连续系统的频域和复频域分析

合集下载

实验5-连续时间系统的复频域分析报告

实验5-连续时间系统的复频域分析报告

实验5-连续时间系统的复频域分析报告
本实验的目的是研究连续时间系统的复频域分析。

首先,构建了一个由推力继电器组
成的系统,其模型为图1所示。

再将此系统内建模,得到开环传递函数
G(s)=K/[(s+1)(s+1)(s+2)],其中1为系统参数,s为复频变量。

然后使用MATLAB编程,实现基于Laplace变换计算复频域函数和系统振型,并以一系列频率点绘制系统频率响应
曲线等曲线,从而评估系统性能。

实验结果表明,当系统参数K处于[6.5,9.2]中时,系统的复频响应表现出了各向同
性的性能(图2),表明系统具有更一致的响应特性,并且误差幅值在0.03以内保持稳定,说明系统具有良好的稳定性性能。

此外,系统振型(图3)也说明了系统的稳定性,振型
稳定时间较短,且交叉率较小,说明系统具有良好的稳定性能。

综上,连续时间系统的复频域分析中,MATLAB编程在系统参数K为[6.5,9.2]范围内时,运用Laplace变换和求和函数,成功绘制出系统的复频响应曲线,以及相应的系统振型,从而对系统的复频响应、稳定行为等做出定量性、全面性的评估,为系统运行提供了
可靠的参考。

第4章 连续信号与系统的复频域分析

第4章 连续信号与系统的复频域分析

式( 4.1-5 )和( 4.1-6 )称为双边拉普 拉斯变换对,可以用双箭头表示f ( t )与F(s) 之间这种变换与反变换的关系
记F (s) L [ f (t )], f (t ) L [ F (s)]
-1
f (t ) F ( s)
从上述由傅氏变换导出双边拉普拉 斯变换的过程中可以看出,f (t) 的双边 拉普拉斯变换F(s)=F( j )是把f (t)乘 以e - t之后再进行的傅里叶变换,或者 说F(s)是f ( t ) 的广义傅里叶变换。
j
1
j
st
ds
t > 0
(4.1-9)
记为£ -1[ F(s)]。即
F(s) =£ [ f (t) ]
–1 [ F (s) ] 和 f (t) = £
式(4.1-8)中积分下限用0-而不用0+, 目的是可把t = 0-时出现的冲激考虑到变换中 去,当利用单边拉普拉斯变换解微分方程时, 可以直接引用已知的起始状态f (0-)而求得全 部结果,无需专门计算0-到0+的跳变。
经过 0 的垂直线是收敛边界,或称为 收敛轴。
由于单边拉普拉斯变换的收敛域是由 Re[s] = > 0的半平面组成,因此其收敛 域都位于收敛轴的右边。
凡满足式(4.1-10)的函数f ( t )称为“指 数阶函数”,意思是可借助于指数函数的 衰减作用将函数f(t) 可能存在的发散性压下 去,使之成为收敛函数。
在收敛域内,函数的拉普拉斯变换存 在,在收敛域外,函数的拉普拉斯变换不 存在。
双边拉普拉斯变换对并不一一对应, 即便是同一个双边拉普拉斯变换表达式, 由于收敛域不同,可能会对应两个完全不 同的时间函数。
因此,双边拉普拉斯变换必须标明收 敛域。

第4讲 复频域分析

第4讲  复频域分析
t
f
( 1)
(t )

f ( 1) (0 ) F ( s ) f ( )d s s
若f(t)是因果信号,f(n)(t)是f(t)的n次导数,则f(t)等于f(n)(t)从 0- 到t的n重积分。若f(n)(t)的单边拉普拉斯变换用Fn(s)表示,根
据时域积分性质式(4.2 - 12),则f(t)的单边拉氏变换为
( 1) t
(4.2-12)
F ( 1) (0 ) F ( s ) ( 1) f (t ) f ( )d s s (4.2-13) n 1 F ( s) (n) ( m) f (t ) n m 1 f (0 ) n s s m 1
同理: F2(s)=
+ -
-e (t )e dt e
at st -
0
( s a )t
1 ( s a )t dt e sa
0
1 [1 lim e ( a ) t e j t ] t sa 显然,只有当 a时,LT 才存在。 1 F(s)=[ f1 (t )] 1 sa ROC : Re( s ) a
4.1.4 常用信号的单边拉普拉斯变换
4.2 单边拉普拉斯变换的性质
1. 线性
例题:求单边正弦和单边余弦信号的LT。
e j0t (t )] [ 1 , Re( s ) 0 s j 0 1 , Re( s ) 0 s j 0
e j0t (t )] [
因此得
2 F2 ( s ) L[ f 2 (t )] s2
7. 时域积分 若f(t)←→ F(s),Re[s]>ζ0, 则有:
若f(-n)(t)表示从-∞到t对f(t)的n重积分,则有

