时间序列分析预测法

合集下载

统计学中的时间序列预测分析方法

统计学中的时间序列预测分析方法

统计学中的时间序列预测分析方法时间序列预测分析是统计学中的一项重要技术,用于预测未来的趋势和模式。

它基于历史数据,通过分析数据中的时间相关性,寻找规律和趋势,从而进行未来的预测。

时间序列预测分析方法广泛应用于经济、金融、气象、交通等领域,为决策者提供了重要的参考依据。

一、时间序列分解法时间序列分解法是一种常用的时间序列预测分析方法。

它将时间序列数据分解为趋势、季节性和随机成分,从而更好地理解和预测数据的特点。

趋势成分反映了数据的长期变化趋势,季节性成分反映了数据的周期性变化,随机成分则表示了数据的不规则波动。

通过对这三个成分的分析,可以更准确地预测未来的趋势和变化。

二、移动平均法移动平均法是一种简单而有效的时间序列预测方法。

它通过计算一定时间段内的平均值,来预测未来的趋势。

移动平均法的核心思想是利用过去一段时间内的平均值来预测未来的趋势,从而消除数据中的噪声和波动。

移动平均法的预测结果较为稳定,适用于平稳或趋势性变化不大的时间序列数据。

三、指数平滑法指数平滑法是一种常用的时间序列预测方法,它通过对历史数据进行加权平均来预测未来的趋势。

指数平滑法的核心思想是对历史数据赋予不同的权重,越近期的数据权重越大,从而更加重视最近的趋势和变化。

指数平滑法适用于数据变化较为平稳的情况,能够较好地捕捉到数据的趋势和变化。

四、ARIMA模型ARIMA模型是一种常用的时间序列预测方法,它基于自回归(AR)和移动平均(MA)的原理,通过对时间序列数据的差分和模型拟合来预测未来的趋势。

ARIMA模型的核心思想是通过对数据的差分来消除数据的非平稳性,然后通过AR和MA模型对差分后的数据进行拟合,从而得到未来的预测结果。

ARIMA模型适用于各种类型的时间序列数据,能够较好地捕捉到数据的趋势和变化。

五、神经网络模型神经网络模型是一种基于人工神经网络的时间序列预测方法,它通过对历史数据的训练和学习,建立一个复杂的非线性模型,从而预测未来的趋势和变化。

时间序列预测的常用方法及优缺点分析

时间序列预测的常用方法及优缺点分析

时间序列预测的常用方法及优缺点分析一、常用方法1. 移动平均法(Moving Average)移动平均法是一种通过计算一系列连续数据的平均值来预测未来数据的方法。

