高中数学专题讲义-恒成立与有解问题
最新高考数学复习《“恒成立”与“有解”问题》名师专题讲解PPT课件

主讲人:卢高东
题型精讲——恒成立问题
题型精讲——恒成立问题
题型精讲——恒成立问题
题型精讲——恒成立问题
题型精讲——恒成立问题
题型精讲——恒成立问题
≤0-2≤a ≤1 Nhomakorabea>0 >0 >0
<-2
题型精讲——恒成立问题
题型精讲——恒成立问题
t t
题型精讲——恒成立问题
5 m 4
恒成立有解问题, 最值分析来考虑; 变量分离和图像, 往往也来共参与.
强化提高1
强化提高2
强化提高3
强化提高4
强化提高5
题型精讲——恒成立问题
题型精讲——恒成立问题
题型精讲——恒成立问题
题型精讲——恒成立问题
题型精讲——恒成立问题
≥1
题型精讲——恒成立问题
题型精讲——有解问题
题型精讲——有解问题
题型精讲——恒成立与有解问题
实战演练
( 1 ) 对 任 意 x [ 1 , 1 ] , 都 有 f ( xg ) ( x ) 成 立 , 求 实 数 m 的 取 值 范 围 ;
m 1
2 已 知 函 数 f ( x ) x x 1 , g ( x ) 2 x m , m 为 实 常 数 .
( 2 ) 存 在 x [ 1 , 1 ] , 使 得 f ( xg ) ( x ) 成 立 , 求 实 数 m 的 取 值 范 围 ;
m 5
( 3 ) 对 任 意 x , x [ 1 , 1 ] , 都 有 f ( xg ) () x 成 立 , 求 实 12 1 2 数 m 的 取 值 范 围 .
函数恒成立存在性与有解问题

函数恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;例题讲解:题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。
2024年新高一数学讲义(人教A版2019必修第一册)函数不等式恒成立与能成立(解析版)

专题拓展:函数不等式恒成立与能成立一、单变量不等式恒成立问题一般利用参变分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:1、∀∈x D ,()()min ≤⇔≤m f x m f x 2、∀∈x D ,()()max ≥⇔≥m f x m f x 3、∃∈x D ,()()max ≤⇔≤m f x m f x 4、∃∈x D ,()()min≥⇔≥m f x m f x 二、双变量不等式与等式一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈1、不等关系(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12f x g x <成立,故()()min min f x g x <;(4)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()min max f x g x <.2、相等关系记()[],,y f x x a b =∈的值域为A ,()[],,y g x x c d =∈的值域为B,(1)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12=f x g x 成立,则有A B ⊆;(2)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12=f x g x 成立,则有A B ⊇;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12=f x g x 成立,故A B ⋂≠∅;考点一:单变量不等式恒成立例1.(23-24高一上·广东湛江·月考)若不等式10x a -++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦成立,则a 的最小值为()A .0B .2-C .52-D .12-【答案】D【解析】若不等式10x a -++≥对一切10,2x ⎛⎤∈ ⎝⎦成立,则max (1)a x ≥-+,当12x =时,1x -+取最大值12-,故12a ≥-,故a 的最小值是12-.故选:D .