斜拉桥施工控制方案

合集下载

斜拉桥、悬索桥施工安全控制要点(三篇)

斜拉桥、悬索桥施工安全控制要点(三篇)

斜拉桥、悬索桥施工安全控制要点1.斜拉桥和悬索桥(吊桥)的索塔施工,属于高处或超高处作业,应根据结构、高度及施工工艺的不同情况,制定相应的专门的安全施工组织设计、安全作业指导书(操作细则)。

一般情况,混凝土、钢筋混凝土及预应力混凝土索塔,参照墩台施工及滑模施工的安全控制要点。

电气设备和线路的绝缘必须良好,各种电动机械必须接地,接地电阻不得大于4。

电气设备和线路检修时,应先切断电源。

施工现场要有防火措施并备有消防器材,要防止电焊火花溅落在易燃物料上;2.索塔分节立模浇筑前,应搭好脚手架,扶梯、人行道及护栏。

每层脚手架的缝隙处,应设置安全网。

两层间距不得超过8m;3.浇筑塔身混凝土,应按规定挂好减速漏斗及保险绳,漏斗上口应堵严,以防石子下落伤人;4.塔底与桥墩为铰接时,施工中,必须将塔底临时固定。

塔身建筑到一定高度后,必须设置风缆。

斜缆索全部安装并张拉完成后,方可撤除风缆并恢复铰接;5.斜拉桥的塔底与墩固结时,脚手架必须在墩上搭设。

当索塔与悬臂段同时交错施工,并分层浇筑索塔时,脚手架不得妨碍索塔的摆动;6.施工期间,应与当地气象站建立联系,密切注意天气变化,大风、雷雨时,应立即停止作为。

高处作业,其风力应根据作业高处的实际风力确定。

如未设风力测定仪,可按当地天气预报数值推测作业高处的风力;7.随着索塔升高(到20m以上,或高度以不足20m的索塔但郊区或平原区施工或附近无高大建筑物提供防雷保护时)防雷电设施必须相应跟上,避雷系统未完善前,不得开工。

8.缆索的制作与安装作业,应该做到:1)缆索施工时,不得撞伤锚头。

锚头发生移位时,不得用铁锤强击复位。

2)缆索的防护层,不得有折损或磨伤,否则应在修补后安装,或作标记,安装后修补;3)悬索桥的主索及斜拉桥的斜缆索,应进行破断试验,其破断力应满足设计要求;4)锚具、套筒,应用超声波或射线探伤仪检查,内部有损伤者,不得使用;5)主索及斜缆索顶张拉时,应选择适当场地,埋设足够强度的地锚。

斜拉桥施工控制

斜拉桥施工控制

斜拉桥施工控制斜拉桥作为现代桥梁中的重要结构,其建造和施工都需要严谨的控制。

斜拉桥施工控制是指在施工过程中严格控制各项参数,以确保斜拉桥结构和功能的稳定性和可靠性。

本文将介绍斜拉桥施工控制的主要内容,包括施工过程的控制、施工技术和材料的控制、质量控制、安全控制等。

施工过程的控制斜拉桥建造并非一蹴而就,它需要经过多个施工过程才能完成。

施工过程的控制起着至关重要的作用。

对施工过程进行控制,可以确保斜拉桥的质量、稳定性和完整性。

具体来说,施工过程的控制需要注意以下几个方面的内容:施工计划的制定施工计划是斜拉桥施工的基础,它需要详细列明施工的工序、步骤、进度和时间等。

施工计划的制定是施工过程的第一步,它可以有效地指导施工的进行,并严格控制施工过程中的质量、安全等因素,从而确保斜拉桥的稳定性和完整性。

施工队伍和资质施工队伍是斜拉桥施工的重要组成部分,施工队伍的技能水平和资质也直接影响到斜拉桥的质量和稳定性。

因此,施工队伍必须是专业的、有一定经验的队伍,并且拥有相关的资质证书。

施工现场的管理施工现场的管理是施工过程中的重要环节。

要确保施工现场的安全,必须对施工区域进行隔离,设置标志和警示牌等。

同时,在施工过程中必须严格控制相关工作人员的行为,防止出现误操作和安全事故。

施工技术和材料的控制斜拉桥施工中,控制施工技术和使用的材料的质量至关重要。

具体来说,施工技术和材料的控制主要涵盖以下内容:施工技术的控制斜拉桥施工技术的控制主要包括以下几个方面。

1.预制件的制造:斜拉桥中的各类预制件的制造需要经过专业的制造厂进行制造。

在制造过程中,需要严格控制材料的质量和规格,以确保预制件的质量和尺寸的准确性。

2.吊装技术的控制:吊装技术是斜拉桥施工过程中的重要环节。

吊装过程中,需要对吊装设备进行检测,并确保吊装的准确性和稳定性。

3.焊接技术的控制:斜拉桥施工中的焊接技术需要严格控制。

焊接质量直接影响着斜拉桥的稳定性和可靠性。

斜拉桥施工监控方案及施工控制措施[优秀工程方案]

斜拉桥施工监控方案及施工控制措施[优秀工程方案]

