人教版高中数学同步解析与测评学考练数学A版选修4-5不等式选讲1.1.2
2018年人教A版高中数学选修4-5全册同步检测试题

人教A版高中数学选修4-5全册同步检测题目录第一章不等式和绝对值不等式1.1.1不等式的基本性质试题1.1.2基本不等式试题1.1.3三个正数的算术_几何平均不等式试题1.2.1绝对值三角不等式试题1.2.2绝对值不等式的解法试题第1章不等式和绝对值不等式测评第二章证明不等式的基本方法2.1比较法试题2.2综合法与分析法试题2.3反证法与放缩法试题第2章证明不等式的基本方法测评第三章柯西不等式与排序不等式3.1二维形式的柯西不等式试题3.2一般形式的柯西不等式试题3.3排序不等式试题第3章柯西不等式与排序不等式测评第四章用数学归纳法证明不等式4.1数学归纳法试题4.2用数学归纳法证明不等式举例试题第4章用数学归纳法证明不等式测评选修4-5模块综合测评1.不等式的基本性质课后篇巩固探究A组1.(2017广东深圳一模)已知a>b>0,c<0,下列不等关系正确的是()A.ac>bcB.a c>b cC.log a(a-c)>log b(b-c)D.aa-c >bb-cc<0,∴-c>0.又a>b>0,∴a-c>b-c>0,ac<bc.故aa-c −bb-c=ab-ac-ab+bc(a-c)(b-c)=c(b-a)(a-c)(b-c)>0.即aa-c >bb-c.2.(2017广东潮州二模)若a>b,则下列各式正确的是()A.a²lg x>b²lg xB.ax2>bx2C.a2>b2D.a²2x>b²2xa>b,当lg x≤0时,a²lg x>b²lg x不成立,故A错误.当x=0时,ax2=bx2,故B错误.若a=0,b=-1,则a2<b2,故C错误.∵2x>0,∴a²2x>b²2x,故D正确.3.若角α,β满足-π2<α<β<3π2,则α-β的取值范围是()A.(-2π,2π)B.(-2π,0)C.(-π,0)D.(-π,π)-π<β<3π,所以-3π<-β<π.又α-β=α+(-β),且α<β,所以-2π<α-β<0.4.若a>1,b<1,则下列结论中正确的是()A.1a >1bB.ba>1C.a2>b2D.ab<a+b-1a>1,b<1得a-1>0,b-1<0,所以(a-1)(b-1)<0,展开整理,得ab<a+b-1.5.已知1≤a+b≤5,-1≤a-b≤3,则3a-2b的取值范围是()A.[-6,14]B.[-2,14]C.[-6,10]D.[-2,10]3a-2b=m(a+b)+n(a-b),则m+n=3,m-n=-2,所以m=1,n=5.因为1≤a+b≤5,-1≤a-b≤3,所以12≤12(a+b)≤52,-52≤52(a-b)≤152,故-2≤3a-2b≤10.6.已知0<a<1,则a,1a,a2的大小关系是.(从小到大)a-1=(a+1)(a-1)<0,∴a<1.又a-a2=a(1-a)>0,∴a>a2.∴a2<a<1.2<a<17.已知-3<b<a<-1,-2<c<-1,则(a-b)c2的取值范围是.0<a-b<2,1<c2<4,则0<(a-b)c2<8.8.设a>b>c>0,若x=a2+(b+c)2,y=b2+(c+a)2,z=c2+(a+b)2,则x,y,z之间的大小关系是.(从小到大)x2-y2=a2+(b+c)2-b2-(c+a)2=2c(b-a)<0,所以x<y.同理可得y<z,故x,y,z之间的大小关系是x<y<z.9.若3<a<7,1<b<10,试求a+b,3a-2b,b2的取值范围.3<a<7,1<b<10,所以4<a+b<17,即a+b∈(4,17).因为9<3a<21,-20<-2b<-2,所以-11<3a-2b<19,即3a-2b∈(-11,19).因为9<a2<49,所以1<12<1.又1<b<10,所以1<b2<10,即b2∈1,10.10.导学号26394000在等比数列{a n}中,若a1>0,q>0,前n项和为S n,试比较S3 a3与S5a5的大小.q=1时,S33=3,S55=5,所以S33<S55.当q>0,且q ≠1时,S 3a 3−S 5a 5=a 1(1-q 3)a 1q 2(1-q )−a 1(1-q 5)a 1q 4(1-q )=q2(1-q 3)-(1-q 5)q 4(1-q )=q 2-1q 4(1-q )=-q -1q 4<0,所以有S33<S55.综上可知有S33<S55.B 组1.(2017河北衡水模拟)已知0<a<b<1,c>1,则( ) A.log a c<log b c B. 1 c< 1 cC.ab c <ba cD.a log c 1<b log c 1a=14,b=12,c=2,得选项A,B,C 错误.由0<a<b<1,c>1,则1a >1b >1,logc x 在定义域上单调递增.故a log c 1b <b logc 1a .2.已知a ,b ∈R ,则下列条件中能使a>b 成立的必要不充分条件是( ) A.a>b-1 B.a>b+1 C.|a|>|b| D.3a >3b 解析因为a>b ⇒a>b-1,但a>b-1a>b ,所以“a>b-1”是“a>b ”的必要不充分条件;“a>b+1”是“a>b ”的充分不必要条件;“|a|>|b|”是“a>b ”的既不充分也不必要条件;“3a >3b ”是“a>b ”的充要条件.3.导学号26394001已知实数a ,b ,c 满足b+c=3a 2-4a+6,c-b=a 2-4a+4,则a ,b ,c 的大小关系是( ) A.c ≥b>a B.a>c ≥b C.c>b>a D.a>c>bc-b=a 2-4a+4=(a-2)2≥0易知c ≥b ,又由已知可解得b=a 2+1>a ,所以c ≥b>a.4.若a ,b ∈R ,且a 2b 2+a 2+5>2ab+4a ,则a ,b 应满足的条件是 .(ab-1)2+(a-2)2>0,则a ≠2或b ≠1.≠2或b ≠15.设x>5,P= x -4− x -5,Q= x -2− x -3,试比较P 与Q 的大小关系.P= x -4− x -5=x -4+ x -5,Q= x -2− x -3=x -2+ x -3,又 x -4+ x -5< x -2+ x -3,所以Q<P. 6.导学号26394002已知θ∈ 0,π6 ,且a=2sin 2θ+sin 2θ,b=sin θ+cos θ,试比较a 与b 的大小.θ∈ 0,π6 ,所以a=2sin 2θ+sin 2θ>0,b=sin θ+cos θ>0.因为a=2sin 2θ+sin2θ=2sin θ(sin θ+cos θ)=2sin θ,又θ∈ 0,π6 ,所以sin θ∈ 0,12 ,2sin θ∈(0,1), 即0<ab <1,故a<b.2.基本不等式 课后篇巩固探究A 组1.下列结论正确的是( ) A.若3a +3b ≥2 a b ,则a>0,b>0 B.若b+a≥2,则a>0,b>0C.若a>0,b>0,且a+b=4,则1a +1b ≤1 D.若ab>0,则 ab ≥2aba +ba ,b ∈R 时,则3a >0,3b >0,所以3a +3b ≥2 a b (当且仅当a=b 时,等号成立),故选项A 错误.要使b+a≥2成立,只要b>0,a>0即可,这时只要a ,b 同号,故选项B 错误.当a>0,b>0,且a+b=4时,则1a +1b=4ab.因为ab ≤ a +b 2 2=4,所以1a +1b=4ab ≥1(当且仅当a=b=2时,等号成立),故选项C 错误.当a>0,b>0时,a+b ≥2 ab ,所以2aba +b ≤2 ab = ab .而当a<0,b<0时,显然有 ab ≥2ab a +b ,所以当ab>0时,一定有 ab ≥2aba +b(当且仅当a=b ,且a ,b>0时,等号成立),故选项D 正确.2.若a<1,则a+1a -1的最大值是( )A.3B.aC.-1D.2 aa -1a<1,所以a-1<0,所以a+1a -1=a-1+1a -1+1≤-2 (1-a ) 1-a +1=-1,当且仅当1-a=11-a ,即a=0时,取最大值-1,故选C .3.(2017全国模拟)已知x>0,y>0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( ) A.2B.2C.4D.2 3lg 2x +lg 8y =lg 2,∴lg(2x ²8y )=lg 2,∴2x+3y =2,∴x+3y=1. ∵x>0,y>0,∴1x +13y =(x+3y ) 1x +13y=2+3y +x ≥2+2 3y ·x=4, 当且仅当x=3y=12时,等号成立.故选C .4.函数f (x )=x+4-1的值域是( ) A.(-∞,-3]∪[5,+∞) B.[3,+∞)C.(-∞,-5]∪[3,+∞)D.(-∞,-4]∪[4,+∞)x>0时,x+4x -1≥2 x ·4x-1=3(当且仅当x=2时,等号成立);当x<0时,x+4x -1=- (-x )+ -4-1≤-2 (-x )· -4-1=-5(当且仅当x=-2时,等号成立),故函数f (x )的值域为(-∞,-5]∪[3,+∞).5.若正数x ,y 满足x+4y=4,则xy 的最大值为 .x+4y ≥2 =4 xy (当且仅当x=4y 时,等号成立),又x+4y=4,所以4 xy ≤4,即xy ≤1,故xy 的最大值为1.6.(2017山东高考)若直线xa +yb =1(a>0,b>0)过点(1,2),则2a+b 的最小值为 .直线xa +yb =1过点(1,2),∴1a +2b =1.∵a>0,b>0,∴2a+b=(2a+b ) 1a +2b =4+ b a +4a b ≥4+2 b a ·4ab=8. 当且仅当b=2a 时“=”成立.7.(2017江苏高考)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 .4x+600³6=4 x +900≥4³2 900=240,当且仅当x=900,即x=30时等号成立.8.已知x>1,y>1,且xy=1 000,求lg x²lg y的最大值.x>1,y>1,所以lg x>0,lg y>0,所以lg x²lg y≤lg x+lg y22=lg xy22=lg100022=322=94,当且仅当lg x=lg y,即x=y时,等号成立, 故lg x²lg y的最大值等于9.9.已知x>0,y>0,x+y=1,求证1+1x 1+1y≥9.=1+11+1 =1+x+y1+x+y=2+yx 2+xy=5+2yx+xy≥5+4=9,当且仅当yx =xy,即x=y=12时,等号成立,所以1+1x1+1y≥9.10.某单位建造一间地面面积为12平方米的背面靠墙的长方体房屋,由于地理位置的限制,房屋侧面的长度x不得超过5米.房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5 800元.如果墙高为3米,且不计房屋背面的费用,当侧面的长度为多少时,总造价最低?x米(0<x≤5).由题意可得,总造价y=32x×150+12×400+5 800=900 x+16+5 800(0<x≤5).由基本不等式可知y=900 x+16+5 800≥900³2x×16x+5 800=13 000(元),当且仅当x=16x,即x=4时,等号成立.由上可知,当侧面的长度为4米时,总造价最低.B组1.若a≥0,b≥0,且a+b=2,则下列不等式正确的是()A.ab≤1B.ab≥1C.a2+b2≥4D.a2+b2≤4ab≤a+b2=1(当且仅当a=b时,等号成立),而a2+b2=(a+b)2-2ab=4-2ab ≥2,故选项A正确.2.