这个平均值可以是简单移动平均(SMA)或指数移动平均(EMA)。

SMA是通过取一定时间窗口内数据的平均值来预测未来数据,而EMA则对旧数据赋予较小的权重,新数据赋予较大的权重。

移动平均法的优点是简单易懂,适用于稳定的时间序列数据预测;缺点是对于非稳定的时间序列数据效果较差。

2. 指数平滑法(Exponential Smoothing)指数平滑法是一种通过赋予过去观测值不同权重的方法来进行预测。

它假设未来时刻的数据是过去时刻的线性组合。

指数平滑法可以根据数据的特性选择简单指数平滑法、二次指数平滑法或霍尔特线性指数平滑法。

指数平滑法的优点是计算简单,对于较稳定的时间序列数据效果较好;缺点是对于大幅度波动的时间序列数据预测效果较差。

3. 季节分解法(Seasonal Decomposition)季节分解法是一种将周期性、趋势性和随机性分开处理的方法。

它假设时间序列数据可以被分解为这三个不同的分量,并独立预测各分量。

最后将这三个分量合并得到最终的预测结果。

季节分解法的优点是可以更准确地预测具有强烈季节性的时间序列数据;缺点是需要根据具体情况选择合适的模型,并且较复杂。

4. 自回归移动平均模型(ARMA)自回归移动平均模型是一种统计模型,通过考虑当前时刻与过去时刻的相关性来进行预测。

ARMA模型考虑了数据的自相关性和滞后相关性,能够对较复杂的时间序列数据进行预测。

ARMA模型的优点是可以更准确地预测非稳定的时间序列数据;缺点是模型参数的选择和估计比较困难。

5. 长短期记忆网络(LSTM)长短期记忆网络是一种深度学习模型,通过引入记忆单元来记住时间序列数据中的长期依赖关系。

LSTM模型可以有效地捕捉时间序列数据中的非线性模式,具有很好的预测性能。

LSTM模型的优点是适用于各种类型的时间序列数据,可以提供较准确的预测结果;缺点是对于数据量较小的情况,LSTM模型容易过拟合。

时间序列分析法

时间序列分析法

于是可得t=21时的直线趋势预测模型为:
预测1999年该商场的年销售额为:
二次移动平均预测法的特点: 1、对有明显趋势变动的市场现象,二次移动平均 预测法是很适应。 2、二次移动平均预测模型其截距at和斜率bt的确 定,是以一次和二次移动平均值为依据的,且 各期的截距和斜率是变化的,这样就保留了市 场现象客观存在的波动。 3、最后一个at和bt值是固定的,不但可以用于短 期预测,也可用于远期预测,因此比一次移动 平均法的适用面更广。
一次移动平均预测法
是对时间序列按一定跨越期,移动计算观察值的 算术平均数,其平均数随着观察值的移动而向后 移动,并作为下一期的预测值。
预测模型:
X t X t 1 X t 2 X t n 1 i t n 1 Ft 1 n n
一次移动平均预测法适用于: 基本呈水平型变动,又有些波动的时间序列。
t n 1
n
t t
F a bT
t T
二次移动平均法参数Fra biblioteka 2 M t Mt
(1)
( 2)
(1) (2) 2 (M M ) b t n 1 t
一次与二次移动平均预测值及其误差比较
(1) (2) (3) 期数 实际值 M(1)
n=3
(4) (5) (6) (7) (8) 误差 M(2) 误差 总预测 误差 值 (2)-(3) n=3 (3)-(5) (2)-(7) (3)+(6)
算术平均法




算术平均法是求出一定观察期内预测目标的时间数列的算术平均数作 为下期预测值的一种最简单的时序预测法。 常用的有简单算术平均法和加权算术平均法。 算术平均法是简易平均法中的一种。 设:X1,X2,X3,... ,Xn为观察期的n个资料,求得n个资料的 算术平均数的公式为: X=(X1+X2+X3+...Xn)÷n 或简写为: X(平均数)=∑x÷n 式中:n为资料期数(数据个数) 运用算术平均法求平均数,进行市场预测有两种形式: (一)以最后一年的每月平均值或数年的每月平均值,作为次年 的每月预测值。 (二)以观察期的每月平均值作为预测期对应月份的预测值。