斜拉桥施工监控方案及施工控制措施一、项目概况1.1、桥梁概况项目区位置,起终点,桥梁形式、跨径、桥面布置.主要结构构件:主梁、主塔、拉索等的材料、形式、规格、约束状况等.1.2、施工控制概况(1)确保施工过程中的结构安全,施工过程中和竣工后结构的内力状况满足设计要求;(2)成桥的线型、索力逼近设计状态;(3)精度控制和误差调整的措施不对施工工期产生实质性的不利影响;(4)主梁合拢前两端标高误差、轴线偏差能够保证顺利合拢.(5)控制及监测精度达到施工控制技术要求的规定.1.3、监控依据《公路桥涵设计通用规范》(JTG D60-2015)《公路斜拉桥设计细则》(JTG/T D65-01-2007)《公路桥梁抗风设计规范》(JTG/T D60-01-2004)《公路桥涵钢结构木结构设计规范》(JTJ025-86)《铁路桥梁钢结构设计规范》(TB 10002.2-2005)《公路桥涵施工技术规范》( JTG/T F50-2011)《公路工程质量检验评定标准》(JTGF801-2012)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)《工程测量规范》(GB50026-2007)《公路桥涵地基与基础设计规范》JTG_D63-20071.4、目的和意义由于各种因素的随机影响,结构的初始理论设计值难以做到与实际测量值完全一致,两者之间会存在偏差.若对偏差不加以及时有效的调整,就会影响成桥的内力和线形.施工控制的目的,就是根据实际的施工供需,以及现场获取的参数和数据,对桥跨结构进行实时误差分析和结构验算;对每一施工阶段,根据分析验算结果给出结构应力及变形等施工控制参数,分析并调整施工误差状态,建立预警体系对施工状态进行安全评价和控制.这样,才能保证结构的受力和变形始终处于安全合理的范围内,成桥后的结构内力和线形符合设计要求.二、监控方案与内容2.1 施工监控的内容2.1.1 施工监控参数的选取(1)索塔轴线、应力;通过施工过程中塔顶偏位的几何测量和关键截面的应力监测确保索塔的线形及应力满足要求.(2)主梁线形、应力;通过调整拼装位置、索力等手段来确保主梁高程、轴线等线形指标满足要求;主梁应力可以作为误差控制的辅助指标和结构施工过程安全监测的预警指标.(3)斜拉索索力;通过建立完善的误差调整与参数识别体系并采用多种方式对索力进行监测来保证斜拉索索力误差满足要求.(4)主梁合拢前大气温度与合拢端标高变化的对应关系.2.1.2 施工监控计算内容(1)施工过程安全复核计算(2)拉索、主梁无应力制造线形/长度的复核计算(3)施工控制误差分析及参数识别(4)施工控制实时计算(5)重要临时结构的计算2.1.3 施工监控现场实测参数(1)实际材料的物理力学性能参数:混凝土、斜拉索、索塔或凝土的弹性模量及容重(2)实际施工中的荷载参数:1)恒载:a. 主梁自重b.二期恒载(桥面铺装、人行道板,栏杆、路缘石、灯柱、过桥管线等)2)施工荷载3)临时荷载2.2 施工监控的实时监测体系2.2.1 实时监测内容及其分级将监测内容的重要性等级和频率等级进行划分.例如:2.2.2 测点布置原则(1)斜拉索索力测点布置a.一般原则:根据理论计算,满足下式的拉索均需设置索力测点.b. 对称布设.c. 全桥通测线形时,索力也全桥通测.(2)主梁线形测点布置1)一般原则:一个梁段上设置三个主梁线形测点,两个高程测点一个轴线测点,高程测点宜设置在悬臂端横隔板与外侧腹板交界处的顶部,轴线测点设置在横向尽量靠中部的位置.2)线形监测主要想放样或拉索索力控制提供参数时可仅对选弊端2-3个梁段进行监测.3)用于误差分析、参数识别时全桥通测,每个梁段均监测.(3)索塔偏位测点的布置索塔在施工过程应在新塔段或其模板上设置测点,索塔水平撑杆顶撑时为了确保顶撑效果也应考虑在顶撑位置设置测点,索塔施工结束后应对索塔进行至少一次每个索塔节段的通测.主梁施工阶段应在索塔塔顶设置偏位测点.(4)索塔应力测点的布置索塔应力测点的布置主要根据计算确定,并且尽量考虑在下塔柱、中塔柱、下横梁均设置测试断面.每个塔肢测试断面应考虑在索塔的四个角点上均设置测点.(5)主梁应力测点的布置主梁测试断面的测点应确保顶底板载腹板与顶板交界处,纵隔板与顶底板的交界处,主梁中部设置测点以确保采集到应力的峰值点.(6)温度场监测的测点布置斜拉桥的施工监测中整个塔、梁、索各自的温度场比较接近,因此可以各自选择一个断面进行温度场的监测.索塔的温度场监测应至少在测试断面四个角点设置测点,主梁则应确保在顶板、腹板、底板均设置一定数量的测点,拉索可以通过试验索来进行温度场的监测.2.2.3 本桥监测点布置及传感器选型2.3 施工监控的技术指标体系2.3.1 各施工监测内容的仪器及精度要求指标(1)索力监测可采用动测法或在锚下安装压力传感器的方法进行.索力监测仪器分辨率应达到0.1kN.常用的穿心式传感器与弦振式索力仪两种.前者主要应用于张拉阶段,后者用于张拉后索力监测.(2)线形监测可采用水准仪、经纬仪、测距仪、垂准仪、全站仪等测量仪器进行监测,仪器测距分辨率应达到1米米,测角分辨率应达到1’’.