【变式1-1】(23-24高一上·河南·月考)若对于任意的0x >,不等式()2310x a x +-+≥恒成立,则实数a的取值范围为()A .[)5,+∞B .()5,+∞C .(],5-∞D .(),5-∞【答案】C【解析】不等式()2310x a x +-+≥可化为,231x x a x++≥,令()231x x f x x++=,由题意可得()min a f x ≤,()1335f x x x =++≥=,当且仅当1x x =,即1x =时等号成立,()min 5a f x ≤=,所以实数a 的取值范围为(],5-∞.故选:C.【变式1-2】(23-24高一下·贵州遵义·月考)已知函数()()lg 31kf x x =+,若不等式()1f x <在()0,33x ∈上恒成立,则k 的取值范围为()A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫-∞ ⎪⎝⎭C .()0,2D .1,22⎡⎫⎪⎢⎣⎭【答案】A【解析】因为033x <<,所以131100x <+<,所以()20lg 31x <+<,由()1f x <,得()1lg 31kx <+,即()lg 311k x <+,因为不等式()1f x <在()0,33x ∈上恒成立,所以()min lg 311k x ⎡⎤⎢⎥⎢⎥⎣<+⎦,()0,33x ∈即可.由()20lg 31x <+<,得()21g 31l 1x >+,即12k ≤,所以k 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.故选:A.【变式1-3】(23-24高一下·黑龙江大庆·开学考试)已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()e x f x g x +=,且()2e 0x f x m ->-≥在[]1,2x ∈上恒成立,则实数m 的取值范围为.【答案】(2e ,0-⎤-⎦【解析】因为()()e xf xg x +=,①得()()e xf xg x --+-=,又()f x 和()g x 分别为偶函数和奇函数,所以()()e xf xg x --=,②由①②相加得()2e e x xf x -=+,又()2e 0xf x m ->-≥在[]1,2x ∈上恒成立即e 0x m --<≤在[]1,2x ∈上恒成立,设()e xh x -=-,则只需()max m h x >,易知()h x 在[]1,2上为增函数,()()2max 2e h x h -==-,所以2e 0m --<≤,故答案为:(2e ,0-⎤-⎦.考点二:单变量不等式能成立例2.(23-24高一上·重庆·期末)已知函数()22f x x x =-,若存在[]2,4x ∈,使得不等式()23f x a a≤+成立,则实数a 的取值范围为.【答案】][(),30,∞∞--⋃+【解析】因为函数()22f x x x =-的对称轴为1x =,所以当[]24x ,∈时,该二次函数单调递增,所以()()min 20f x f ==,因为存在[]24x ,∈,使得不等式()23f x a a ≤+成立,所以有2300a a a +≥⇒≥,或3a ≤-,因此实数a 的取值范围为][(),30,∞∞--⋃+,故答案为:][(),30,∞∞--⋃+【变式2-1】(22-23高一上·四川南充·月考)已知函数()142f x x x =+-.若存在()2,x ∈+∞,使得()2f x a a ≤-成立,则实数a 的取值范围是.【答案】(][),34,-∞-⋃+∞【解析】因为()2,x ∈+∞,所以20x ->,所以()1144(2)822f x x x x x =+=-++--812≥+=,当且仅当14(2)2x x -=-,即52x =时取等号,所以min ()12f x =,因为存在()2,x ∈+∞,使得()2f x a a ≤-成立,所以只要()2min f x a a ≤-,即212a a ≤-,得3a ≤-或4a ≥,所以a 的取值范围为(][),34,-∞-⋃+∞.【变式2-2】(22-23高一上·山东枣庄·月考)设函数1()f x x x =+,1,32x ⎡⎤∈⎢⎥⎣⎦,若1,32x ⎡⎤∃∈⎢⎥⎣⎦,使得2()a a f x -≥成立,则实数a 的取值范围是.