时间序列预测的方法与分析

时间序列预测的方法与分析

时间序列预测的方法与分析时间序列预测是一种用于分析和预测时间相关数据的方法。

它通过分析过去的时间序列数据,来预测未来的数据趋势。

时间序列预测方法可以分为传统统计方法和机器学习方法。

下面将分别介绍这两种方法以及它们的分析步骤。

1. 传统统计方法传统统计方法主要基于时间序列数据的统计特征和模型假设进行分析和预测。

常用的传统统计方法包括移动平均法、指数平滑法和ARIMA模型。

(1) 移动平均法:移动平均法通过计算不同时间段内的平均值来预测未来的趋势。

该方法适用于数据变动缓慢、无明显趋势和周期性的情况。

(2) 指数平滑法:指数平滑法通过对历史数据进行加权平均,使得近期数据具有更大的权重,从而降低对过时数据的影响。

该方法适用于数据变动较快、有明显趋势和周期性的情况。

(3) ARIMA模型:ARIMA模型是一种常用的时间序列预测模型,它结合了自回归(AR)、差分(I)和滑动平均(MA)的概念。

ARIMA模型可以用于处理非平稳时间序列数据,将其转化为平稳序列数据,并通过建立ARIMA模型来预测未来趋势。

2. 机器学习方法机器学习方法通过训练模型来学习时间序列数据的特征和规律,并根据学习结果进行预测。

常用的机器学习方法包括回归分析、支持向量机(SVM)和神经网络。

(1) 回归分析:回归分析通过拟合历史数据,找到数据之间的相关性,并建立回归模型进行预测。

常用的回归算法包括线性回归、多项式回归和岭回归等。

(2) 支持向量机(SVM):SVM是一种常用的非线性回归方法,它通过将数据映射到高维空间,找到最佳分割平面来进行预测。

SVM可以处理非线性时间序列数据,并具有较好的泛化能力。

(3) 神经网络:神经网络是一种模仿人脑神经元组织结构和工作原理的计算模型,它通过训练大量的样本数据,学习到数据的非线性特征,并进行预测。

常用的神经网络包括前馈神经网络、循环神经网络和长短期记忆网络等。

对于时间序列预测分析,首先需要收集并整理时间序列数据,包括数据的观测时间点和对应的数值。

时间序列分析预测法

时间序列分析预测法
34.52 21.88 33.50 0.43 5.87
19.24
9.3.3 三次指数平滑
二次指数平滑既解决了对有明显呈趋势变动的时 间序列的预测,又解决了一次指数平滑只能预测 一期的不足。但如果时间序列呈非线性趋势时, 就需要采用更高次的指数平滑方法。
三次指数平滑(Triple Exponential Smoothing)
2003 444.84 430.55 416.24 444.86
2004 496.23 483.09 469.72 496.46
2006
平均绝 对误
b
0 22.08 36.08 57.52 57.24 53.48
Y
243.29 298.51 355.59 455.27 502.10 603.42
绝对 误差
a22S2 1S2 22*6 56.5 26.5 7 b21 aa(S2 1S2 2)1 0.0 5.5*(6 56.5 2)2.5
通过趋势方程对3月份进行预测:
Y 2 1 a 2 b 2 ( 1 ) 6 . 5 2 . 5 7 * 1 7 0
案例
预测某省农民家庭人均食品支出额,假如a取0.8。
按照时间的顺序把随机事件变化发展的过程记录 下来就构成了一个时间序列。对时间序列进行观 察、研究,找寻它变化发展的规律,预测它将来 的走势就是时间序列分析。
时间序列预测方法,是把统计资料按时间发生的 先后进行排序得出的一连串数据,利用该数据序 列外推到预测对象未来的发展趋势。一般可分为 确定性时间序列预测法和随机时间序列预测法。
a取0.4和0.8时的均方误差。
年份
1991 1992 1993 1994 1995 1996 1997 合计 均方误差

时间序列预测的常用方法

时间序列预测的常用方法

时间序列预测的常用方法时间序列预测是指根据过去一段时间内的数据,通过建立历史数据与时间的关系模型,预测未来一段时间内的数据趋势和变化规律。

时间序列预测在经济学、金融学、气象学、交通运输等领域有着广泛的应用。

本文将介绍时间序列预测的常用方法。

一、简单移动平均法简单移动平均法是最简单直观的时间序列预测方法之一。

它的原理是通过计算平均值来预测未来的值。

具体步骤为:首先选择一个固定的时间窗口,例如选择过去12个月的数据进行预测,然后计算过去12个月的平均值,将该平均值作为未来一个时间点的预测值。

这种方法的优点是简单易用,适用于数据变动较为平稳的时间序列。

二、指数平滑法指数平滑法是一种较为常用的时间序列预测方法,它适用于数据变动较为平稳的情况。

指数平滑法的原理是通过对过去的数据赋予不同权重,来预测未来的值。

指数平滑法将过去的值按照指定的权重递减,然后将过去的值与未来的值结合得出预测值。

常用的指数平滑法有简单指数平滑法、二次指数平滑法和三次指数平滑法等。

三、趋势法趋势法是根据时间序列中的趋势来进行预测的一种方法。

趋势可以是线性的也可以是非线性的。

线性趋势法是通过拟合线性回归模型来预测未来的值,具体步骤为根据过去的数据建立一个线性回归模型,然后利用该模型来预测未来的数据。

非线性趋势法包括二次多项式拟合、指数增长拟合等方法,其原理是根据过去的数据来选择合适的含有趋势项的非线性模型,然后通过该模型来预测未来的数据。

四、季节性分解法季节性分解法是一种将时间序列分解为趋势项、季节项和随机项三个部分的方法。

首先对时间序列进行季节性调整,然后利用调整后的数据建立趋势模型和季节模型,最后将趋势模型和季节模型相加得到预测结果。

季节性分解法适用于时间序列中存在明显的季节性变化的情况,如销售数据中的每年的圣诞节销售量增加。

五、ARIMA模型ARIMA模型(Autoregressive Integrated Moving Average Model)是一种基于时间序列的统计模型,常用于对非平稳时间序列的预测。