(3)应力监测可采用弦振式传感器、光纤式传感器和电阻应变式传感器,仪器分辨率应达到应变1με.(4)温度监测宜采用铂式热电阻温度传感器和热电偶点温计,仪器分辨率应达到温度0.1℃.2.3.2 施工控制技术要求和容许误差度指标(1)几何控制技术要求(几何误差均指实测值与理论预测值间的差异)控制工况主梁上下游高程测点平均值误差应小于悬臂长度的±1/3000,当1/3000悬臂长度小于40米米时,按40米米进行控制,相邻梁段间平均相对偏差不得大于梁段长度的1/750;上下游高程相对偏差不大于15米米.主梁轴线偏位不得大于±1/10000悬臂长度,悬臂长度的1/20000小于10米米时,按10米米进行控制;相邻梁段间相对轴线偏差不得大于1/5000梁段长度.索塔偏位误差不得大于±20%,当理论索塔偏位的20%小于30米米时,可按照±30米米来控制.索塔偏位不作为施工控制的主要指标.(2)索力控制技术要求索力控制拉索上下游平均控制误差小于±5%、(3)应力监测及其它技术要求采取措施保证原件损坏率不得大于20%.索塔应力测量可考虑索塔施工期间每个节段测试一次,架梁阶段每个梁段测试一次.索塔当应力水平达到80%材料允许强度时或超过误差范围时应提供预警.应力监测结果应在测试断面浇筑30天后开始提供.主梁应力测量当应力水平达到60%材料允许强度时或超过误差范围时应提供预警.应力监测结果应在每个梁段完成后开始提供.2.4 施工监控的技术体系和组织体系2.4.1 施工监控的组织体系2.4.2 施工监控的技术体系三、施工计算与控制3.1、计算流程3.1.1设计计算的校核施工控制首先将采用设计计算参数对施工过程进行分析,计算出控制目标的理论值.理论值由主梁挠度、主梁理论轴线、主梁截面理论应力、斜拉索理论索力等构成.这一阶段中将与设计计算进行相互校核,以确保控制的目标不与设计要求失真.3.1.2施工控制计算这一阶段的主要工作是在前一个阶段工作的基础上,跟随着施工过程的进行,根据现场的实测参数、误差分析结果等对模型进行修改,并对现场的施工目标进行必要的调整.3.1.3仿真分析计算的方法斜拉桥结构施工过程仿真计算方法主要包括倒拆分析法和正装分析法两种.通测,正装计算比较直观、简便,施工过程中架设方案有较大改变或施工参数有较大变化时,可以方便处理.而倒拆分析法的计算稍微复杂些,但倒拆计算可以得出斜拉桥各施工阶段的斜拉索索力和主梁的架设线形等控制参数,因此在实际中也得到较多的应用.3.2、控制的原则3.2.1 受力要求.反映斜拉桥受力的因素包括主梁、塔(墩)和索的三大部分的截面内力(或应力)状况.通常起控制作用的是主梁的上下缘正应力,在恒载已定的情况下,成桥索力是影响主梁正应力的主要因素,成桥索力小的变化都会对其产生较大影响.而主梁的应力与主梁截面轴力和弯矩有关,因为轴力的影响较小且变化不大,所以弯矩是主梁中起控制作用的因素.塔的情况与梁类似,只是索力对塔的影响没有梁那么敏感,塔中应力通常容易得到满足.索力要满足最大最小索力要求,最大索力要求即钢丝强度要求,最小索力要求即拉索垂度要求.3.2.2 线形要求.线形主要是主梁的标高.成桥后(通常是长期变形稳定后)主梁的标高要满足设计标高的要求.3.2.3 调控手段.对于主梁和塔(墩)内力(或应力)的调整,最直接的手段是调整索力.由于索力较小的变化就会在主梁中引起较大的内力(或应力)变化,而索力本身又有一定的变化宽容度(即最大最小索力确定的索力允许变化范围),因此,索力调整为主要的调控手段.对于主梁线形的调整,调整立模标高是最直接的手段.将参数误差以及索力调整引起的主梁标高的变化通过立模标高的调整予以修正.索力调整和立模标高的调整分两步完成,即先进行索力调整,目标主要是梁、塔截面的弯矩;然后进行立模标高调整,还需加入已建梁段的主梁标高.主梁弯矩控制截面可选为各施工梁段的典型截面(一般为受拉索锚固点局部应力影响较小处),塔的控制截面可只选塔底以及截面变化处等少数控制位置.主梁标高控制点可选为每施工梁段前端点.四、施工控制实施的主要结果4.1、施工过程控制结果4.1.1 施工阶段的主梁标高及张拉索力的控制结果4.1.2 主梁应力控制结果4.1.3 主塔偏位和应力的控制结果4.2 主梁合拢的控制后果4.2.1 索力监控成果4.2.2 线形监控成果4.3 成桥状态的控制实现结果4.3.1 索力监控成果4.3.2 线形监控成果4.3.3 主梁纵向伸缩量4.3.4 主梁应力监控成果附表五、结论及建议斜拉桥的施工中进行相应的施工控制研究是对其施工安全、可靠进行的重要保障,是提高施工质量的重要技术手段.针对XX大桥的设计、施工具体特点研究而建立的施工控制技术体系由现场测试、实时测量、实时计算等子系统构成,经过本桥施工控制实践证明该系统工作性能完善、运行可靠,适应XX桥施工控制的技术要求.监控组对XX的分析计算,提出了解决措施指导施工,经现场验证,减少了XX时的难度,减小了XX的误差.成桥阶段的内力和线形与设计预期基本吻合,本桥的施工监控技术的研究,对解决大跨度斜拉桥的施工和施工控制等关键性问题发挥了巨大的作用,对类似工程有较好的推广价值.。