爬山是一种简单有趣的户外运动,有益于身心健康,但要注意安全,准备好必需物品,控制好速度.现有甲、乙两人相约爬山,若甲上山的速度为v 1,下山的速度为v 2(v 1≠v 2),乙上山和下山的速度都是v 1+v 22(甲、乙两人中途不停歇),则甲、乙两人上山下山所用的时间t 1,t 2的关系为( )A.t 1>t 2B.t 1<t 2C.t 1=t 2D.不能确定h ,则依题意有t 1=ℎ1+ℎ2=h ²v 1+v212>h ²2 v 1v 212=h ²v v , t 2=2ℎv 1+v 22=h ²412<h ²2v v =h ²v v ,故t 1>t 2.3.(2017天津高考)若a ,b ∈R ,ab>0,则a 4+4b 4+1ab 的最小值为.a ,b ∈R ,且ab>0,∴a 4+4b 4+1≥4a 2b 2+1=4ab+1≥4 当且仅当 a 2=2b 2,4ab =1ab ,即 a 2= 2,b 2=2时取等号 .4.导学号26394006已知关于x 的二次不等式ax 2+2x+b>0的解集为x x ≠-1a,且a>b ,则a 2+b2a -b的最小值为 .x 的方程ax 2+2x+b=0有两个相等的实数根,于是Δ=4-4ab=0,则ab=1,所以a 2+b2a -b =(a -b )2+2ab a -b =(a-b )+2a -b ≥2 (a -b )·2a -b=2 2 当且仅当a -b =2a -b时,等号成立 ,故a 2+b 2a -b的最小值为2 .25.已知a>2,求证log (a-1)a>log a (a+1).log (a-1)a-log a (a+1)=lg a lg (a -1)−lg (a +1)lg a =lg 2a -lg (a -1)lg (a +1)lg a lg (a -1),而lg(a-1)lg(a+1)< lg (a -1)+lg (a +1)2= lg (a 2-1)22<lg a 222=lg 2a ,即lg 2a-lg(a-1)lg(a+1)>0. 又a>2,∴lg a lg(a-1)>0,∴lg2a-lg(a-1)lg(a+1)lg a lg(a-1)>0,即log(a-1)a-loga(a+1)>0,∴log(a-1)a>loga(a+1).6.导学号26394007某水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元进行技术革新,并计划以后每年比上一年多投入100万元进行技术革新.预计产量每年递增1万件,每件水晶产品的固定成本g(n)(单位:元)与进行技术革新的投入次数n的关系是g(n)=n+1.若水晶产品的销售价格不变,第n次投入后的年利润为f(n)万元.(1)求出f(n)的表达式;(2)求从今年算起第几年利润最高?最高利润为多少万元?第n次投入后,产量为(10+n)万件,销售价格为100元,固定成本为n+1元,进行技术革新投入为100n万元.所以,年利润为f(n)=(10+n)100n+1-100n(n∈N+).(2)由(1)知f(n)=(10+n)100n+1-100n=1 000-80n+1n+1≤520.当且仅当=n+1,即n=8时,利润最高,最高利润为520万元.所以,从今年算起第8年利润最高,最高利润为520万元.3.三个正数的算术-几何平均不等式课后篇巩固探究A 组1.若a>0,则2a+12的最小值为( )A.2 2B.3 23C.1D.3a+12=a+a+12≥3 a ·a ·123=3,当且仅当a=12,即a=1时,2a+12取最小值3.2.设x ,y ,z ∈R +,且x+y+z=6,则lg x+lg y+lg z 的取值范围是( )A.(-∞,lg 6]B.(-∞,3lg 2]C.[lg 6,+∞)D.[3lg 2,+∞)x ,y ,z ∈R +,所以6=x+y+z ≥3 xyz 3,即xyz ≤8,所以lg x+lg y+lg z=lg xyz ≤lg 8=3lg 2(当且仅当x=y=z=2时,等号成立).3.已知x+2y+3z=6,则2x +4y +8z 的最小值为( ) A.3 63B.2 2C.12D.12 532x >0,4y >0,8z >0,所以2x +4y +8z =2x +22y +23z ≥3 x 2y 3z 3=3 x +2y +3z 3=3³4=12.当且仅当2x =22y =23z ,即x=2y=3z ,即x=2,y=1,z=2时,等号成立.4.若a ,b ,c 为正数,且a+b+c=1,则1a +1b +1c 的最小值为( ) A.9B.8C.3D.13a>0,b>0,c>0,且a+b+c=1,∴1+1+1=a +b +c +a +b +c +a +b +c=3+b +c +a +c +a +b ≥3+6 b a ·c a ·a b ·c b ·a c ·bc6=3+6=9 当且仅当b a =c a =a b =c b =a c =b c, 即a =b =c =1时,等号成立 .5.用一张钢板制作一个容积为4 m 3的无盖长方体水箱,可用的长方形钢板有四种不同规格(长³宽的尺寸如各选项所示,单位:m).若既要够用,又要所剩最少,则应选择钢板的规格是( ) A.2³5 B.2³5.5 C.2³6.1 D.3³5长方体水箱长、宽、高分别为x m,y m,z m,则xyz=4.水箱的表面积S=xy+2xz+2yz=xy+2x ²4+2y ²4=xy+8+8≥3 xy ··3=12当 且仅当xy =8y=8x,即x =y =2,z =1时,等号成立 .故要制作容积为4 m 3的无盖水箱,所需的钢板面积最小为12 m 2,所以选项A,B 排除,而选项C,D 均够用,但选项D 剩较多,故选项C 正确.6.若a ,b ,c 同号,则b a +c b +ac ≥k ,则k 的取值范围是 .a ,b ,c 同号,所以b a ,c b ,a c >0,于是b a +c b +ac ≥3 b a ·c b ·ac 3=3(当且仅当a=b=c 时,等号成立),因此k 的取值范围是k ≤3.≤37.若x<0,则2-x 2的最大值为 .2=- x 2-2x =- x 2+ -2x ,因为x 2+ -2x =x 2+ -1x + -1x≥3 x 2· -1 · -13=3 当且仅当x 2=-1,即x =-1时,等号成立 ,所以2-x 2≤-3,即2-x 2的最大值为-3.38.若a>b>0,则a+1(a -b )b 的最小值为 .a>b>0,所以a-b>0,于是a+1(a -b )b =(a-b )+b+1(a -b )b ≥3 (a -b )·b ·1(a -b )b3=3,当且仅当a-b=b=1(a -b )b ,即a=2,b=1时,a+1(a -b )b的最小值为3.9.已知实数a ,b ,c ∈R ,a+b+c=1,求4a +4b +4c 2的最小值,并求出取最小值时a ,b ,c 的值.-几何平均不等式,得4a +4b +4c 2≥3 4a ·4b ·4c 23=3 4a+b+c 23(当且仅当a=b=c 2时,等号成立).∵a+b+c=1, ∴a+b=1-c.则a+b+c 2=c 2-c+1= c -12 2+34,当c=12时,a+b+c 2取得最小值34. 从而当a=b=14,c=12时,4a +4b +4c 2取最小值,最小值为3 2. 10.导学号26394008已知x ,y 均为正数,且x>y ,求证2x+1x 2-2xy +y 2≥2y+3.x>0,y>0,x-y>0,所以2x+1x 2-2xy +y 2-2y=2(x-y )+1(x -y )2=(x-y )+(x-y )+1(x -y )2≥3 (x -y )·(x -y )·1(x -y )23=3,所以2x+1x 2-2xy+y 2 ≥2y+3当且仅当x -y =1(x -y )2时,等号成立.B 组1.若log x y=-2,则x+y 的最小值为( )A.3 232B.2 333C.3 32D.2 23log x y=-2得y=1x 2,因此x+y=x+1x 2=x 2+x 2+1x 2≥3 x 2·x 2·1x 23=3 232 当且仅当x2=1x 2,即x = 23时,等号成立 .2.设x>0,则f (x )=4-x-12x 2的最大值为( ) A.4- 2B.4- 2C.不存在D.5x>0,∴f (x )=4-x-12=4- x +x +12≤4-3 x 2·x 2·12x 23=4-32=52 当且仅当x2=12x 2时,等号成立 .3.已知圆柱的轴截面周长为6,体积为V ,则下列不等式正确的是( ) A.V ≥πB.V ≤πC.V ≥πD.V ≤π,设圆柱的半径为R ,高为h ,则4R+2h=6,即2R+h=3.V=S ²h=πR 2²h=π²R ²R ²h ≤π R +R +ℎ 3=π,当且仅当R=R=h=1时,等号成立.4.设三角形的三边长为3,4,5,P 是三角形内的一点,则P 到这个三角形三边距离乘积的最大值是 .P 到长度为3,4,5的三角形三边的距离分别是x ,y ,z ,三角形的面积为S ,则S=12(3x+4y+5z ). 因为32+42=52,所以这个三角形为直角三角形,其面积S=12³3³4=6,所以3x+4y+5z=2³6=12,所以12=3x+4y+5z ≥3 3x ·4y ·5z 3=3 60xyz 3,所以xyz ≤16,当且仅当3x=4y=5z ,即x=4,y=1,z=4时,等号成立.5.导学号26394009设x ,y ,z>0,且x+3y+4z=6,求x 2y 3z 的最大值.6=x+3y+4z=x2+x2+y+y+y+4z ≥6 2·2·y ·y ·y ·4z 6=6 x 2y 3z 6,所以x 2y 3z ≤1. 当且仅当x 2=y=4z ,即x=2,y=1,z=14时,等号成立,所以x 2y 3z 的最大值为1. 6.导学号26394010设a 1,a 2,…,a n 为正实数,求证a 1n +a 2n +…+a n n+1a 1a 2…a n≥2 n .a 1,a 2,…,a n 为正实数,∴a 1n +a 2n +…+a n n ≥n a 1n a 2n …a n n n=na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 又na 1a 2…a n +1a 1a 2…a n≥2 n ,当且仅当na 1a 2…a n =1a 1a 2…a n时,等号成立,∴a1n+a2n+…+a n n+1≥2n.a1a2…a n1.绝对值三角不等式课后篇巩固探究A组1.设ab>0,下面四个不等式:①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|.其中正确的是()A.①②B.①③C.①④D.②④ab>0,∴a,b同号.∴|a+b|=|a|+|b|>|a|-|b|.∴①④正确.2.函数f(x)=|3-x|+|x-7|的最小值等于()A.10B.3C.7D.4|3-x|+|x-7|≥|(3-x)+(x-7)|=4,所以函数f(x)的最小值为4.3.已知|a|≠|b|,m=|a|-|b||a-b|,n=|a|+|b||a+b|,则m,n之间的大小关系是()A.m>nB.m<nC.m=nD.m≤n,知|a|-|b|≤|a±b|≤|a|+|b|.∴|a|-|b||a-b|≤1≤|a|+|b||a+b|.∴m≤n.4.若|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是()A.