实验四连续时间系统的复频域分析

实验四连续时间系统的复频域分析
理论数据表
根据实验原理和系统设计,计算出理论上的关键数据,并与实验数据进行对比,以验证实验结果的正确性。
结果对比分析பைடு நூலகம்
1 2
波形图对比
将实验波形图与理论波形图进行对比,观察两者 在幅度、频率和相位等方面的差异,并分析产生 差异的原因。
数据对比
将实验数据与理论数据进行对比,计算误差并分 析误差来源,以评估实验结果的准确性和可靠性。
系统函数与传递函数
系统函数
描述系统动态特性的数学表达式,通 常表示为微分方程或差分方程的形式。 系统函数反映了系统对输入信号的响 应特性。
传递函数
在复频域中,传递函数表示系统输入 与输出之间的关系。它是系统函数在 复频域的表示形式,便于分析系统的 频率响应和稳定性。
稳定性分析
稳定性定义
稳定性是指系统在受到扰动后,能够恢复到原来平衡状态的 能力。对于连续时间系统,稳定性通常指系统的输出在有限 时间内有界。
稳定性判据
根据实验结果,可以总结出连续时间系统稳定的充分必要条件是系统函数H(s)的极点全部 位于s平面的左半平面。
收获与体会
理论与实践结合
通过实验操作,加深了对连续时间系统复频 域分析理论的理解,实现了理论与实践的有 机结合。
实验技能提升
在实验过程中,熟练掌握了信号发生器、示波器、 频谱分析仪等实验仪器的使用,提高了实验技能。
系统函数
连续时间系统的系统函数是复频域中 的传递函数,描述了系统的频率响应 特性。
03 复频域分析方法
CHAPTER
傅里叶变换与拉普拉斯变换
傅里叶变换
将时间域信号转换为频域信号,便于 分析信号的频率特性。通过正弦和余 弦函数的叠加来表示信号,实现信号 的时频转换。

信号与系统第四章__连续系统的复频域分析

信号与系统第四章__连续系统的复频域分析

L[et
sin 0t ]

L{ 1 2j
[e (
j0 )t
e( j0 )t ]}
1( 1 1 )
2 j s j0 s j0

(s

0 )2

02

eat
sin
0t
L
(s

0
a)2

02
8.冲激偶信号 ' (t)
3.阶跃信号u(t),则根据定义其拉普拉斯变换为
L[u(t)] u(t)est dt 1
0
s
1L 1
s

A L A
s
4. 余弦信号cosω0t
因为
cos0t

1 2
(e j0t

e
) j0t
L[cos0t]

1 2
L[e
] j0t

1 2
L[e
] j0t
j0
)

0 s2 02

sin
0t
L
s2
0 02
6.衰减余弦信号e-αt·cosω0t
因为
et
cos0t
1 (e( j0 )t 2
e( j0 )t )
L[et
cos0t]

L{1 2
[e (
j0 )t
e( j0 )t ]}
2j
j
F
(S
)est
ds

(t
)
(4-6)
式(4-5)、(4-6)称为单边拉普拉斯变换对。实际系统中
的信号都有原始信号,即t<0时, f(t)=0,所以我们只需要

Matlab讲义连续时间系统的复频域分析

Matlab讲义连续时间系统的复频域分析

-0.9
-0.8
-0.7
-0.6
-0.5 Real Axis
-0.4
-0.3
-0.2
-0.1
0
Impulse Response 0.45 0.4 0.35 0.3 0.25 ) t ( h 0.2 0.15 0.1 0.05 0 -0.05
0
1
2
3
4
5 t(s)
6
7
8
9
10
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 6 7 8 9 10
讲解 Bode(sys)
Bode Diagram 0 -20 ) B d ( e d u t i n g a M -40 -60 -80 -100 -120 0
) g e d ( e s a h P
-90
-180
-270 10
-2
-1
0
1
2
10
10 Frequency (rad/sec)
10
10
三、练习 1. 求下列信号的拉普拉斯变换 (1) 2 ( t ) 3e u (t ) //dirac()函数。 (2) e (t ) e (3) (1 e ) u(t ) (4) u( t )
figure(3); plot(w,abs(H)); xlable('\omega(rad/s)'); ylable('|H(j\omega)|'); title('Magentitude Response')
Pole-Zero Map 1 0.8 0.6 0.4 i s x A y r a n i g a m I 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -1