斜拉桥施工测量控制方法及安全保证

斜拉桥施工测量控制方法及安全保证

斜拉桥施工测量控制方法及安全保证斜拉桥是一种特殊的桥梁类型,具有结构简洁、美观大方、承载能力较大等特点。

在斜拉桥的施工过程中,测量控制方法和安全保证是非常重要的环节,本文将重点介绍斜拉桥施工测量控制方法及安全保证。

1.建立施工基准系:首先需要确定施工基准系,包括平面基准和高程基准。

在施工中,需要按照基准系进行测量和控制,在保证测量精度的同时,确保各个构件的准确位置和高程控制。

2.进行斜拉索测量:斜拉桥的关键构件是斜拉索,所以斜拉索的测量是施工测量的重点之一、斜拉索需要在施工过程中进行连续测量和控制,确保其准确的位置和张力。

测量方法可以使用全站仪、GPS等现代化测量设备进行,同时要注意防止误差积累和控制误差。

3.控制斜塔位置和高程:斜塔是斜拉桥的另一个重要构件,需要准确控制其位置和高程。

在施工过程中,可以使用全站仪和水准仪进行控制,通过反复测量和调整,确保斜塔的位置和重要控制点的高程符合设计要求。

4.控制桥面板位置和弯矩:桥面板是承载行车荷载的构件,需要准确控制其位置和弯矩。

在施工过程中,可以通过悬挂测量和有限元分析等方法进行控制,确保桥面板的位置和弯矩满足设计要求。

1.安全生产控制:在斜拉桥施工中,要严格执行安全生产规程,加强监督和管理,确保施工现场的安全生产环境。

同时,要进行安全培训和技术交流,提高工人的安全意识和施工技术水平。

2.施工过程控制:在施工过程中,要设立专门的施工区域,并划定安全通道和工作区域。

严格执行工艺流程和安全操作规程,确保施工过程的安全控制。

同时,要加强施工现场的安全管理,进行安全巡视和隐患排查,及时解决安全问题。

3.现场监测和预警:在斜拉桥施工中,要安装监测设备,对斜拉索、斜塔和桥面板进行实时监测。

同时,要建立预警机制,一旦发现异常情况,及时采取预警措施,保障施工安全。

4.施工组织设计:在斜拉桥施工前,要进行详细的组织设计,包括施工工艺、施工序列和施工方案等。

通过科学合理的施工组织设计,可以降低施工风险,保证斜拉桥的施工安全。

特大斜拉桥专项施工方案

特大斜拉桥专项施工方案

一、项目背景随着我国经济的快速发展,跨江、跨海等特大桥梁建设需求日益增长。

斜拉桥以其优美的造型、较大的跨度、较小的建筑高度和良好的抗震性能,成为现代桥梁建设的重要形式。

本方案针对特大斜拉桥的专项施工,旨在确保施工质量、安全和进度。

二、工程概况1. 项目名称:XX特大斜拉桥2. 项目地点:XX省XX市3. 桥梁规模:主跨XXX米,桥面宽度XXX米,采用XXX米独塔双索面斜拉桥设计。

4. 设计时速:XX公里/小时5. 施工周期:XX个月三、施工组织1. 施工队伍:由具有丰富斜拉桥施工经验的工程师、技术人员和施工人员组成。

2. 施工设备:配备先进的吊装设备、模板、钢筋加工设备、混凝土搅拌设备等。

四、施工工艺1. 基础施工:- 采用钻孔灌注桩基础,桩径XXX米,桩长XXX米。

- 基础承台采用现浇混凝土结构,尺寸为XXX米×XXX米×XXX米。

2. 主塔施工:- 采用塔吊和爬模施工,主塔高度为XXX米,采用C60高强混凝土。

- 主塔施工过程中,严格控制塔身垂直度、水平度和预应力。

3. 主梁施工:- 采用悬臂浇筑施工,主梁采用预应力混凝土结构,截面形式为XXX。

- 主梁施工过程中,严格控制混凝土浇筑质量和预应力施加。

4. 斜拉索施工:- 采用锚具和锚固系统,斜拉索采用XXX材料,索长XXX米。

- 斜拉索施工过程中,严格控制索力、锚具和锚固系统质量。

5. 桥面系施工:- 桥面系采用XX材料,厚度为XXX毫米。

- 桥面系施工过程中,严格控制混凝土浇筑质量和沥青铺设质量。

五、质量控制1. 材料质量控制:选用优质原材料,确保材料质量符合设计要求。

2. 施工过程控制:严格执行施工规范和操作规程,确保施工质量。

3. 检测与验收:对关键工序进行检测和验收,确保工程质量符合设计要求。

六、安全措施1. 施工安全:建立健全安全管理制度,加强施工现场安全管理。

2. 人员安全:加强施工人员安全教育培训,提高安全意识。