|a+b|+|a-b|>2B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2D.不确定(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2;当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2,综上有|a+b|+|a-b|<2.5.若关于x的不等式|x|+|x-1|<a(a∈R)的解集为⌀,则a的取值范围是()A.[-1,1]B.(-1,1)C.(-∞,1]D.(-∞,1)|x|+|x-1|≥|x-(x-1)|=1,∴若关于x的不等式|x|+|x-1|<a的解集为⌀,则a的取值范围是a≤1.6.若a,b∈R,且|a|≤3,|b|≤2,则|a+b|的最大值是,最小值是.|a|-|b|≤|a+b|≤|a|+|b|,所以1=3-2≤|a+b|≤3+2=5.17.若不等式|x-4|-|x-3|≤a对一切x∈R恒成立,则实数a的取值范围是.f(x)=|x-4|-|x-3|,则f(x)≤a对一切x∈R恒成立的充要条件是a大于等于f(x)的最大值.∵|x-4|-|x-3|≤|(x-4)-(x-3)|=1,即f(x)max=1,∴a≥1.+∞)8.不等式|a+b||a|-|b|≥1成立的充要条件是.1⇔|a+b|-(|a|-|b|)|a|-|b|≥0⇔(|a|-|b|)[|a+b|-(|a|-|b|)]≥0(且|a|-|b|≠0).而|a+b|≥|a|-|b|,∴|a+b|-(|a|-|b|)≥0.∴|a|-|b|>0,即|a|>|b|.9.设m等于|a|,|b|和1中最大的一个,当|x|>m时,求证a+b2<2.m等于|a|,|b|和1中最大的一个,|x|>m,∴|x|>m≥|a|,|x|>m≥|b|,|x|>m≥1,∴|x|>|a|,|x|2>|b|.∴ax +bx2≤ax+bx2=|a| |x|+|b||x|2<|x||x|+|x|2|x|2=2.故原不等式成立.10.导学号26394011已知函数f(x)=log2(|x-1|+|x-5|-a).(1)当a=2时,求函数f(x)的最小值;(2)当函数f(x)的定义域为R时,求实数a的取值范围.函数的定义域满足|x-1|+|x-5|-a>0,即|x-1|+|x-5|>a.设g(x)=|x-1|+|x-5|,由|x-1|+|x-5|≥|x-1+5-x|=4,当a=2时,∵g(x)min=4,∴f(x)min =log2(4-2)=1.(2)由(1)知,g(x)=|x-1|+|x-5|的最小值为4.∵|x-1|+|x-5|-a>0,∴a<g(x)min时,f(x)的定义域为R.∴a<4,即a的取值范围是(-∞,4).B组1.对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1|的最小值为()A.1B.2C.3D.4|x-1|+|x|+|y-1|+|y+1|=(|1-x|+|x|)+(|1-y|+|1+y|)≥|(1-x)+x|+|(1-y)+(1+y)|=1+2=3,当且仅当(1-x)²x≥0,(1-y)²(1+y)≥0,即0≤x≤1,-1≤y≤1时等号成立,∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.2.函数f(x)=|2x+1|-|x-4|的最小值等于.y=|2x+1|-|x-4|,则y=-x-5,x≤-12,3x-3,-1<x<4, x+5,x≥4.作出函数y=|2x+1|-|x-4|的图象(如图),由函数的图象可知,当x=-12时,函数取得最小值-9.-923.已知a和b是任意非零实数,则|2a+b|+|2a-b||a|的最小值为.≥|2a+b+2a-b||a|=4.4.下列四个不等式:①logx10+lg x≥2(x>1);②|a-b|<|a|+|b|;③b+a≥2(ab≠0);④|x-1|+|x-2|≥1,其中恒成立的是.(把你认为正确的序号都填上)x>1,∴lg x>0,∴logx10+lg x=1+lg x≥2,①正确;当ab≤0时,|a-b|=|a|+|b|,②不正确;∵ab≠0,b与a同号,∴ba +ab=ba+ab≥2,③正确;由|x-1|+|x-2|的几何意义知|x-1|+|x-2|≥1恒成立,④也正确;综上,①③④正确.5.导学号26394012已知函数f(x)=x2-x+13,|x-a|<1,求证|f(x)-f(a)|<2(|a|+1).|f(x)-f(a)|=|x2-x+13-(a2-a+13)|=|x2-a2-x+a|=|(x-a)(x+a-1)|=|x-a||x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a|+1=2(|a|+1),∴|f(x)-f(a)|<2(|a|+1).6.导学号26394013已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时,|f(x)|≤1,求证:(1)|c|≤1;(2)当-1≤x≤1时,|g(x)|≤2.∵当-1≤x≤1时,|f(x)|≤1,∴|f(0)|≤1,即|c|≤1.(2)当a>0时,g(x)=ax+b在[-1,1]上是增函数,∴g(-1)≤g(x)≤g(1).∵当-1≤x≤1时,|f(x)|≤1,且|c|≤1,∴g(1)=a+b=f(1)-c≤|f(1)|+|c|≤2,g(-1)=-a+b=-f(-1)+c≥-(|f(-1)|+|c|)≥-2,∴|g(x)|≤2.当a<0时,g(x)=ax+b在[-1,1]上是减函数, ∴g(-1)≥g(x)≥g(1).∵当-1≤x≤1时,|f(x)|≤1,且|c|≤1,∴g(-1)=-a+b=-f(-1)+c≤|f(-1)|+|c|≤2. g(1)=a+b=f(1)-c≥-(|f(1)|+|c|)≥-2.∴|g(x)|≤2.当a=0时,g(x)=b,f(x)=bx+c,且-1≤x≤1, ∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2.综上可知,|g(x)|≤2.2.绝对值不等式的解法课后篇巩固探究A组1.已知集合A={x|x2-5x+6≤0},B={x||2x-1|>3},则A∩B等于()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|2<x≤3}D.{x|-1<x<3}{x|2≤x≤3},B={x|x>2或x<-1},则A∩B={x|2<x≤3}.2.若a>2,则关于x的不等式|x-1|+a>2的解集为()A.{x|x>3-a}B.{x|x>a-1}C.⌀D.R|x-1|+a>2可化为|x-1|>2-a,因为a>2,所以2-a<0,故原不等式的解集为R.3.不等式|3x-4|>x2的解集为()A.(-4,1)B.(-1,4)C.⌀D.(-∞,-4)∪(1,+∞)|3x-4|>x2可得3x-4>x2或3x-4<-x2,解3x-4>x2得无解;解3x-4<-x2得-4<x<1,故原不等式的解集为(-4,1).<0的解集是()4.不等式|x-1|-4|x-2|A.{x|-3<x<5}B.{x|-3<x<5,且x≠2}C.{x|-3≤x≤5}D.{x|-3≤x≤5,且x≠2}分母|x-2|>0,且x≠2,所以原不等式等价于|x-1|-4<0,即|x-1|<4,所以-4<x-1<4,即-3<x<5.又x≠2,故原不等式的解集为{x|-3<x<5,且x≠2}.5.不等式|2x-log 2x|<|2x|+|log 2x|的解集为( ) A.(0,1) B.(1,2) C.(1,+∞) D.(2,+∞)|a-b|≤|a|+|b|中,“=”成立的条件是ab ≤0,“<”成立的条件是ab>0,所以2x ²log 2x>0.又x>0,所以log 2x>0,解得x>1.6.不等式|2x-1|<3的解集为 .2x-1|<3⇔-3<2x-1<3⇔-1<x<2.-1,2)7.不等式|x+3|>|2-x|的解集是 .|x+3|>|2-x|得(x+3)2>(2-x )2,整理得10x>-5,即x>-12,故原不等式的解集为 x x >-1.x >-18.若关于x 的不等式|ax+2|<6的解集为(-1,2),则实数a= .0明显不符合题意.由|ax+2|<6得-8<ax<4. 当a>0时,有-8<x<4,因为不等式的解集为(-1,2),所以 -8=-1,4a =2,解得 a =8,a =2,两值相矛盾舍去.当a<0时,有4a <x<-8a ,则 4a=-1,-8a=2,解得a=-4.综上,a=-4.49.已知函数f (x )= |x +1|+|x -a |-2(a ∈R ). (1)若a=3,解不等式:f (x )≥2;(2)若f (x )的定义域为R ,求实数a 的取值范围.当a=3时,不等式f (x )≥2即为 |x +1|+|x -3|-2≥2,所以|x+1|+|x-3|-2≥4,所以|x+1|+|x-3|≥6.于是 x +1+x -3≥6,x ≥3,或-(x +1)-(x -3)≥6,x ≤-1,或(x +1)-(x -3)≥6,-1<x <3,从而x ≥4,或x ≤-2.故原不等式解集为{x|x ≥4或x ≤-2}.(2)f (x )的定义域为R ,即不等式|x+1|+|x-a|-2≥0恒成立, 所以|x+1|+|x-a|≥2恒成立.而g (x )=|x+1|+|x-a|的最小值为|a+1|, 于是|a+1|≥2,解得a ≥1,或a ≤-3.故实数a 的取值范围是(-∞,-3]∪[1,+∞). 10.已知函数f (x )=|x+a|+|2x-1|(a ∈R ). (1)当a=1时,求不等式f (x )≥2的解集;(2)若f (x )≤2x 的解集包含 12,1 ,求a 的取值范围.当a=1时,不等式f (x )≥2可化为|x+1|+|2x-1|≥2.①当x ≥12时,不等式为3x ≥2,解得x ≥23,故x ≥23; ②当-1≤x<12时,不等式为2-x ≥2,解得x ≤0,故-1≤x ≤0; ③当x<-1时,不等式为-3x ≥2,解得x ≤-2,故x<-1. 综上,原不等式的解集为 x x ≤0或x ≥2. (2)因为f (x )≤2x ,所以|x+a|+|2x-1|≤2x ,所以不等式可化为|x+a|≤1,解得-a-1≤x ≤-a+1.由已知得 -a -1≤12,-a +1≥1,解得-3≤a ≤0.故a 的取值范围是 -32,0 .B 组1.不等式 xx -1 >xx -1的解集为( ) A.[0,1) B.(0,1)C.(-∞,0)∪(1,+∞)D.(-∞,0]∪(1,+∞)xx -1 >xx -1,所以xx -1<0,解得0<x<1.2.导学号26394014关于x 的不等式|x+3|-|x-1|≤a 2-3|a|对任意实数x 恒成立,则实数a的取值范围为()A.(-∞,-4]∪[4,+∞)B.(-∞,-1]∪[4,+∞)C.[-1,4]D.(-∞,1]∪[2,+∞)|x+3|-|x-1|≤4,又|x+3|-|x-1|≤a2-3|a|对任意实数x恒成立, 所以a2-3|a|≥4,即a2-3|a|-4≥0,解得|a|≥4或|a|≤-1(舍去).故选A.3.在实数范围内,不等式||x-2|-1|≤1的解集为.-1≤|x-2|-1≤1,即0≤|x-2|≤2,解得0≤x≤4.4.若不等式|3x-b|<4的解集中的整数有且仅有1,2,3,则b的取值范围为.