其数据模式如
表5-21所示。
上一张 下一张 主 页 退 出
表6-23 两因素单独观测值试验的数据模式
x
i
x
j 1 n
b
ij
xi x j x
素的每个水平有b次重复,B因素的每个水平有a
次重复,每个观测值同时受到A、B 两 因素及随
机误差的作用 。
全部 ab 个观测值的总变异可以剖分为 A 因素水平间变异、B 因素水平间变异及试验误差 三部分;自由度也相应分解。
上一张 下一张 主 页
退 出
平方和与自由度的分解式如下:
SST SS A SS B SS e dfT df A df B df e
14 16 13 16 18 20
x 338
1、计算各项平方和与自由度
C x kn
2
338
2
4 6
2
4760.1667
2 2 2 2
SST xij C (12 10 14 16 ) 4760.1667 4958.0000 4760.1667 197.8333
再以标有字母b的平均数为标准,与上 方比它大的各个平均数比较 ,凡差异不显 著一律再加标b ,直至显著为止;
上一张 下一张 主 页 退 出
再以标记有字母b的最大平均数为标准,与 下面各未标记字母的平均数相比 ,凡差异不显 著,继续标记字母b,直至某一个与其差异显著 的平均数标记c为止;… … ; 如此重复下去,直至最 小一个平均数被标 记、比较完毕为止。 这样,各平均数间凡有一个相同字母的即为 差异不显著,凡无相同字母的即为差异显著。用 小写拉丁字母表示显著水平α= 0.05,用大写拉 丁字母表示显著水平α= 0.01。
穗长之间差异不显著。 可以认为B1、B4品种的果穗最长,B2、B5
品种的果穗较短,B3品种居中。
第三节 两因素完全随机设计试验
资料的方差分析
上一张 下一张 主 页
退 出
一、两因素交叉分组试验资料的方差分析 设试验考察A、B两个因素 ,A因素分a 个水平,B因素分b个水平。 交叉分组是指A因素每个水平与 B因素 的每个水平都要碰到,两者交叉搭配形成ab 个水平组合即处理,试验因素 A、B在试验 中处于平等地位 。
B5
合计
15.5 18.0 17.0 16.0
4
66.5 16.6
25 460.5
C
x N
2
460.5 25
2
2
8482.41
SST xij C (21.5 19.5 17.0 16.0 ) C
2 2 2 2
8567.75 8482.41 85.34 xi2 SSt C ni 121.0 103.0 91.5 78.7 66.5 ( )C 6 5 5 4 4 8528.91 8482.41 46.50 SSe SST SSt 85.34 46.50 38.84
2 2 2 2 2
dfT ni 1 25 1 24 df t k 1 5 1 4 df e dfT df t ni k 25 5 20
2、列出方差分析表,进行F检验。
F检验结果表明品种间穗长差异极显著。
表5-18 5个玉米品种穗长方差分析表
i
Sx
MSe n0 2 MSe n0
( LSR法)
Sx x
i j
( LSD法)
【例5.4】 5个玉米品种的盆栽试验, 调查了穗长(cm)性状,得资料如表5-17 所示。试比较品种穗长间有无差异。
1、计算各项平方和与自由度
表5-17 5个玉米品种的穗长