斜拉桥施工方案

斜拉桥施工方案

斜拉桥施工方案一、工程概述本次斜拉桥建设项目位于_____,桥梁全长_____米,主跨_____米,边跨_____米。

桥梁设计荷载为_____,设计车速为_____。

该桥采用双塔双索面斜拉桥结构形式,主塔为_____形状,主梁为_____结构。

二、施工准备(一)技术准备1、熟悉施工图纸和设计文件,进行图纸会审和技术交底。

2、编制施工组织设计和专项施工方案,确定施工工艺和施工流程。

3、进行测量放线,建立施工控制网。

(二)材料准备1、按照设计要求采购钢材、水泥、砂石等原材料,并进行质量检验。

2、准备好斜拉索、锚具等特殊材料,确保其质量和性能符合要求。

(三)设备准备1、配备塔吊、起重机、混凝土搅拌站、钻机等大型施工设备。

2、对施工设备进行调试和维护,确保其正常运行。

(四)现场准备1、平整施工场地,修筑施工便道和临时排水设施。

2、搭建施工临时设施,如办公区、生活区、仓库等。

三、主塔施工(一)基础施工1、根据地质情况,选择合适的基础形式,如桩基础、扩大基础等。

2、进行基础开挖和支护,确保施工安全。

3、浇筑基础混凝土,注意控制混凝土的配合比和浇筑质量。

(二)塔身施工1、塔身采用分段浇筑的方法,每段高度根据施工条件和模板设计确定。

2、安装模板时,要保证模板的垂直度和平整度,防止出现漏浆现象。

3、浇筑塔身混凝土时,要分层振捣,确保混凝土的密实度。

(三)主塔封顶1、主塔封顶前,要对塔顶的标高和轴线进行精确测量。

2、安装塔顶模板,浇筑封顶混凝土,注意做好混凝土的养护工作。

四、主梁施工(一)支架施工1、在桥位处搭设支架,支架的强度和稳定性要满足施工要求。

2、对支架进行预压,消除非弹性变形,测量弹性变形值,为设置预拱度提供依据。

(二)模板安装1、安装主梁底模和侧模,模板之间要拼接严密,防止漏浆。

2、调整模板的标高和轴线,使其符合设计要求。

(三)钢筋绑扎1、按照设计图纸进行钢筋绑扎,确保钢筋的数量、规格和间距符合要求。

2、钢筋的接头要符合规范要求,采用焊接或机械连接的方式。

斜拉桥桥施工关键工序的过程质量控制

斜拉桥桥施工关键工序的过程质量控制

斜拉桥桥施工关键工序的过程质量控制斜拉桥是一种以斜拉索为主要承载结构的桥梁,具有结构简洁、美观大方、施工周期短等优点。

斜拉桥的施工关键工序包括基础施工、上部结构制作、索吊工艺、桥面施工等,下面将详细介绍这些关键工序的过程质量控制。

1.基础施工的过程质量控制:基础是斜拉桥的重要支撑部分,其稳定性和承载能力直接关系到整个桥梁的安全性。

在基础施工中,需要重点控制以下几个方面的质量:(1)基础设计:基础的设计要符合工程要求,并经过设计审查。

设计中要考虑地质条件、荷载特性、地震要求等因素,并对基础尺寸、布置方式、钢筋配筋等进行科学合理的设计。

(2)地基处理:地基处理是保证整个基础结构工程质量的重要环节。

需要对地基进行复合地基处理、加固注浆等,确保地基的稳定性和承载能力。

(3)基础施工工艺:基础施工工艺包括基坑开挖、浇筑混凝土、钢筋焊接等。

需要严格按照施工工艺进行操作,确保基坑开挖的尺寸准确、地下水的排除、钢筋的焊接质量和混凝土的浇筑质量等。

2.上部结构制作的过程质量控制:上部结构是斜拉桥的主要承重组成部分,其质量直接关系到桥梁的安全性和使用寿命。

在上部结构制作中,需要重点控制以下几个方面的质量:(1)钢材质量:斜拉桥的上部结构大部分采用钢材制作,钢材质量的好坏直接影响到整个结构的质量。

需要对钢材进行质量检测,并确保符合相关标准要求。

(2)焊接质量:斜拉桥的上部结构中需要进行大量的焊接工作,焊接质量的好坏直接关系到整个结构的稳定性和安全性。

需要按照焊接规范进行焊接作业,并进行焊缝质量检测。

(3)拉索张拉:拉索是斜拉桥的主要承载部分,其张拉质量的好坏直接影响到桥梁的整体性能。

需要按照设计要求进行张拉操作,并进行拉力监测和反馈调整,确保拉索的张拉质量。

(4)主梁制作:主梁是斜拉桥的主要横向承载构件,需要按照设计要求进行制作和安装,在制作中需要控制好焊接质量、主梁的几何尺寸和形状等。