|3x-b|<4得-4<3x-b<4,即-4+b<x<4+b.因为不等式|3x-b|<4的解集中的整数有且仅有1,2,3,则0≤-4+b3<1,3<4+b3≤4⇒4≤b<7,5<b≤8,故5<b<7.5.导学号26394015解不等式|2x+1|+|x-2|+|x-1|>4.x≤-1时,原不等式化为-2x-1+2-x+1-x>4,解得x<-1.当-12<x≤1时,原不等式化为2x+1+2-x+1-x>4,4>4,矛盾.当1<x≤2时,原不等式化为2x+1+2-x+x-1>4,解得x>1.由1<x≤2,则1<x≤2.当x>2时,原不等式化为2x+1+x-2+x-1>4,解得x>32.由x>2,则x>2.综上所述,原不等式的解集为 x x<-12或x>1.6.导学号26394016已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.当a=2时,f(x)+|x-4|=-2x+6,x≤2, 2,2<x<4, 2x-6,x≥4.当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;当2<x<4时,f(x)≥4-|x-4|无解;当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5.所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x+a)-2f(x),则h(x)=-2a,x≤0,4x-2a,0<x<a,2a,x≥a.由|h(x)|≤2,解得a-1≤x≤a+1.因为|h(x)|≤2的解集为{x|1≤x≤2},所以a-12=1,a+12=2,于是a=3.第一讲 不等式和绝对值不等式测评(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.若1<1<0,给出下列不等式:①a+b<ab ;②|a|>|b|;③a<b ;④b+a>2.其中正确的有( )A.1个B.2个C.3个D.4个b<a<0,所以a+b<ab ,|a|<|b|,ba >0,从而ba +ab >2,因此①④正确.2.设集合A={x||x-a|<1,x ∈R },B={x||x-b|>2,x ∈R }.若A ⊆B ,则实数a ,b 必满足( ) A.|a+b|≤3 B.|a+b|≥3 C.|a-b|≤3 D.|a-b|≥3A={x|a-1<x<a+1},集合B={x|x<b-2或x>b+2},又A ⊆B ,所以有a+1≤b-2或b+2≤a-1,即a-b ≤-3或a-b ≥3,因此选D .3.对于x ∈R ,不等式|x+10|-|x-2|≥8的解集为( ) A.[0,+∞) B.(0,2) C.[0,2) D.(0,+∞),|BC|=2-(-10)=12,|AB|=10,|AC|=2,当点P 在点A 右侧时|PB|-|PC|>8,故x ≥0.4.下列函数中,最小值为2的是( ) A.y=x+1x B.y=x 2-2x+4 C.y=x 2+1x 2 D.y= x 2+2+2y=x 2+12中,x 2>0,所以y=x 2+12≥2 x 2·12=2,当且仅当x=±1时,函数的最小值为2.5.若不等式|ax+2|<4的解集为(-1,3),则实数a 等于 ( )A.8B.2C.-4D.-2-4<ax+2<4,则-6<ax<2,所以(ax-2)(ax+6)<0,其解集为(-1,3),故a=-2.6.“a=2”是“关于x 的不等式|x+1|+|x+2|<a 的解集非空”的( ) A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件|x+1|+|x+2|≥|x+1-(x+2)|=1,所以由不等式|x+1|+|x+2|<a 的解集非空得a>1,故必要性不成立.又当a=2时,不等式|x+1|+|x+2|<a 有解,所以充分性成立,所以“a=2”是“关于x 的不等式|x+1|+|x+2|<a 的解集非空”的充分不必要条件,故选C .7.已知f (x )=2x+3(x ∈R ),若|f (x )-1|<a 的必要条件是|x+1|<b (a ,b>0),则a ,b 之间的关系是( ) A.b ≥aB.b<aC.a ≤bD.a>b|f (x )-1|<a 可得-a -22<x<a -22, 由|x+1|<b 可得-b-1<x<b-1,由题意可得 -b -1≤-a -22,b -1≥a -22,解得b ≥a 2.8.若x ∈(0,π),则y=sin x cos 2x的最大值等于( ) A.4B.2 3C.23D.492=sin 2xcos 4x=1²2sin 2x ²cos 2x ²cos 2x ≤1 2sin 2x 2+cos 2x2+cos 2x 2 3=4 当且仅当sin 2x 2=cos 2x 2时,等号成立 ,所以y ≤2 39,故所求最大值为2 39.9.若|x-1|<3,|y+2|<1,则|2x+3y|的取值范围是( ) A.[0,5) B.[0,13) C.[0,9) D.[0,4)2x+3y|=|2(x-1)+3(y+2)-4|≤2|x-1|+3|y+2|+|-4|<6+3+4=13.10.若不等式x 2<|x-1|+a 的解集是区间(-3,3)的子集,则实数a 的取值范围是( ) A.(-∞,7) B.(-∞,7] C.(-∞,5) D.(-∞,5]x 2<|x-1|+a 等价于x 2-|x-1|-a<0,设f (x )=x 2-|x-1|-a ,若不等式x 2<|x-1|+a 的解集是区间(-3,3)的子集,则 f (-3)=5-a ≥0,f (3)=7-a ≥0,解得a ≤5,故选D .11.(2017陕西宝鸡一模)在正项等比数列{a n }中,a 2 016=a 2 015+2a 2 014,若a m a n =16a 12,则4+1的最小值等于( ) A.1B.32C.53D.136{a n }的公比为q (q>0),由a 2 016=a 2 015+2a 2 014,得q 2=q+2, 解得q=2或q=-1(舍去).又因为a m a n =16a 12,即a 12²2m+n-2=16a 12,所以m+n=6. 因此4+1=1(m+n ) 4+1=16 5+4n m +m n ≥16 5+2 4n m ·m n =32, 当且仅当m=4,n=2时,等号成立.故选B .12.设0<x<1,a ,b 都为大于零的常数,若a 2x+b21-x≥m 恒成立,则m 的最大值是( )A.(a-b )2B.(a+b )2C.a 2b 2D.a 2+b 21-x=a 2x +b21-x[x+(1-x )]=a 2+b2+a 2(1-x )+b 2x 1-x≥a 2+b 2+2ab =(a+b )2,当且仅当x1-x =ab 时,等号成立.由a 2x+b21-x≥m 恒成立,可知m ≤(a+b )2.故m 的最大值是(a+b )2.二、填空题(本大题共4小题,每小题5分,共20分) 13.若x>-2,且x ≠0,则1x 的取值范围是 .x>-2,且x ≠0,所以当x>0时,有1x >0;当-2<x<0时,有1x <-12,综上,1x 的取值范围是-∞,-1∪(0,+∞).-∞,-12 ∪(0,+∞)14.(2017山东淄博模拟)已知f (x )=lg x2-x ,若f (a )+f (b )=0,则4+1的最小值是 .(x )=lg x2-x ,f (a )+f (b )=0,∴lg a 2-a +lg b2-b=0,∴ab (2-a )(2-b )=1, 整理,得a+b=2(a ,b ∈(0,2)), 则4a +1b =12(a+b ) 4a +1b=12 5+4b a +ab ≥1 5+2 4b ×a =9. 当且仅当a=2b=4时,等号成立.15.若关于x 的不等式|x+1|+|x-3|≥a+4对任意的实数x 恒成立,则实数a 的取值范围是 .a+4a ≤4,所以(a -2)2a ≤0,解得a 的取值范围为(-∞,0)∪{2}.-∞,0)∪{2}16.“蛟龙号”载人深潜器是我国首台自主设计、自主集成研制的作业型深海载人潜水器,“蛟龙号”如果按照预计下潜的深度s (单位:米)与时间t (单位:分)之间的关系满足关系式为s=0.2t 2-14t+2 000,则平均速度的最小值是 米/分.v (t )=s=0.2t 2-14t +2000=0.2t+2000-14≥2 0.2t ·2000-14=2³20-14=26,当且仅当0.2t=2000t,即t=100时,取得最小值.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)设不等式|x-2|<a (a ∈N +)的解集为A ,且32∈A ,12∉A. (1)求a 的值;(2)求函数f (x )=|x+a|+|x-2|的最小值.因为3∈A ,且1∉A ,所以 32-2 <a ,且 12-2 ≥a ,解得12<a ≤32.又因为a ∈N +,所以a=1.(2)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3, 当且仅当(x+1)(x-2)≤0, 即-1≤x ≤2时取到等号. 所以f (x )的最小值为3.18.(本小题满分12分)已知函数f (x )=m-|x-2|,m ∈R +,且f (x+2)≥0的解集为[-1,1]. (1)求m 的值;(2)若a ,b ,c ∈R +,且1+1+1=m ,求证a+2b+3c ≥9.f (x+2)=m-|x|,所以f (x+2)≥0等价于|x|≤m.由|x|≤m 有解,得m ≥0,且其解集为{x|-m ≤x ≤m }, 又f (x+2)≥0的解集为[-1,1],所以m=1.(1)知1a +12b +13c =1,又a ,b ,c ∈R +,所以a+2b+3c=(a+2b+3c ) 1+1+1=3+a 2b +3c 2b +2b a +3c a +a 3c +2b3c =3+ a +2b + 3c +2b + 3c +a ≥3+2 a 2b ·2b a +2 3c 2b ·2b 3c +2 3c a ·a3c=3+6=9(当且仅当a=2b=3c 时,等号成立).故a+2b+3c ≥9.。
高中数学人教A版选修4-5同步辅导与检测1.2.3绝对值不等式的解法2

一层练习
6 1.A= xx∈N,且x∈N ,B={x||x2-3|≤2x},
则 A∩B 的所有非空子集有( B ) A.3 个 C.14 个 B.7 个 D.15 个
不等式和绝对值不等式
1.2 1.2.3
绝对值不等式
绝对值不等式的解法(2)
会利用绝对值的几何意义求解以下类型的 不等式:
|x-c|+|x-b|≥a.|x-c|+|x-b|≤a.
1.求解不等式:|x-c|+|x-b|≥a,|x-c|+|x-b|≤a.的 第一种方法分讨论去绝对值. 练习1:不等式|x-2|+|x-1|≥5的解集为:________ 2.求解不等式:|x-c|+|x-b|≥a, |x-c|+|x-b|≤a.的第二种方法用几何意义直接求边界 值,再利用几何意义写出解集.
解法二(几何法)x为不等式|x+2|+|x-1|≤4的解x是与数轴上的
点A(-2)及B(1)两点距离之和小于等于4的点.
A,B两点的距离为3,因此线段AB上任何一点到A,B距离 之和都等于3,因此都是原不等式的解.但我们需要找到原不 等式解的全体,于是关键在于找到A,B距离之和为4的点.