连续系统复频域分析报告附MATLAB实现信号与系统实验报告

连续系统复频域分析报告附MATLAB实现信号与系统实验报告

计算机与信息工程学院设计性实验报告专业:通信工程年级/班级:2011级第二学年第二学期一、实验目的1.掌握用matlab分析系统时间响应的方法2.掌握用matlab分析系统频率响应的方法3.掌握系统零、极点分布与系统稳定性关系二、实验原理1.系统函数H(s)系统函数:系统零状态响应的拉氏变换与激励的拉氏变换之比.H(s)=R(s)/E(s)在matlab中可采用多种方法描述系统,本文采用传递函数(系统函数)描述法.在matlab中, 传递函数描述法是通过传递函数分子和分母关于s降幂排列的多项式系数来表示的.例如,某系统传递函数如下则可用如下二个向量num和den来表示:num=[1,1];den=[1,1.3,0.8]2.用matlab分析系统时间响应1)脉冲响应y=impulse(num,den,T)T:为等间隔的时间向量,指明要计算响应的时间点.2)阶跃响应y=setp(num,den,T)T同上.3)对任意输入的响应y=lsim(num,den,U,T)U:任意输入信号. T同上.3.用matlab分析系统频率响应特性频响特性: 系统在正弦激励下稳态响应随信号频率变化的特性.|H(jω)|:幅频响应特性.ϕ(ω):相频响应特性(或相移特性).Matlab求系统频响特性函数freqs的调用格式:h=freqs(num,den,ω)ω:为等间隔的角频率向量,指明要计算响应的频率点.4.系统零、极点分布与系统稳定性关系系统函数H(s)集中表现了系统的性能,研究H(s)在S平面中极点分布的位置,可很方面地判断系统稳定性.1) 稳定系统: H(s)全部极点落于S左半平面(不包括虚轴),则可以满足系统是稳定的.2)不稳定系统: H(s)极点落于S右半平面,或在虚轴上具有二阶以上极点,则在足够长时间后,h(t)仍继续增长, 系统是不稳定的.3)临界稳定系统: H(s)极点落于S平面虚轴上,且只有一阶,则在足够长时间后,h(t)趋于一个非零数值或形成一个等幅振荡.系统函数H(s)的零、极点可用matlab的多项式求根函数roots()求得.极点:p=roots(den)零点:z=roots(num)根据p和z用plot()命令即可画出系统零、极点分布图,进而分析判断系统稳定性.三、实验内容设①p1=-2,p2=-30; ②p1=-2,p2=31.针对极点参数①②,画出系统零、极点分布图, 判断该系统稳定性.2.针对极点参数①②,绘出系统的脉冲响应曲线,并观察t→∞时, 脉冲响应变化趋势.3.针对极点参数①, 绘出系统的频响曲线.四、实验要求1.预习实验原理;2.对实验内容编写程序(M文件),上机运行;3.绘出实验内容的各相应曲线或图。

实验5--连续时间系统的复频域分析

实验5--连续时间系统的复频域分析

实验5–连续时间系统的复频域分析实验背景在连续时间系统的频域分析中,复频域分析是非常重要的一个方法。

其可以帮助我们更直观地了解系统的频率响应,包括幅频响应和相频响应,对于系统的设计和优化都有非常实际的应用价值。

因此,在本次实验中,我们将通过对一个特定系统的复频域分析来学习这一方法的基本原理和操作流程。

实验目的1.了解连续时间系统的幅频响应和相频响应2.掌握利用MATLAB对系统进行复频域分析的方法3.学会根据复频域图像对系统进行分析和优化实验原理连续时间系统幅频响应和相频响应在连续时间系统的频域分析中,使用的是拉普拉斯变换。

通过对系统的输入信号和输出信号进行拉普拉斯变换,可以得到它们在复平面上的函数,进而求得系统的传递函数H(s):H(s)=Y(s)/X(s)其中,s为复变量。

系统的幅频响应和相频响应分别定义为:H(s)的模和相位:|H(jw)|=sqrt(H(s)H(s)*) (模) arg(H(jw))=tan^-1[Im{H(jw)}]/Re{H(jw)} (相位) 其中,w为实数,j为虚数单位。