3.索吊工艺的过程质量控制:索吊是斜拉桥的特有工艺,主要包括索吊的制作、索孔的钻掘、吊装等。

斜拉桥施工方案

斜拉桥施工方案

斜拉桥施工方案斜拉桥是一种现代化的桥梁结构,其独特的设计和建造方式使其在城市交通建设中扮演着重要角色。

本文将介绍关于斜拉桥的施工方案,包括施工前的准备工作、主要施工步骤以及施工过程中需要注意的问题。

一、施工前的准备工作在开始斜拉桥的施工之前,需要进行充分的准备工作,以确保施工进展顺利。

主要准备工作包括:1.地质勘察:对斜拉桥的建设地点进行地质勘察,了解地质条件,为后续施工提供参考。

2.设计方案确认:确认斜拉桥的设计方案,包括桥梁结构、材料选用等,以确保施工的准确性和顺利性。

3.施工组织设计:制定施工组织设计方案,包括施工流程、施工队伍组建等,确保施工过程井然有序。

4.施工材料准备:准备所需的施工材料,包括钢材、混凝土等,以保证施工的顺利进行。

二、主要施工步骤斜拉桥的施工包括多个步骤,每个步骤都需要精确的执行,以下是主要的施工步骤:1.桥墩施工:首先进行桥墩的施工,包括桩基设施、桥墩墙体的浇筑等,确保桥梁的稳固性。

2.斜拉索设施:设置斜拉索的支架,并根据设计要求安装斜拉索,确保斜拉桥的承载能力。

3.主梁施工:安装主梁,将主梁与桥墩、斜拉索等部件连接,构成完整的桥梁结构。

4.桥面铺设:铺设桥面,确保桥面的平整和安全性,以满足日常交通需求。

三、施工注意事项在斜拉桥的施工过程中,需要注意以下事项,以确保施工的质量和安全:1.安全第一:严格遵守施工安全规范,确保施工人员和周边居民的安全。

2.质量控制:严格控制施工质量,检验材料质量,确保斜拉桥的建设质量。

3.进度把控:合理安排施工进度,遵循施工计划,保证施工按时完成。

4.环境保护:注意保护施工环境,减少对周围环境的影响,确保施工过程的环保性。

总之,施工方案的制定和执行对于斜拉桥的建设至关重要,只有严格按照施工方案进行施工,才能保证斜拉桥的质量和安全,为城市交通建设做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录悬索桥施工控制方案 (1)1、引言 (1)1.1大跨径悬索桥施工控制分析 (1)1.1.1 大跨度悬索桥施工控制的特点 (1)1.1.2 大跨度悬索桥施工控制的计算理论、方法和实施步骤 (2)1.1.3 大跨度悬索桥施工控制的内容 (3)2、工程概况与项目特点 (5)2.1工程概况 (5)2.2项目特点 (5)3、施工监控的目的与目标 (6)4、施工监控内容与方案 (9)4.1施工控制参数 (10)4.1.1施工控制参数的选取 (10)4.1.2监控计算内容 (13)4.1.3监控测试内容与方案 (19)4.1.4监控测量的内容与方案 (23)4.2影响参数的确定 (23)4.2.1基准丝股架设线形影响参数 (24)4.2.2成缆线形的影响参数 (24)4.2.3成桥线形的影响参数 (25)4.2.4桥塔状态的影响参数 (25)4.2.5影响参数的确定方法 (26)4.3施工程序概述及异常情况的对策 (28)4.3.1桥塔立柱施工阶段 (28)4.3.2安装施工猫道 (28)4.3.3鞍座预偏就位 (29)4.3.4主缆丝股架设 (29)4.3.5紧缆、索夹安装 (29)4.3.6猫道改挂 (29)4.3.7梁段安装、顶推鞍座 (29)4.3.8桥面铺装、主缆防护等二期恒载 (30)4.3.9成桥恒载状态 (30)5、监控技术方案的保证措施 (30)6、监控工作安全保证措施 (31)参考文献 (33)悬索桥施工控制方案1、引言目前,悬索桥已经步入千米级特大跨径桥梁行列。

迄今为止,世界上最大跨径的悬索桥为日本明石海峡大桥,建成于1998年,主跨1991m。

而世界排名前十位的大跨径悬索桥,我国占了5座,分别为西堠门大桥,主跨1650m,建成于2009年;润扬长江大桥,主跨1490m,建成于2005年;江阴长江大桥,主跨1395m,建成于1999年;香港青马大桥,主跨1377m,建成于1997年;以及正在建设的南京长江四桥,主跨1418m,预计2013年底建成通车。