【答案】(][),12,-∞-⋃+∞【解析】因为函数1()f x x x =+,1,32x ⎡⎤∈⎢⎥⎣⎦,而函数()f x 在1,12⎡⎤⎢⎥⎣⎦为减函数,在[]1,3为增函数,所以min ()(1)112f x f ==+=,即函数的最小值为2,又1,32x ⎡⎤∃∈⎢⎥⎣⎦,使得2()a a f x -≥成立,则2min ()a a f x -≥,即22a a -≥,解得:2a ≥或1a ≤-,即实数a 的取值范围是2a ≥或1a ≤-,故答案为:(][),12,-∞-⋃+∞【变式2-3】(23-24高一下·河北张家口·开学考试)已知函数()22(0)g x ax ax b a =++>在区间[]0,2上有最大值11和最小值3,且()()g x f x x=.(1)求a b 、的值;(2)若不等式()220x xk f ⋅-≤在[]1,2x ∈-上有解,求实数k 的取值范围.【答案】(1)1,3a b ==;(2)17k ≤.【解析】(1)函数()22(0)g x ax ax b a =++>图象的对称轴为=1x -,显然函数()g x 在[]0,2上单调递增,因此min ()(0)3g x g b ===,max ()(2)811g x g a b ==+=,解得1a =,所以1,3a b ==.(2)由(1)知,2()23g x x x =++,()3()2g x f x x x x==++,因此不等式2332)2)012(202(22()22x x x xx x xk f k k ⋅-⋅++≤≤-⇔≤⇔++,令12x t =,由[]1,2x ∈-,得124t ≤≤,则22321321(22)x xt t ++=++,显然函数2321y t t =++在1[,2]4t ∈上单调递增,当2t =时,max 17y =,由不等式()220x xk f ⋅-≤在[]1,2x ∈-上有解,得17k ≤,所以实数k 的取值范围是17k ≤.考点三:任意-任意型不等式成立例3.(21-22高二下·北京·月考)已知()()21,2xf x xg x m ⎛⎫==- ⎪⎝⎭,若对任意[]10,2x ∈,任意[]21,2x ∈,使得()()12f x g x ≥,则实数m 的取值范围是()A .14m ≥B .14m ≤C .12m ≥D .12m ≤【答案】C【解析】由[]10,2x ∈,2()f x x =,所以1()[0,4]f x ∈,对任意的[]10,2x ∈,要使()()12f x g x ≥成立,即要2()0g x ≤,对任意[]21,2x ∈上成立,所以任意[1,2]x ∈,使得1()2x m ≤成立,即max 11()22x m ≥=.故选:C.【变式3-1】(22-23高一上·湖北鄂州·期中)已知()f x 是定义在[]31,3D a a =++上的奇函数,且当(]0,3x a ∈+时,()22f x x ax =+.(1)求函数()f x 的解析式;(2)设()g x x b =-+,对任意12,x x D ∈,均有()()12f x g x ≥,求实数b 的取值范围.【答案】(1)()222,020,02,20x x x f x x x x x ⎧-<≤⎪==⎨⎪---≤<⎩;(2)(,3]-∞-【解析】(1)因为()f x 是定义在[]313a a ++,上的奇函数,所以3130a a ++=+,解得1a =-,所以()f x 是定义在[]22-,上的奇函数,可得()00f =,当2(]0,x ∈时,()22f x x x =-.当[2,0)x ∈-时,则(0,2]x -∈,所以()()()2222f x x x x x -=---=+,因为()f x 是奇函数,所以()()22f x f x x x -=-=+,所以()22f x x x =--,所以()222,020,02,20x x x f x x x x x ⎧-<≤⎪==⎨⎪---≤<⎩.(2)对任意12,x x D ∈,均有()12()f x g x ≥,只需min max ()()f x g x ≥,由(1)知,当2(]0,x ∈时,()222(1)1f x x x x =-=--,当1x =时,()min 1f x =-;当[2,0)x ∈-时,()222(1)1f x x x x =--=-++,当2x =-时,()min 0f x =,又由()00f =,所以函数min ()(1)1f x f ==-,因为()g x x b =-+在[2,-上为单调递减函数,所以()()max 22g x g b =-=+,所以12b -≥+,解得3b ≤-,故实数b 的取值范围为(,3]-∞-.