3 1 如图,我们将 B 向右移动 单位至点 B1 2 ,此时 2 B1 与 A 及 B 距离之和增加 1 个单位,同理我们将 A 点 5 1 向左移动 个单位到 A1-2,这时 A1 与 A 及 B 距离之和 2 也增加一个单位.从数轴上可以看到 A1 与 B1 之间的任何 点(包括点 A1 和 B1)到 A,B 的距离之和均小于等于 4,而 5 3 当 x<- 或 x> 时,x 与 A,B 两点的距离之和都大于 4. 2 2 5 3 因而原不等式的解集为 -2,2 .
2019人教版高中数学选修4-5学案第一讲1.1-1.1.2基本不等式含解析

第一讲 不等式和绝对值不等式1.1 不等式 1.1.2 基本不等式A 级 基础巩固一、选择题1.设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +ba ≥2”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为a ,b ∈R 时,都有a 2+b 2≥2ab , 而a b +ba≥2等价于ab >0, 所以“a 2+b 2≥2ab ”是“a b +ba≥2”的必要不充分条件.答案:B2.下列不等式中,正确的个数是( ) ①若a ,b ∈R ,则a +b2≥ab ;②若x ∈R ,则x 2+2+1x 2+2≥2;③若a ,b 为正实数,则a +b2≥ab .A .0B .1C .2D .3解析:显然①不正确;对于②,虽然x 2+2=1x 2+2无解,但x 2+2+1x 2+2>2成立,故②正确;③不正确,如a =1,b =4. 答案:B3.函数y =1x -3+x (x >3)的最小值是( )A .5B .4C .3D .2 解析:原式变形为y =1x -3+x -3+3.因为x >3,所以x -3>0,所以1x -3>0,所以y ≥2(x -3)·1x -3+3=5,当且仅当x -3=1x -3,即x=4时等号成立.答案:A4.若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5解析:因为直线x a +yb =1过点(1,1),所以1a +1b =1.又a ,b 均大于0,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =1+1+b a +a b ≥2+2b a ·ab=2+2=4,当且仅当a =b 时,等号成立.所以a +b 的最小值为4. 答案:C5.函数y =x 2x 4+9(x ≠0)的最大值及此时x 的值为( )A.16, 3 B.16,± 3 C.16,- 3 D.16,±3 解析:y =x 2x 4+9=1x 2+9x2(x ≠0), 因为x 2+9x2≥2x 2·9x 2=6,所以y ≤16,当且仅当x 2=9x 2,即x =±3时,y max =16.答案:B 二、填空题6.若x ≠0,则f (x )=2-3x 2-12x2的最大值是________,取得最值时x 的值是________.解析:f (x )=2-3⎝ ⎛⎭⎪⎫x 2+4x 2≤2-3×4=-10,当且仅当x 2=4x 2,即x =±2时取等号.答案:-10 ±27.已知x +3y -2=0,则3x +27y +1的最小值是________. 解析:3x +27y +1=3x +33y +1≥23x ·33y +1=23x +3y +1=7,当且仅当x =3y ,即x =1,y =13时,等号成立.答案:78.在4×□+9×□=60的两个□中,分别填入两个自然数,使它们的倒数和最小,应分别填上________和________.解析:设两数为x ,y ,即4x +9y =60.1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·4x +9y 60=160⎝ ⎛⎭⎪⎫13+4x y +9y x ≥160⎝ ⎛⎭⎪⎫13+2 4x y ·9y x =160×(13+12)=512.当且仅当4x y =9yx ,且4x +9y =60,即x =6且y =4时等号成立,故应填6和4. 答案:6 4 三、解答题9.(1)已知x <2,求函数f (x )=x +4x -2的最大值. (2)已知0<x <12,求函数y =x (1-2x )的最大值.解:(1)因为x <2,所以2-x >0,所以f (x )=x +4x -2=-⎣⎢⎡⎦⎥⎤(2-x )+42-x +2≤-2(2-x )·42-x+2=-2,当且仅当2-x =42-x ,得x =0或x =4(舍去),即x =0时,等号成立.所以f (x )=x +4x -2的最大值为-2.(2)因为0<x <12,所以1-2x >0.所以y =x (1-2x )=12·2x (1-2x )≤12⎣⎢⎡⎦⎥⎤2x +(1-2x )22=18, 当且仅当2x =1-2x ,即x =14时,等号成立.所以函数y =x (1-2x )的最大值为18.10.若a 、b 、c 是不全相等的正数,求证:lg a +b 2+lg b +c2+lgc +a2>lg a +lg b +lg c . 证明:因为a >0,b >0,c >0,所以a +b 2≥ab >0,b +c 2≥bc >0,c +a 2≥ac >0.且上述三个不等式中等号不能同时成立. 所以a +b 2·b +c 2·c +a 2>abc .所以lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .B 级 能力提升1.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( )A .5千米处B .4千米处C .3千米处D .2千米处解析:由已知:y 1=20x ,y 2=0.8x (x 为仓库到车站的距离).费用之和y =y 1+y 2=0.8x +20x≥20.8x ·20x=8.当且仅当0.8x =20x ,即x =5时等号成立.答案:A2.(2017·天津卷)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.解析:因为a ,b ∈R ,ab >0, 所以a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab≥24ab ·1ab=4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎨⎧a 2=22,b 2=24时取得等号.故a 4+4b 4+1ab 的最小值为4.答案:43.若对任意x >0,xx 2+3x +1≤a 恒成立,求实数a 的取值范围.解:由x >0,知原不等式等价于0<1a ≤x 2+3x +1x =x +1x+3恒成立.又x >0时,x +1x≥2x ·1x=2,所以x +1x+3≥5,当且仅当x =1时,取等号.因此⎝ ⎛⎭⎪⎫x +1x +3min =5, 从而0<1a ≤5,解得a ≥15.故实数a 的取值范围为⎣⎢⎡⎭⎪⎫15,+∞.。
选修4-5 不等式选讲

选修4-5不等式选讲第一节绝对值不等式一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点一 绝对值不等式的解法[典例] (2016·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.[解] (1)由题意得f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或1<x <3或x >5.[题组训练]1.解不等式|x +1|+|x -1|≤2. 解:当x <-1时,原不等式可化为-x -1+1-x ≤2, 解得x ≥-1,又因为x <-1,故无解; 当-1≤x ≤1时,原不等式可化为x +1+1-x =2≤2,恒成立; 当x >1时,原不等式可化为x +1+x -1≤2, 解得x ≤1,又因为x >1,故无解;综上,不等式|x +1|+|x -1|≤2的解集为[-1,1]. 2.(2019·沈阳质检)已知函数f (x )=|x -a |+3x ,其中a ∈R . (1)当a =1时,求不等式f (x )≥3x +|2x +1|的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =1时,f (x )=|x -1|+3x .法一:由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0, 当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解; 当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.∴不等式的解集为{x |-2≤x ≤0}.法二:由f (x )≥3x +|2x +1|,得|x -1|≥|2x +1|, 两边平方,化简整理得x 2+2x ≤0, 解得-2≤x ≤0,∴不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0,可得⎩⎪⎨⎪⎧ x ≥a ,4x -a ≤0或⎩⎪⎨⎪⎧x <a ,2x +a ≤0,即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-a 2. 由-a2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不合题意.当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤a 4.由a4=-1,得a =-4. 综上,a =2或a =-4.考点二 绝对值不等式性质的应用[典例] (2019·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R . (1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R ,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.[解] (1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,即⎩⎪⎨⎪⎧ x ≥12,2x -1<x +1或⎩⎪⎨⎪⎧0<x <12,1-2x <x +1或⎩⎪⎨⎪⎧x ≤0,1-2x <-x +1,得12≤x <2或0<x <12或无解. 故不等式f (x )<|x |+1的解集为{x |0<x <2}.(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.故不等式f (x )<1得证.[解题技法] 绝对值不等式性质的应用利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.[题组训练]1.求函数f (x )=|x +2 019|-|x -2 018|的最大值.解:因为f (x )=|x +2 019|-|x -2 018|≤|x +2 019-x +2 018|=4 037, 所以函数f (x )=|x +2 019|-|x -2 018|的最大值为4 037. 2.若x ∈[-1,1],|y |≤16,|z |≤19,求证:|x +2y -3z |≤53.