这充分体现了随着国民经济的快速发展,我国的桥梁建设事业也以前所未有的速度向前发展。

从上世纪九十年代起,我国进入了大规模修建桥梁的时期,我国桥梁工作者的辛勤努力工作,使得我们同发达国家的差距逐步缩小,我们正经历从桥梁大国到桥梁强国的转变。

在悬索桥的施工过程中进行主缆垂度、加劲梁标高、索塔倾斜度、索鞍位移等的施工监测与控制,使结构各施工阶段的实际状态最大限度地接近设计理想状态,确保成桥后的内力状态和几何线型符合设计要求,是悬索桥成功施工的关键技术之一。

1.1大跨径悬索桥施工控制分析近年来,悬索桥在我国得到迅速地发展,已经和正在修建的特大跨径悬索桥十余座。

由于悬索桥在成桥状态主缆线形未知,在施工过程中主缆和吊索一般不能像斜拉桥那样重复张拉,成桥时要使其线形和受力满足设计要求就有一定难度,再加上实际施工中选材特性的离散性、施工质量的随机性,以及施工条件的不断变化,对全桥的受力和变形的控制难度更大了。

为了保证悬索桥在施工过程中的安全,并使成桥时结构线形和受力状态最大限度地逼近设计状态,建立悬索桥体系的施工控制体系就显得十分重要[1,2]。

1.1.1 大跨度悬索桥施工控制的特点与其他桥梁相比,悬索桥在施工过程中的结构几何形状较难控制和管理,容易产生各种施工误差[3,4]。

其原因有以下几点。

1)悬索桥是由刚度相差很大的构件(索、吊杆、梁)组成的高次超静定结构,与其他形式的桥相比,具有显著可挠的特点。

在整个施工过程中,悬索桥结构的几何形状变化较大。

2)悬索桥结构几何形状对温度变化非常敏感,温度变化将引起悬索桥结构几何形状的较大改变。

3)施工各阶段中消除误差比较困难。

在悬索桥的施工过程中,主缆一旦施工完毕,无法调整其长度,而且吊杆的长度也无法像斜拉桥施工中对斜拉索的重复张拉那样进行调整,仅可通过垫片微幅调整。

4)其他一些随机因素的影响。

由于悬索桥施工方法和过程的特殊性,在施工阶段,悬索桥结构容易出现结构的不稳定和结构构件应力的超限。

施工控制时必须密切监控以下3个方面:首先,悬索桥在施工阶段时,加劲梁之间先上缘临时铰接、下缘张开,等到加劲梁全部吊装完毕,再将临时铰接变为刚接。

在吊梁的某些阶段,颤振失稳的临界风速可能大大低于成桥状态的临界风速。

尤其在本桥施工控制中应该对这种临界风速密切关注。

其次,悬索桥的吊梁与鞍座顶推不同时进行,在吊梁时,塔顶鞍座与塔顶在水平方向临时约束,随着吊梁的进行,塔顶与鞍座一起发生位移,塔根承受一定的弯矩,可能使得塔根应力超限。

为了避免该问题,吊梁到一定程度,就要释放塔根的弯矩一次。

具体的作法是用千斤顶调整塔顶鞍座与塔顶之间的相互位置,使塔顶回到原来没有水平位移时的状态。

最后,实际施工中,为了减少在恶劣气候条件下现场焊接的工作量,总是期望能一次安装较长的节段(为了增加加劲梁结构的抗风稳定性,常把几个加劲梁先焊成一刚性相连段,即这几块加劲梁段的施工是一边吊装一边刚接成一个较长的节段)。

但如果一次安装的节段长度太大,则节段最外侧的吊索可能超载、加劲梁的弯曲应力产生超限。

1.1.2 大跨度悬索桥施工控制的计算理论、方法和实施步骤悬索桥的计算理论经历了弹性理论,挠度理论以及目前的有限位移理论。

在弹性理论中,假定荷载使结构构件变形的影响可以忽略不计,主缆的几何形状仅由满跨均布的恒载决定,其线形为二次抛物线。

在挠度理论中,忽略吊杆的倾斜与伸长,缆索节点的水平位移,加劲梁剪切变形等因素的非线性影响,把悬索桥的全部吊杆近似看成一种连续的“膜”,这样悬索桥的受力分析就成为一种仅受分布荷载的索的分析。

在有限位移理论中,根据假定的单元变形与节点位移之间、单元内力与外力之间关系的不同,又可分为线性化有限位移理论、非线性化有限位移理论以及大位移理论[5,6]。

用有限元方法计算悬索桥的原理为:事先假定主缆、吊索等构件的无应力尺寸及鞍座等的预偏量,通过模拟施工过程,分期施加荷载,逐步形成和转换体系,得到成桥状态的有关结构几何形状参数,并与设计成桥状态几何形状控制参数进行比较,在不满足精度要求的条件下,修改假定值,重复上述计算直至满足精度要求为止。

其计算的流程一般为:首先进行施工全过程大循环迭代,确定主缆,吊杆等部件的下料长度和空缆在自重作用下的初始位置;其次进行施工过程正向计算,计算出在施工阶段控制点标高、位移量、内力和应力结构状态。