【变式3-2】(23-24高一上·湖南永州·期末)已知函数()lg f x x =,()2e e x xg x a =-.(1)若对[]11,10x ∀∈,[)20,x ∀∈+∞都有()()12f x g x ≤,求实数a 的取值范围;(2)若函数()()()h x g x g x =+-,求函数()h x 的零点个数.【答案】(1)2a ≥;(2)答案见解析.【解析】(1)对[]11,10x ∀∈,[)20,x ∀∈+∞都有()()12f x g x ≤,只需()()12max min f x g x ≤,由()11lg f x x =在[]11,10x ∈上递增,故()1max (10)1f x f ==,由()2222ee x x g x a =-,在[)20,x ∈+∞上有2[1,)e x t ∈=+∞,所以()22g x y at t ==-且[1,)t ∈+∞,故有21at t -≥在[1,)t ∈+∞上恒成立,所以2max max 211111()[()24a t t t ≥+=+-,而1(0,1]t∈,即2a ≥.(2)由题设()2222e e e )e e e e ()(e x x x x x x x xh a x a a ----=--=+-++,令2e e x x μ-=≥+,当且仅当0x =时等号成立,则2222()2e e e e x x x x μ--+=+=+,即2222e e x x μ-+=-,所以()2()2a a h x ϕμμμ==--且[2,)μ∈+∞,令2()20a a ϕμμμ=--=,则问题等价于2122a μμμμ==--在[2,)μ∈+∞上解的个数,又12y μμ=-在[2,)μ∈+∞上递减,故(0,1]y ∈,当1a >或0a ≤时,22a μμ=-在[2,)μ∈+∞上无解,即()h x 无零点;当1a =时,22(1)(2)0μμμμ--=+-=在[2,)μ∈+∞上有2μ=,所以2e e x x μ-+==,即0x =,故()h x 有1个零点;当01a <<时,220a a μμ--=在[2,)μ∈+∞上有122aμ+=>(负值舍),又e e x x μ-=+为偶函数,此时()h x 有2个零点;综上,1a >或0a ≤时,()h x 无零点;1a =时,()h x 有1个零点;01a <<时,()h x 有2个零点;【变式3-3】(23-24高一上·北京·月考)已知函数()()()()()21122log 1log 1,6R f x x x g x x ax a =++-=-+∈.(1)求函数()f x 的定义域.(2)判断函数()f x 的奇偶性,并说明理由.(3)对)[]12,1,2x x ∀∈+∞∈,不等式()()12f x g x ≤恒成立,求实数a 的取值范围.【答案】(1)()1,+∞;(2)函数()f x 为非奇非偶函数,理由见解析;(3)11,2⎛⎤-∞ ⎥⎝⎦【解析】(1)由函数()()()1122log 1log 1f x x x =++-有意义,则满足1010x x +>⎧⎨->⎩,解得1x >,所以函数()f x 的定义域为()1,+∞.(2)因为()f x 的定义域为()1,+∞,不关于原点对称,所以函数()f x 为非奇非偶函数.(3)由“对)[]12,2,4x x ∀∈+∞∈-,不等式()()12f x g x ≤恒成立”,可得max min ()()f x g x ≤,当x ()()()()2111222log 1log 1log 1f x x x x =++-=-由()f x 在)+∞上单调递减,max ()1f x f==-,根据题意得,对[]21,2,70x x ax ∀∈-+≥法一:可转化为[]71,2,x a x x∀∈≤+,令()7h x x x =+,由()h x 在[]1,2上单调递减得,可得()min 711()2222h x h ==+=,实数a 的取值范围为11,2⎛⎤-∞ ⎥⎝⎦.法二:设函数()27g x x ax =-+,①当22a≥,即4a ≥时,()g x 在[]1,2上单调递减,可得()min ()21021g x g a ==-≥-,解得112a ≤,则1142a ≤≤;②当12a≤,即2a ≤时,()g x 在[]1,2上单调递增,可得()min ()171g x g a ==-≥-,解得8a ≤,则2a ≤;③当122a<<,即24a <<时,()g x 在[]1,2先减后增,可得()2min ()7122a ag x a =-⨯+≥-,解得a -≤≤24a <<,综上,实数a 的取值范围为11,2⎛⎤-∞ ⎥⎝⎦.