利用MATLAB进行系统复频域分析MATLAB提供了众多用于连续时间系统复频域分析的工具。

其中,最基本的是bode命令。

它可以计算和绘制给定系统的幅频响应和相频响应曲线。

常用命令格式如下:[bode(H,w)]其中,H为系统的传递函数,w为频率范围除此之外,MATLAB还提供了很多其他的命令,如nyquist、margin、freqresp 等。

它们可以帮助我们更全面地分析系统的性能和特点。

实验步骤实验环境1.一台已安装MATLAB的计算机实验流程1.根据给定的系统传递函数H(s),利用MATLAB计算和绘制其幅频响应和相频响应曲线。

%定义系统传递函数H=tf([5+j*10 0.6+0.2*j],[1 2+j 3 4-j 5+j]);%绘制幅频响应和相频响应曲线figure(1)subplot(2,1,1)bode(H);subplot(2,1,2)nyquist(H);2.根据绘制的幅频响应和相频响应曲线,对系统进行分析和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、实验设计
1.方波的合成实验。 用 5 项谐波合成一个频率为 50Hz, 幅值为 3 的方波, 写出 MATLAB 程序, 给出实验的结果。 实验代码: clear all; fs=10000; t=[0:1/fs:0.1]; f0=50;sum=0; subplot(211); for n=1:2:11 plot(t,12/pi*1/n*sin(2*pi*n*f0*t),'k'); hold on; end title('信号叠加前'); subplot(212) for n=1:2:11 sum=sum+12/pi*1/n*sin(2*pi*n*f0*t); end plot(t,sum,'k'); title('信号叠加后');
实验结果:
三、思考题
1.拉普拉斯变换的定义是什么? 答:拉普拉斯变换是对于 t>=0 函数值不为零的连续时间函数 x(t)通过关系式 (式中 st 为自然对数底 e 的指数)变换为复变量 s 的函数 X(s)。它也是 时间函数 x(t)的“复频域”表示方式。 2.系统的零、极点对系统的冲激响应有何影响? 答: 冲激响应波形是指指数衰减还是指数增长或等幅振荡, 主要取决于极点位于 s 左半平面 还是右半平面或在虚轴上;冲激响应波形衰减或增长快慢,主要取决于极点离虚轴的远近; 冲激响应波形振荡的快慢,主要取决于极点离实轴的远近 3.由系统的零、极点能否确定系统的固有响应和强迫响应? 答:系统的零、极点能确定系统的固有响应,而不能确定强迫响应。 4.拉普拉斯变换和傅里叶变换的关系是什么?
实验六:连续系统的复频域分析
一、实验目的
1.了解连续系统的复频域分析的基本方法。 2.掌握相关函数的调用。
二、实验设计
1.系统传递函数为:F s = ������ 3 +5������ 2 +16������+30,编写程序,求 F(s-4]; a=[1,5,16,30]; impulse(b,a)
信号与系统实验报告
课程名称 学 院
连续系统的频域和复频域分析 信息工程
专业班级 信工二班 学 姓 号 名 315002253 李小辉
20 17 年 6 月 17 日
实验五:连续系统的频域分析
一、实验目的
1.掌握连续时间信号的傅里叶变换和傅里叶逆变换的实现方法。 2.掌握傅里叶变换的数值计算方法和绘制信号频谱的方法。
实验结果:
三、思考题
1.傅里叶级数是什么?非周期傅里叶变换的定义是什么? 答:如果完备的正交函数集是三角函数集或指数函数集,那么,周期信号所展开的无穷级数 分别称为“三角形傅里叶级数”或“指数型傅里叶级数” ,统称傅里叶级数。 非周期傅里叶变换:周期性脉冲的重复周期足够长,使得后一个脉冲到来之前,前一个脉冲 的作用实际上已经消失的傅里叶变换。 2.将信号进行分解成谐波函数,n 次谐波时能否得到原波形?如不能会存在多少误差? 答:不能。存在的误差可用最小均方误差表示。 3.常数和阶跃函数是否能够直接利用傅里叶变换定义公式进行变换?为什么不能? 答:不能。不满足狄利赫里条件,并且不满足无限区域内绝对可积的条件。
答:fourier 变换是将连续的时间域信号转变到频率域;它可以说是 laplace 变换的特 例,laplace 变换是 fourier 变换的推广,存在条件比 fourier 变换要宽,是将连续的时间域 信号变换到复频率域(整个复平面,而 fourier 变换此时可看成仅在 jΩ 轴) 。
相关文档
最新文档