悬索桥施工控制应包括以下4个主要方面:(1)形成一个精确的理想状态;(2)配备一套完善的实时跟踪分析系统;(3)设立一套精确的量测系统;(4)建立误差分析与反馈控制系统。

其中,第一部分是施工控制的基础,建立理想状态时,任何可能的误差都将导致成桥时结构受力或线形不可恢复的改变。

第二部分是解析实际施工中结构所处状态的关键,与第三部分分配也可以得到并累计误差信息,提供给第四部分分析,由此提出控制或纠偏方案。

第三、四部分除管理目标与斜拉桥(或其它桥型)施工控制不同外,分析理论与实现手段是一致的。

1.1.3 大跨度悬索桥施工控制的内容悬索桥的施工控制分析要考虑的因素很多。

一般说来要考虑结构的实际截面尺寸和材料特性、施工中的结构实际受力体系、施工中的结构实际温度场、施工中结构承受施工荷载的变化以及主缆初始位置、索鞍位置调整、主梁吊装和固结次序的影响等。

总之要密切联系索桥的实际状态。

悬索桥的施工控制与现在国内已趋成熟的斜拉桥施工控制有所不同。

悬索桥在施工过程中一旦主缆安装就位,主缆内力、挠度完全取决于结构体系(索鞍主梁连接情况)结构自重施工荷载和温度的变化,不能象斜拉桥那样进行后期索力和标高调整,因此,主缆无应力下料长度,主缆在自重作用下的初始安装位置(索鞍初始预偏量主缆初始垂度和线型)成为悬索桥施工控制技术的关键。

另外,由于吊杆与主梁主缆的连接方式与斜拉桥的拉索连接方式不同,主梁节段由跨缆起重机起吊到预定位置安装吊杆。

吊杆本身一般不另外配置千斤顶调整其内力,跨缆起重机移开后再要大幅度调整吊杆内力和长度是不现实的.因此不能指望由吊杆来大幅度调整主缆和桥面标高。

可见吊杆无应力下料长度和主梁初始安装位置也是悬索桥施工控制技术的重点。

悬索桥在施工过程当中要随时观测主缆垂度桥面标高和塔顶水平位移,计算并预告下一梁段的安装标高以及索鞍在塔顶上推移的时间和推移量。

以确保施工安全和成桥后交付使用时桥面标高主缆垂度索鞍位置各构件内力状态符合或最接近设计要求。

由上述得到悬索桥施工控制体系分析软件主要包括两大部分。

其一是倒退循环分析,通过多次大循环的倒退和前进分析确定主缆备料长度和空缆在自重作用下的初始位置(包括垂度和曲线坐标);其二是实时跟踪分析,根据实际观测结果分析识别结构实际参数并计算各施工阶段控制点标高、位移量、内力和应力的理论值。

悬索桥施工过程中需要进行主缆垂度、加劲梁标高、索塔倾斜度、索鞍位移等的施工监测与控制,使结构各施工阶段的实际状态最大限度地接近设计理想状态。

其中,施工控制第一阶段为主缆的安装过程。

其主要任务是保证主缆在自重作用下的初始安装位置达到设计理想状态。

而主缆的安装过程时先进行基准索股的安装,再以基准索股作为参照来进行其余索股的安装,因此,基准索股的安装是施工控制的第一阶段里的关键任务。

在基准索股第一次安装后,连续观测其线形变化,对观测数据采用灰色理论[7]、卡尔曼滤波法等理论预测其发展变化,预测出以后时段基准索股的线形,把它与设计理论状态进行比较后,对其线形进行适当调整。

这一过程反复进行多次,直到基准索股的线形达到设计理想状态,然后进行其余索股架设安装;主缆成形后,进行加劲梁的安装。

施工控制第二阶段即为加劲梁安装阶段,该阶段须随时观测主缆线形、桥面标高和塔顶位移,计算并预测下一时段的主缆线形、桥面标高、塔顶水平位移及主索鞍顶推阶段和顶推量,以确保施工安全和成桥时桥面标高、主缆垂度、索鞍位置、各构件内力大小最大限度地接近设计理想状态。

因此,施工前计算的重点应放在提高主缆、吊索、加劲梁段的无应力尺寸或长度及鞍座、索夹等预偏量的计算精度上;施工中控制的重点应放在消除悬索桥主塔、主缆的施工误差对加劲粱架设、合龙、线形控制的影响上。

2、工程概况与项目特点2.1工程概况XXX长江公路大桥位于安徽省东部,起自巢湖市和县姥桥镇省道206,接规划中的XXX至合肥高速公路,跨江后进入XXX市,终点止于XXX市当涂县牛路口(皖苏界),与规划中的XXX至溧水公路(江苏段)相接,路线全长约36.14公里。

其中跨江主体工程长11公里,南岸接线长19.49公里,北岸接线长5.65公里,项目总投资约70.8亿元。

XXX长江公路大桥左汊悬索桥两跨主缆跨度为1080m,矢跨比为1/9,背缆跨度为360m,中、边塔顶处主缆JD高程均为+178.3m,主缆理论散索点高程均为+30.0m,两根主缆横桥向中心间距为35m。

相关文档
最新文档