证明:因为x ∈[-1,1],|y |≤16,|z |≤19,所以|x +2y -3z |≤|x |+2|y |+3|z |≤1+2×16+3×19=53,所以|x +2y -3z |≤53成立.考点三 绝对值不等式的综合应用[典例] (2018·合肥质检)已知函数f (x )=|2x -1|. (1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围. [解] (1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1,则⎩⎪⎨⎪⎧ x ≥12,2x -1-2x -1≤1或⎩⎪⎨⎪⎧ -12<x <12,1-2x -2x -1≤1或⎩⎪⎨⎪⎧x ≤-12,1-2x +2x +1≤1, 解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为⎣⎡⎭⎫-14,+∞. (2)由条件知,不等式|2x -1|+|2x +1|<m 有解, 则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈⎣⎡⎦⎤-12,12时等号成立,故m >2.所以m 的取值范围是(2,+∞). [解题技法] 两招解不等式问题中的含参问题 (1)转化①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)求最值求含绝对值的函数最值时,常用的方法有三种: ①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||; ③利用零点分区间法. [题组训练]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x <-1,2,-1≤x ≤2,-2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1,当-1≤x ≤2时,显然满足题意, 当x >2时,由-2x +6≥0,解得2<x ≤3, 故f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.(2018·广东珠海二中期中)已知函数f (x )=|x +m |+|2x -1|(m ∈R ),若关于x 的不等式f (x )≤|2x +1|的解集为A ,且⎣⎡⎦⎤34,2⊆A ,求实数m 的取值范围.解:∵⎣⎡⎦⎤34,2⊆A ,∴当x ∈⎣⎡⎦⎤34,2时,不等式f (x )≤|2x +1|恒成立, 即|x +m |+|2x -1|≤|2x +1|在x ∈⎣⎡⎦⎤34,2上恒成立, ∴|x +m |+2x -1≤2x +1,即|x +m |≤2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴-2≤x +m ≤2,∴-x -2≤m ≤-x +2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴(-x -2)max ≤m ≤(-x +2)min ,∴-114≤m ≤0,故实数m 的取值范围是⎣⎡⎦⎤-114,0. [课时跟踪检测]1.求不等式|2x -1|+|2x +1|≤6的解集.解:原不等式可化为⎩⎪⎨⎪⎧ x <-12,1-2x -2x -1≤6或⎩⎪⎨⎪⎧-12≤x ≤12,1-2x +2x +1≤6或⎩⎪⎨⎪⎧x >12,2x -1+2x +1≤6.解得-32≤x ≤32,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-32≤x ≤32. 2.已知函数f (x )=|x -4|+|x -a |(a ∈R )的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2;当2<x ≤4时,显然不等式成立; 当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤112. 3.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解:(1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >12. (2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <2a , 所以2a ≥1,故0<a ≤2.综上,a 的取值范围为(0,2]. 4.设函数f (x )=|3x -1|+ax +3. (1)若a =1,解不等式f (x )≤4;(2)若f (x )有最小值,求实数a 的取值范围. 解:(1)当a =1时,f (x )=|3x -1|+x +3≤4, 即|3x -1|≤1-x ,x -1≤3x -1≤1-x ,解得0≤x ≤12,所以f (x )≤4的解集为⎣⎡⎦⎤0,12. (2)因为f (x )=⎩⎨⎧(3+a )x +2,x ≥13,(a -3)x +4,x <13,所以f (x )有最小值的充要条件为⎩⎪⎨⎪⎧a +3≥0,a -3≤0,解得-3≤a ≤3,即实数a 的取值范围是[-3,3].5.(2019·贵阳适应性考试)已知函数f (x )=|x -2|-|x +1|. (1)解不等式f (x )>-x ;(2)若关于x 的不等式f (x )≤a 2-2a 的解集为R ,求实数a 的取值范围. 解:(1)原不等式等价于f (x )+x >0,不等式f (x )+x >0可化为|x -2|+x >|x +1|, 当x <-1时,-(x -2)+x >-(x +1),解得x >-3,即-3<x <-1; 当-1≤x ≤2时,-(x -2)+x >x +1,解得x <1,即-1≤x <1; 当x >2时,x -2+x >x +1,解得x >3,即x >3,综上所述,不等式f (x )+x >0的解集为{x |-3<x <1或x >3}. (2)由不等式f (x )≤a 2-2a 可得|x -2|-|x +1|≤a 2-2a ,∵|x -2|-|x +1|≤|x -2-x -1|=3,当且仅当x ∈(-∞,-1]时等号成立, ∴a 2-2a ≥3,即a 2-2a -3≥0,解得a ≤-1或a ≥3. ∴实数a 的取值范围为(-∞,-1]∪[3,+∞). 6.已知函数f (x )=|x -a |+|x +1|.(1)若a =2,求不等式f (x )>x +2的解集;(2)如果关于x 的不等式f (x )<2的解集不是空集,求实数a 的取值范围. 解:(1)当a =2时,f (x )=⎩⎪⎨⎪⎧-2x +1,x <-1,3,-1≤x <2,2x -1,x ≥2,不等式f (x )>x +2等价于⎩⎪⎨⎪⎧ x <-1,-2x +1>x +2或⎩⎪⎨⎪⎧ -1≤x <2,3>x +2或⎩⎪⎨⎪⎧x ≥2,2x -1>x +2,解得x <1或x >3,故原不等式的解集为{x |x <1或x >3}.(2)∵f (x )=|x -a |+|x +1|≥|(x -a )-(x +1)|=|a +1|,当(x -a )(x +1)≤0时取等号. ∴若关于x 的不等式f (x )<2的解集不是空集,只需|a +1|<2, 解得-3<a <1,即实数a 的取值范围是(-3,1). 7.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3, 即⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x ≥3-a 2. 又⎝⎛⎭⎫⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x min =⎪⎪⎪⎪12-a 2, 所以⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2. 所以a 的取值范围是[2,+∞).8.(2018·福州质检)设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围.解:(1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3⇔⎩⎪⎨⎪⎧ x <1,3-2x ≤3或⎩⎪⎨⎪⎧1≤x ≤2,1≤3或 ⎩⎪⎨⎪⎧x >2,2x -3≤3, 解得0≤x <1或1≤x ≤2或2<x ≤3, 所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3]. (2)因为⎝⎛⎭⎫1,32⊆M , 所以当x ∈⎝⎛⎭⎫1,32时,f (x )≤f (x +1)-|x -a |恒成立,而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|, 因为x ∈⎝⎛⎭⎫1,32,所以|x -a |≤1,即x -1≤a ≤x +1, 由题意,知x -1≤a ≤x +1对于任意的x ∈⎝⎛⎭⎫1,32恒成立, 所以12≤a ≤2,故实数a 的取值范围为⎣⎡⎦⎤12,2.第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b .(2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2 =a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2) =p 2x 2+q 2y 2+2pqxy -(px 2+qy 2) =p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b(ab )+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd . 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此 a +b >c +d .2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0, ∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y ≥16,即x +y ≥16xy . 考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论. (2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:由a >b >c 且a +b +c =0, 知a >0,c <0. 要证b 2-ac <3a , 只需证b 2-ac <3a 2.∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2, 即证2a 2-ab -b 2>0, 即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0, ∴(a -b )(a -c )>0显然成立, 故原不等式成立. 2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ;(2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角. 