考点四:任意-存在型不等式成立例4.(23-24高一下·山东淄博·期中)已知函数()3f x x =+,[]0,2x ∈,()ag x x x=+,[]1,2x ∈.对[]10,2x ∀∈,都[]21,2x ∃∈,使得()()12f x g x ≥成立,则a 的范围是.【答案】9,4⎛⎤-∞ ⎥⎝⎦【解析】函数()3f x x =+,在[]0,2x ∈上单调递增,所以min ()(0)3f x f ==,当a<0时,()ag x x x=+在区间[]1,2上单调递增,min ()1g x a =+,所以31a ≥+,解得2a ≤,又因为a<0,所以031a a <⎧⎨≥+⎩,解得a<0;当01a ≤≤时,()ag x x x=+在区间[]1,2上单调递增,其最小值为(1)1g a =+,所以有0131a a ≤≤⎧⎨≥+⎩,解得01a ≤≤,当14a <<时,()ag x x x=+在区间上单调减,在上单调增,其最小值为g =,所以有143a <≤⎧⎪⎨≥⎪⎩,解得914a <≤,当4a >时,()ag x x x =+在区间[]1,2上单调减,()min ()222a g x g ==+,此时4322a a >⎧⎪⎨≥+⎪⎩,无解;所以a 的取值范围是9,4⎛⎤-∞ ⎥⎝⎦,故答案为:9,4⎛⎤-∞ ⎥⎝⎦.【变式4-1】(23-24高一上·重庆·月考)已知函数()()4,2xf x xg x a x=+=+.若[][]121,3,2,3x x ∀∈∃∈,使得()()12f x g x ≥成立,则实数a 的范围是()A .4a ≤B .3a ≤C .0a ≤D .1a ≤【答案】C【解析】因为()44f x x x =+≥=,当且仅当4x x =,且0,x >即2x =时等号成立,所以()min 4f x =,又函数()2x g x a =+在[]2,3上单调递增,所以()2min 24g x a a =+=+,由题意可知()()min min f x g x ≥,即44a ≥+,所以0a ≤,故选:C.【变式4-2】(23-24高一上·广东佛山·期中)已知()221f x x x =--,()log a g x x =(0a >且1a ≠),若对任意的[]11,2x ∈-,都存在[]22,4x ∈,使得()()12f x g x <成立,则实数a 的取值范围是()A .,12⎛⎫ ⎪ ⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .(D .()1,2【答案】D【解析】由题意可知:()()12max max <⎡⎤⎡⎤⎣⎦⎣⎦f x g x ,因为()221f x x x =--的图象开口向上,对称轴为1x =,且[]1,2x ∈-,可知当=1x -时,()f x 取到最大值()12f -=,由题意可得:()22<g x ,可知存在[]22,4x ∈,使得()22<g x 成立,当01a <<,可知()log a g x x =在()0,∞+上单调递减,可得()()2102<=<g x g ,不合题意;当1a >,可知()log a g x x =在()0,∞+上单调递增,可得()2g x 的最大值为()4g ,则()24log 42log =>=a a g a ,即24a <又1a >,解得12a <<;综上所述:实数a 的取值范围是()1,2.故选:D.【变式4-3】(23-24高一上·广东茂名·期中)已知函数()()()2222410,2log 123x f x x x g x x m m =-+=+++-,若对任意[]10,4x ∈,总存在[]2x ∈,使()()12f x g x ≥成立,则实数m 的取值范围为.【答案】[1,2]【解析】对任意[]10,4x ∈,总存在[]22,4x ∈,使()()12f x g x ≥成立,∴对[][]()()1212min min 0,4,2,4,x x f x g x ∈∈≥成立()22410(2)6,f x x x x =-+=-+∴ 当[]10,4x ∈时,()()1min 26f x f ==,()()2222log 123x g x x m m =+++- 在[]2,4上是增函数,∴当[]22,4x ∈时,()()()222222min 22log 212338g x g m m m m ==+++-=-+,()()22638,320,120,12m m m m m m m ∴≥-+∴-+≤∴--≤∴≤≤,故实数m 的取值范围为[1,2].