时间序列预测的常用方法与优缺点分析

时间序列预测的常用方法与优缺点分析

时间序列预测的常用方法与优缺点分析1. 移动平均法(Moving Average Method)移动平均法是最简单的时间序列预测方法之一。

它的基本思想是取过去一段时间内观测值的平均数作为未来预测值。

移动平均法适用于数据存在一定的周期性和趋势性的情况,比如季节变动较为明显的销售数据。

但是移动平均法在预测周期性较长的数据时会存在滞后的问题。

2. 简单指数平滑法(Simple Exponential Smoothing Method)简单指数平滑法是基于指数加权的方法,它对历史数据进行平滑处理,然后将平滑后的值作为未来预测值。

简单指数平滑法适用于数据波动较小、趋势变化较缓的情况。

它的优点是计算简单、速度快,但是对于数据呈现出较大的波动和季节性变动的情况,预测效果较差。

3. 加权移动平均法(Weighted Moving Average Method)加权移动平均法是对移动平均法的改进,它在计算未来预测值时给予不同时间点的观测值不同的权重。

通过合理设置权重,可以充分考虑到数据的周期性和趋势性,减小预测误差。

加权移动平均法适用于数据具有明显的季节变动和趋势变动的情况。

但是加权移动平均法需要根据具体情况合理设置权重,这对用户经验有一定要求。

4. ARIMA模型(Autoregressive Integrated Moving Average Model)ARIMA模型是一种广泛应用于时间序列预测的统计模型。

ARIMA模型包含三个部分:自回归(AR)、差分(I)和移动平均(MA)。

ARIMA模型通过寻找最佳的AR、I和MA参数,建立数据的数学模型,从而预测未来的观测值。

ARIMA模型适用于任意类型的时间序列数据,但是对于数据的预处理和参数的选择较为复杂,需要一定的统计知识。

5. 长短期记忆网络(Long Short-Term Memory Network)长短期记忆网络是一种基于神经网络的时间序列预测方法。

该方法通过自适应地学习历史观测值之间的关系,能够捕捉到数据中的非线性关系和时序依赖性。

时间序列预测分析方法

时间序列预测分析方法

时间序列预测分析方法时间序列预测分析是一种用来预测未来数值或趋势的统计方法,常应用于经济、金融、天气、交通等领域。

时间序列预测的目的是通过对已有的时间序列数据进行观察和分析,找出隐藏在数据中的规律和模式,并基于这些规律和模式进行未来数值的预测。

时间序列预测分析方法主要包括线性回归模型、自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)、季节性自回归整合移动平均模型(SARIMA)、指数平滑模型和神经网络模型等。

线性回归模型是一种基本的时间序列预测方法,它通过线性相关关系来建立因变量和自变量之间的数学模型,然后利用该模型来预测未来数值。

线性回归模型假设各个变量之间存在线性关系,并利用最小二乘法估计系数。

自回归移动平均模型(ARMA)是一种常见的时间序列预测方法,它是自回归模型和移动平均模型的结合。

ARMA模型是建立在对时间序列数据自身延迟和白噪声的统计分析基础上,用来描述和预测时间序列数据。

自回归整合移动平均模型(ARIMA)是ARMA模型的延伸,它在ARMA模型的基础上增加了差分运算,以消除时间序列数据的非平稳性。

ARIMA模型通常包括三个关键参数:自回归阶数p、差分阶数d和移动平均阶数q,通过对这三个参数的选择和调整,可以得到更精确的预测结果。

季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,适用于具有明显季节性变动的时间序列数据。

SARIMA模型考虑了时间序列数据中的季节性因素,并通过增加季节差分和季节自回归、移动平均项来进行建模和预测。

指数平滑模型是一种简单但有效的时间序列预测方法,它通过对时间序列数据的平均值进行加权处理,来进行未来数值的预测。

指数平滑模型包括简单指数平滑、加权移动平均和双指数平滑等,具体方法根据具体场景和需求进行选择。

神经网络模型是一种利用神经网络来进行时间序列预测的方法。

神经网络模型使用神经元结构来模拟人脑的运算过程,通过对时间序列数据进行训练和优化,来预测未来的数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年份 1992 比重(%) 27.63 1993 28.14 1994 28.62 1995 29.04 1996 29.37

1992~1996年市镇人口在总人口中所占比重分别为27.63%、 28.14%、28.62%、29.04%和29.37%,平均比重为:
则1997年市镇人口在总人口中所占比重为: 28.56%
算术平均预测(简单、移动、指数平滑) 季节分析预测(水平、趋势变动)
时间序列 预测法
马尔可夫预测(市场占有率预测)
定量预测 方法
趋势预测(直线拟合、指数曲线拟合)
一元线型回归预测
回归分析 预测法 多元线型回归预测 非线性回归预测 自相关回归预测
9.1 时间序列预测法概述