证明:要证∠B 为锐角,只需证cos B >0, 所以只需证a 2+c 2-b 2>0, 即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2, 由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以 -4<x <-3;当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立, 所以-3≤x <-1;当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}. (2)证明:因为4(a -b )2-(ab +2a +2b )2 =-(a 2b 2+4a 2b +4ab 2+16ab ) =-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2, 所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1, 解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}. (2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数, ∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞).t 2+1-3t -3t =t 3-3t 2+t -3t =(t -3)(t 2+1)t ,∵t ∈M ,∴t -3≥0,t 2+1>0, ∴(t -3)(t 2+1)t ≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115. (2)证明:由图象可知f (x )的最小值为1, 由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81, 即证a 2b 2-9a 2-9b 2+81>0, 即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0, 所以(a 2-9)(b 2-9)>0, 所以3|a +b |<|ab +9|.8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0, 即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号。
人教A版高中数学选修4-5不等式选讲同步测试(有解析)

不等式选讲A 组1.若,a b 是任意的实数,且a b >,则()(A)22b a >(B)1<a b (C)lg()0a b ->(D)b a )21()21(< 2.不等式32->x 的解集是() (A ))32,(--∞(B))32,(--∞),0(+∞Y (C))0,32(-),0(+∞Y (D))0,32(-3.不等式125x x -++≥的解集为()(A)(][)+∞-∞-,22,Y (B)(][)+∞-∞-,21,Y (C)(][)+∞-∞-,32,Y (D)(][)+∞-∞-,23,Y 4.若0n >,则232n n +的最小值为() (A)2(B)4(C)6(D)85.若A=(3)(7)x x ++,B=(4)(6)x x ++,则A ,B 的大小关系为__________. 6.设a ,b ,c 是不全相等的正数,求证: 1)()()()8a b b c c a abc +++>;2)a b c ab bc ca ++>++.7..已知x ,y R ∈,求证222x y +≥2()2x y +8.如图1,把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿着虚线折转作成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大?9.已知a ,b ,0c >,且不全相等,求证222222()()()6a b c b a c c a b abc +++++>.10.已知1a ,2a ,…,+∈R a n ,且121=n a a a Λ,求证nn a a a 2)1()1)(1(21≥+++Λ.B 组11.已知x ,0>y ,且2>+y x .试证:yx +1,xy +1中至少有一个小于2.12.求函数x x y 21015-+-=的最大值.13.已知122=+b a ,求证θθsin cos b a +≤1.14.已知12=+y x ,求22y x +的最小值.15.已知10432=++z y x ,求222z y x ++的最小值.16.已知a ,b ,c 是正数,求证2229a b b c c a a b c++≥+++++.17.证明:)(53+∈+N n n n 能够被6整除.18.设,,a b c R +∈,求证:32a b c b c c a a b ++≥+++.不等式选讲答案1.D.提示:注意函数1()2xy =的单调性; 2.B.提示:先移项,再通分,再化简;3.D.提示:当x ≤-2时,原不等式可以化为(1)(2)x x ---+≥5,解得x ≤-3,即不等式组2125x x x ≤-⎧⎪⎨-++≥⎪⎩的解集是(,3]-∞-.当21x -<<时,原不等式可以化为(1)(2)x x --++≥5, 即3≥5,矛盾.所以不等式组21125x x x -<<⎧⎪⎨-++≥⎪⎩,的解集为∅,当x ≥1时,原不等式可以化为(1)(2)x x -++≥5,解得x ≥2,即不等式组1125x x x ≥⎧⎪⎨-++≥⎪⎩的解集是[2,)+∞.综上所述,原不等式的解集是(,3][2,)-∞-+∞U ; 4.C.提示:22323222n n n n n +=++;5.A B <.提示:通过考察它们的差与0的大小关系,得出这两个多项式的大小关系. 因为(3)(7)(4)(6)x x x x ++-++22(1021)(1024)x x x x =++-++30=-< 所以(3)(7)(4)(6)x x x x ++<++;6.提示:a b +≥Q b c +≥Q c a +≥Q分别将以上三式相乘或相加即可;7.提示:222222222()()2()2442x y x y x y x y xy x y +++++++=≥=;8.提示:设切去的正方形边长为x ,无盖方底盒子的容积为V ,则2(2)V a x x=-3311(2)(2)42(2)(2)4[]44327a x a x x a a x a x x -+-+=--⨯≤= 当且仅当224a x a x x -=-=,即当6ax =时,不等式取等号,此时V 取最大值3227a .即当切去的小正方形边长是原来正方形边长的16时,盒子容积最大. 9.分析:观察欲证不等式的特点,左边3项每一项都是两个数的平方之和与另一个数之积,右边是三个数的积的6倍.这种结构特点启发我们采用如下方法.证明:因为22b c +≥2bc ,0a >,所以22()a b c +≥2abc .① 因为22c a +≥2ac ,0b >,所以22()b c a +≥2abc .② 因为22a b +≥2ab ,0c >,所以22()c a b +≥2abc .③由于a ,b ,c 不全相等,所以上述①②③式中至少有一个不取等号,把它们相加得222222()()()6a b c b a c c a b abc +++++>.10.提示:观察要证明的结论,左边是n 个因式的乘积,右边是2的n 次方,再结合121=n a a a Λ,发现如果能将左边转化为1a ,2a ,…,n a 的乘积,问题就能得到解决.证明:因为+∈R a 1,所以111121a a a =⋅≥+,即1121a a ≥+. 同理,2221a a ≥+,……n n a a 21≥+.因为1a ,2a ,…,+∈R a n ,由不等式的性质, 得n n nn a a a a a a 22)1()1)(1(2121≥≥+++ΛΛ.因为1=i a 时,i i a a 21≥+取等号,所以原式在121====n a a a Λ时取等号. 11.提示:要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰.另外,如果从正面证明,需要对某一个分式小于2或两个分式都小于2等进行分类讨论,而从反面证明,则只要证明两个分式都不小于2是不可能的即可.于是考虑采用反证法. 证明:假设y x +1,x y +1都不小于2,即21≥+y x ,且21≥+xy. 因为x ,0>y ,所以y x 21≥+,且x y 21≥+.把这两个不等式相加,得)(22y x y x +≥++,从而2≤+y x .这与已知条件2>+y x 矛盾.因此,yx +1,xy +1都不小于2是不可能的,即原命题成立.12.提示:利用不等式解决极值问题,通常设法在不等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为bd ac +的形式就能利用柯西不等式求其最大值.解:函数的定义域为[]5,1,且0>y .x x y -⨯+-⨯=521536427=⨯=当且仅当x x -⨯=-⨯5512时,等号成立,即27127=x 时函数取最大值36. 13.提示:cos sin a b θθ+=114.提示:22222221(2)(12)()5()x y x y x y =+≤++=+Q 2215x y ∴+≥. 15.提示:2222222100(234)(234)()x y z x y z =++≤++++Q 222100.29x y z ∴++≥16.提示:111[2()]()a b c a b b c c a+++++++ 2111[()()()]()(111)9.2229.a b b c c a a b b c c aa b b c c a a b c=+++++++≥++=+++∴++≥+++++ 17.提示:这是一个与整除有关的命题,它涉及全体正整数,若用数学归纳法证明,第一步应证1=n 时命题成立;第二步要明确目标,即在假设k k 53+能够被6整除的前提下,证明)1(5)1(3+++k k 也能被6整除.证明:1)当1=n 时,653=+n n 显然能够被6整除,命题成立. 2)假设当)1(≥=k k n 时,命题成立,即k k 53+能够被6整除. 当1+=k n 时,55133)1(5)1(233+++++=+++k k k k k k 633)5(23++++=k k k k6)1(3)5(3++++=k k k k .由假设知k k 53+能够被6整除,而)1(+k k 是偶数,故)1(3+k k 能够被6整除,从而6)1(3)5(3++++k k k k 即)1(5)1(3+++k k 能够被6整除.因此,当1+=k n 时命题成立.由1)2)知,命题对一切正整数成立,即)(53+∈+N n n n 能够被6整除; 18.证明:(法一)要证原不等式成立,只须证:91112a b c b c c a a b +++++≥+++ 即只须证:111[2()]()9a b c b c c a a b++++≥+++ 由柯西不等式易知上式显然成立,所以原不等式成立。
人教A高中数学选修45课后习题答案(清晰版)

2
因为 ab a2 b2 d 2 ,当且仅当 a b 时等号成立 22
人教 A 版高中数学课后习题解答答案
d2
所以当矩形为正方形时,面积取得最大值,最大值为
2 14、因为 r 2 ( h )2 R2 ,所以 4r 2 h2 4R2 .
2 根据三个正数的算术—几何平均不等式,得 4R2 2r 2 2r 2 h2 3 3 4r 4h2
1
即 a2 b2 c2 d 2 ab bc cd da
人教 A 版高中数学课后习题解答答案
8、因为 a12 x12 2a1x1 , a22 x22 2a2x2 ,……, an2 xn2 2an xn 所以 (a12 a22 an2 ) (x12 x22 xn2 ) 2(a1x1 a2x2 anxn) 即 2 2(a1x1 a2x2 anxn) ,所以 a1x1 a2x2 anxn 1
所以 a3 b3 (a b)ab , b3 c3 (b c)bc , c3 a3 (c a)ca
所以 2(a3 b3 c3) a2(b c) b2(a c) c2(a b)
3、略.
4、要证明 1 1 1 0 ,即证明 1 1 1
ab bc ca
ab bc ac
12、(1)因为 a,b,c R ,所以
a b
b c
c a
33
a b
b c
c a
3,
b a
c b
a c
33
b a
c b
a c
3
所以 ( a b c )( b c a ) 9 b c aa b c
(2)因为 a,b,c R ,所以 a b c 33 abc 0 , a2 b2 c2 33 a2b2c2 0
2020版人教A版数学选修4-5同步配套___第一讲 不等式和绝对值不1.2.1

-1-
1.绝对值三角不等式
-2-
目标导航
知识梳理
重难聚焦
典例透析
1.理解绝对值的几何意义. 2.掌握绝对值三角不等式及其几何意义. 3.掌握三个实数的绝对值不等式及其应用.
123
目标导航
知识梳理
重难聚焦
典例透析
1.绝对值的几何意义 (1)实数a的绝对值|a|表示数轴上坐标为a的点A到原点的距离. (2)对于任意两个实数a,b,设它们在数轴上的对应点分别为A,B,那 么|a-b|的几何意义是数轴上A,B两点之间的距离,即线段AB的长度.
题型一 题型二 题型三
目标导航
知识梳理
重难聚焦
典例透析
【变式训练 2】
证明:不等式:
|������+������| 1+|������+������|
≤
|������| 1+|������|
+
1+|������||������|.
证明:当 a+b=0 时,不等式显然成立.
当
a+b≠0
时,∵|a+b|≤|a|+|b|,∴
目标导航
知识梳理
重难聚焦
典例透析
1
2
2.对绝对值三角不等式几何意义的理解 剖析:用向量a,b替换实数a,b时,问题就从一维扩展到二维,当向 量a,b不共线时,a+b,a,b构成三角形,有|a+b|<|a|+|b|.当向量a,b共线 时,若a,b同向(相当于ab≥0)时,则|a+b|=|a|+|b|;若a,b异向(相当于 ab<0)时,则|a+b|<|a|+|b|,这些都是利用了三角形的性质定理,如两边 之和大于第三边等.这样处理,可以形象地描绘绝对值三角不等式, 更易于记忆定理,并应用定理解题. 绝对值三角不等式体现了“放缩法”的一种形式,但放缩的“尺度” 还要仔细把握,如下面的式子: |a|-|b|≤||a|-|b||≤|a+b|≤|a|+|b|. 我们较为常用的形式是|a|-|b|≤|a+b|≤|a|+|b|,但有些学生就会 误认为只能如此,而实质上,|a+b|是不小于||a|-|b||的.
人教版高中数学选修4-5练习:第一讲1.2-1.2.2绝对不等式的解法Word版含解析

第一讲不等式和绝对值不等式1.2 绝对值不等式1.2.2 绝对不等式的解法A级基础巩固一、选择题1.(2019·山东卷)不等式|x-1|-|x-5|<2的解集是( )A.(-∞,4) B.(-∞,1)C.(1,4) D.(1,5)解析:法一:当x<1时,原不等式化为1-x-(5-x)<2即-4<2,不等式恒成立;当1≤x<5时,原不等式即x-1-(5-x)<2,解得x<4;当x≥5时,原不等式化为x-1-(x-5)<2即4<2,显然不成立,综上可得不等式的解集为(-∞,4).法二:由绝对值的几何意义可得数轴上的点x到1,5两点(距离为4)的距离之差小于2的点满足x<4,所求不等式的解集为(-∞,4).答案:A2.若不等式|x-1|<a成立的充分条件是0<x<4,则实数a的取值范围是( )A.a≥1 B.a≥3C.a≤1 D.a≤3解析:由题意,可知(0,4)是(-a+1,a+1)的子集,由此可推得选B ;亦可以用差异代入法(寻求选项的不同点代入)验证排除.答案:B3.(2019·天津卷)设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为|x -2|<1等价于1<x <3,x 2+x -2>0等价于x <-2或x >1,所以“|x -2|<1”是“x 2+x -2>0”的充分不必要条件.答案:A4.不等式|3x -2|>4的解集是() A.{}x|x >2 B.x x <-23C.x x <-23或x >2 D.x -23<x <2解析:由|3x -2|>4得3x -2>4或3x -2<-4所以x >2或x <-23. 答案:C5.如果关于x 的不等式|x -a|+|x +4|≥1的解集是全体实数,则实数a 的取值范围是( )A .(-∞,3]∪5,+∞)B .-5,-3]C .3,5]D .(-∞,-5]∪-3,+∞)解析:利用数轴,结合绝对值的几何意义可知a ≤-5或a ≥-3. 答案:D二、填空题6.若不等式|kx -4|≤2的解集为{x|1≤x ≤3},则实数k =______.解析:法一:由|kx-4|≤2可得-2≤kx-4≤2,即2≤kx≤6,又1≤x≤3,所以k=2.法二:由题意可知x=1,x=3是|kx-4|=2的两根,则|k-4|=2,|3k-4|=2,解得k=2.答案:27.若不等式|x+1|+|x-3|≥a+4a对任意的实数x恒成立,则实数a的取值范围是________.解析:当a<0时,显然成立;因为|x+1|+|x-3|的最小值为4,所以a+4a≤4.所以a=2,综上可知a∈(-∞,0)∪{2}.答案:(-∞,0)∪{2}8.若关于x的不等式|x+2|+|x-1|<a的解集是?,则a的取值范围是________.解析:|x+2|+|x-1|≥|(x+2)-(x-1)|=3,所以a<3.答案:a<3三、解答题9.(2019·全国卷Ⅲ)已知函数f(x)=|2x-a|∈a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设f(x)=|2x-1|,当x∈R时,f(x)+g(x)≥3,求实数a的取值范围.解:(1)当a=2时,f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x≤3.因此f(x)≤6的解集为{x|-1≤x≤3}.当x∈R时,f(x)+g(x)=|2x-a|+a+1|1-2x|≥|2x-a+1-2x|+a=|1-a|+a.所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3.①当a≤1时,①等价于1-a+a≥3,无解.当a>1时,①等价于a-1+a≥3,解得a≥2.所以a的取值范围是2,+∞).10.已知函数f(x)=|x-a|.(1)若f(x)≤m的解集为{x|-1≤x≤5},求实数a,m的值;(2)当a=2且t≥0时,解关于x的不等式f(x)+t≥f(x+2t).解:(1)由|x-a|≤m得a-m≤x≤a+m,所以a-m=-1,a+m=5,解得a=2,m=3.(2)当a=2时,f(x)=|x-2|,所以f(x)+t≥f(x+2t),所以|x-2+2t|-|x-2|≤t.当t=0时,不等式恒成立,即x∈R;当t>0时,不等式等价于x<2-2t,2-2t-x-(2-x)≤t或2-2t≤x<2,x-2+2t-(2-x)≤t 或x≥2,x-2+2t-(x-2)≤t,解得x<2-2t或2-2t≤x≤2-t2或x∈?,即x≤2-t 2 .综上所述,当t=0时,原不等式的解集为R;当t>0时,原不等式的解集为x x≤2-t 2.B级能力提升1.不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a 的取值范围为( )A.(-∞,-1]∪4,+∞) B.(-∞,-2]∪5,+∞)C.1,2] D.(-∞,1]∪2,+∞)解析:由绝对值的几何意义得|x+3|-|x-1|的最大值为4,所以a2-3a≥4恒成立,即a≥4或a≤-1.答案:A2.(2019·重庆卷)若f(x)=|x+1|+2|x-a|的最小值为5,则实数a =________.解析:当a≤-1时,f(x)=|x+1|+2|x-a|=-3x+2a-1,x<a,x-2a-1,a≤x≤-1,3x-2a+1,x>-1,所以f(x)在(-∞,a)上单调递减,在(a,+∞)上单调递增,则f(x)在x=a处取得最小值f(a)=-a-1,由-a-1=5得a=-6,符合a≤-1;当a>-1时,f(x)=|x+1|+2|x-a|=-3x+2a-1,x<-1,-x+2a+1,-1≤x≤a,3x-2a+1,x>a.所以f(x)在(-∞,a)上单调递减,在(a,+∞)上单调递增,则f(x)在x=a处取最小值f(a)=a+1,由a+1=5,得a=4,符合a>-1.综上所述,实数a的值为-6或4.答案:-6或43.已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含1,2],求a的取值范围.解:(1)当a=-3时,f(x)≥3?|x-3|+|x-2|≥3?x≤2,3-x+2-x≥3或2<x<3,3-x+x-2≥3或x≥3,x-3+x-2≥3.?x≤1或x∈?或x≥4.故不等式解集为{x|x≤1或x≥4}.(2)原命题?f(x)≤|x-4|在1,2]上恒成立?|x+a|+2-x≤4-x在1,2]上恒成立?-2-x≤a≤2-x在1,2]上恒成立?-3≤a≤0.故a的取值范围是-3,0].。