最早的时间序列分析可以追溯到7000年前的古埃 及。古埃及人把尼罗河涨落的情况逐天记录下来, 就构成所谓的时间序列。对这个时间序列长期的 观察使他们发现尼罗河的涨落非常有规律。由于 掌握了尼罗河泛滥的规律,使得古埃及的农业迅 速发展,从而创建了埃及灿烂的史前文明。 按照时间的顺序把随机事件变化发展的过程记录 下来就构成了一个时间序列。对时间序列进行观 察、研究,找寻它变化发展的规律,预测它将来 的走势就是时间序列分析。
79
1979-1998年中国国内生产总值指数
环比指数 年份 定基指数
趋势性数列
平稳性数列
9.3 指数平滑预测法

指数平滑(Method of Exponential Smoothing)是 一种特殊的加权平均法,特点是对离预测期较近的历 史数据给予较大的权数,对较远的给予较小的权数,
权数由近到远呈指数递减,所以称之为指数平滑。有
指数(%)
19
700 650 600 550 500 450 400 350 300 250 200 150 100 50 0
19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 90 91 92 93 94 95 96 97 98 89 88 87 86 85 84 83 82 81 80

2002 74.3
2003 74.0
2004 74.6
2005 75.3
2006 74.8
根据预测模型可得:

即2007年我国原煤占能源生产总量的比重为74.7%

可以看出,加权移动平均的特点是:强调 时间序列近期的变动对未来具有较大影响, 从而更为合理。但是有时会受加权系数选 择的影响。

总之,简单移动平均和加权平均最适用于 没有明显趋势的、比较平稳的时间序列, 如果时间序列明显表现出某种趋势性特征, 或者波动很大,预测效果就会很差。
现用
高露洁牙膏 佳洁士牙膏

可以得到转移概率矩阵:

B=[
0.6 0.4 0.3 0.7
]

用转移概率矩阵可以预测市场占有率的变化 预测下个月高露洁牙膏的使用人数为: 3000×60%+7000×30%=3900人 预测下个月佳洁士牙膏的使用人数为: 3000×40%+7000×70%=6100人


时间序列预测方法,是把统计资料按时间发生的 先后进行排序得出的一连串数据,利用该数据序 列外推到预测对象未来的发展趋势。一般可分为 确定性时间序列预测法和随机时间序列预测法。 确定性时间序列法有:移动平均法、指数平滑法、 差分指数平滑法、自适应过滤法、直线模型预测 法、成长曲线模型预测和季节变动预测法等等。 随机时间序列是通过建立随机时间序列模型来预 测,方法和数据要求都很高,精度也很高,应用 非常广泛。
简单指数平滑的局限性


简单指数平滑的缺点是比较适用于时间序列趋势不明显的 场合,而当序列明显表现出线型趋势时,简单指数平滑预 测值总会落后于实际值的变动。 例如,预测某省农民家庭人均食品支出额,假如a取0.9。
年份 食品支出 预测值(a=0.9) 绝对误差
1999
2000 2001
243.29
277.82 320.39


假定工大1万学生,每人每月用一支牙膏,并且只使用佳 洁士与高露洁,根据12月调查,有7000人使用佳洁士, 3000人使用高露洁;同时调查发现,7000使用佳洁士的人 中,有30%下月准备改用高露洁,而3000使用高露洁的人 中,有40%下月准备改用佳洁士,预测高露洁的市场。
拟用 高露洁牙膏 60% 30% 佳洁士牙膏 40% 70%
第九章 时间序列分析预测法
时间序列分析概念 移动平均法概念与应用 指数平滑法概念与应用 马尔可夫预测法与季节分析预测法概念与应用



定量预测概述 定量预测又称数学模型预测法。它是运用 一定的统计和数学方法,通过建立数学分 析模型来描述和预测事物变化发展规律的 一种预测方法。 因此有两个明显的特点:受人的主观因素 影响较小,结果比较客观;对数据的要求、 预测者专业能力的要求比较高 由时间序列预测方法和回归分析预测方法 两大类组成。

一般可以通过比较预测均方差(MSE)和绝 对均差(MAE),来分析预测的误差。 简单移动平均预测的明显缺点是:它假设 平均数内的各项观察值对于未来都具有相 同的影响,但一般在实际中,往往是越接 近预测期的观察值对未来的影响越大,因 此又有其它方法来修正。

9.2.3 加权移动平均预测

根据时间顺序排列的历史数据,每个数据 对预测值的重要性是不同的,将各个数据 赋予不同的权重,可以更准确的预测。

之后,再建立趋势方程: T为时间间隔

可以通过计算出的简单和二次指数平滑值 来确定系数a,b

例如,2003年1月销售量为60,2月为70,a=0.5。则:
通过趋势方程对3月份进行预测:
案例

预测某省农民家庭人均食品支出额,假如a取0.8。
年份
1999 2000 食品 支出 243.29 277.82 S1 a=0.8 243.29* 270.91 310.49 373.37 430.55 483.09 S2 a=0.8 243.29* 265.39 301.47 358.99 416.24 469.72 a 243.29 276.43 319.51 387.75 444.86 496.46 b 0 22.08 36.08 57.52 57.24 53.48 243.29 298.51 355.59 455.27 502.10 603.42 19.24 34.52 21.88 33.50 0.43 5.87 Y 绝对 误差
2001 2002 2003
2004 2006 平均绝 对误
320.39 389.09 444.84
496.23
9.3.3 三次指数平滑

二次指数平滑既解决了对有明显呈趋势变动的时
间序列的预测,又解决了一次指数平滑只能预测 一期的不足。但如果时间序列呈非线性趋势时,
就需要采用更高次的指数平滑方法。
0.6 0.4 0.3 0.7

(3000,7000)[

]=(3900,6100) ][
0.6 0.4 0.3 0.7
已知 未知 预测模型:

适用范围: 预测对象的历史数据呈水平型变动状态,逐期增长量大体 相同的情况; 短期预测; 可推广应用趋势型变动的历史数据。
案例
1999~2006年我国水电消费量在能源消费总量中所占的比 重如下表所示,使用算术平均法预测2007年水电消费量 在能源消费总量中所占的比重。
年份 1999 2000 2001 2002 2003 2004 2005 2006

三次指数平滑(Triple Exponential Smoothing)
9.4 马尔可夫预测法


9.4.1 马尔可夫预测法基本原理
马尔可夫:俄国著名数学家 马尔可夫过程 :以马尔可夫名字命名的一种特殊 的事物发展过程。已知现在状态就可以预测将来 的状态,无须是否知道过去的状态。而这种事物 发展的未来状态只与现在有关而与过去无关的性 质被称为,无后效性。例如,中国象棋中的 “马”。 具有无后效性的事物的发展过程称为马尔可夫过 程,马尔可夫过程主要用于企业产品的市场占有 率的预测。



可以发现,这实际上是时间序列的观察值和初始 平滑值的加权平均。

并且这一权数是递减的,距离估算期越远的观察 值对当前估算结果的影响越小。如,当a=0.8时, 分别为,0.8,0.16,0.032,0.0064。所以,可 以起到类似加权移动平均的作用。
对于初始值。假定2000年的销售额600万为初始值。 则, 下一期的预测值为:
243.29* 274.37
0
34.53 46.02
2002
2003 2004
389.09
444.84 496.23
315.79
381.76 438.53
73.30
63.08 57.70
绝对均差
45.77
9.3.2 布朗线型指数平滑


在时间序列呈现出随趋势变动的情况下,通常采 用布朗指数平滑(Brown’s Linear Exponential Smoothing),也称二次指数平滑。 首先先计算出简单和二次指数平滑值


简单指数平滑预测准确性相当程度上取决 于a的值,一般而言,如果时间序列是比较 平稳的,应尽量选择比较小的a值,这样可 以降低指数平滑的敏感性;而当时间序列 的波动比较大时,应尽可能选择较大的a值, 这样可以使预测结果能比较迅速的对新情 况做出调整。 但是a值取得过大,又容易丧失整个序列的 趋势性。根据经验,选取的a值一般在 0.3~0.5之间比较理想。


时间序列预测法的优缺点


优与过去、现在的各种因素之间的关系时, 效果比较好。 数据处理时,并不十分复杂 缺点: 反映了对象线性的、单向的联系 预测稳定的、在时间方面稳定延续的过程 并不适合进行长期预测
相关文档
最新文档