故答案为:[1,2].考点五:存在-存在性不等式成立例5.(22-23高一上·北京丰台·期中)已知函数()f x ax =和221()8g x x a =+(其中0a >),若存在12,(1,1)x x ∈-使得()()12f x g x ≥成立,则实数a 的取值范围是()A .(0,1)B .(0,1]C .22,44⎛-+ ⎝⎭D .22,44⎡+⎢⎣⎦【答案】A【解析】存在12,(1,1)x x ∈-使得()()12f x g x ≥成立,等价于()()max min f x g x ≥在()1,1x ∈-上恒成立,由0a >得,()f x a <,()2min ()0g x g a ==,所以2a a >,解得01a <<,所以实数a 的取值范围是(0,1).故选:A.【变式5-1】(23-24高一上·河北·月考)已知()()[]()()212121,22,,0,1,f x ax g x x x a x x f x g x =+=-+∃∈>,则a 的取值范围是()A .(),2-∞B .()2,+∞C .(),1-∞D .()1,+∞【答案】A【解析】[]12,0,1x x ∃∈,()()12f x g x >,所以,()()12max min f x g x >,()()2222121g x x x a x a =-+=-+-在[]0,1上单调递减,所以()2min 21g x a =-,当0a =时,())2122212f x g x x =>=-,即22212x x >-,取210x x ==成立.当a<0时,()1max 1f x =,即211a -<,得1a <,所以a<0当0a >时,()1max 1f x a =+,即121a a +>-,得2a <,所以02a <<,综上:a 的取值范围是(),2-∞.故选:A【变式5-2】(22-23高一上·辽宁营口·期末)已知函数()4f x x x =+,()2x g x a =+,若11,12x ⎡⎤∃∈⎢⎥⎣⎦,[]22,3x ∃∈,使得()()12f x g x ≤,则实数a 的取值范围是()A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[)3,∞-+D .[)1,+∞【答案】C【解析】若11,12x ⎡⎤∃∈⎢⎥⎣⎦,[]22,3x ∃∈,使得()()12f x g x ≤,故只需()()min max f x g x ≤,其中()4f x x x =+在1,12x ⎡⎤∈⎢⎥⎣⎦上单调递减,故()()min 5114f x f ==+=,()2x g x a =+在[]2,3x ∈上单调递增,故()()max 38g x g a ==+,所以58a ≤+,解得:3a ≥-,实数a 的取值范围是[)3,∞-+.故选:C【变式5-3】(23-24高一上·全国·期末)已知2()21,()log (0a f x x x g x x a =--=>且0)a ≠,若存在[]11,2x ∈-,存在[]22,4x ∈,使得12()()f x g x <成立,则实数a 的取值范围是.【答案】()1,2∞⎛⎫⋃+ ⎪ ⎪⎝⎭【解析】因为22()21(1)2f x x x x =--=--,当[]1,2x ∈-时,max min ()(1)2,()(1)2f x f f x f =-===-,因为存在[]11,2x ∈-,存在[]22,4x ∈,使得12()()f x g x <成立,所以函数()f x 在[]1,2-上的最小值小于函数()g x 在[]2,4上的最大值.当01a <<时,函数()log a g x x =在[]2,4上单调递减,则2log 2a -<,解得02a <<;当1a >时,函数()log a g x x =在[]2,4上单调递增,则2log 4a -<,解得1a >,综上,实数a 的取值范围是()0,1,2∞⎛⋃+ ⎪⎝⎭.故答案为:()0,1,2∞⎛⎫⋃+ ⎪ ⎪⎝⎭.考点六:任意-存在型等式成立例6.(22-23高二下·黑龙江哈尔滨·期末)已知221()2,()e 1x f x x x m g x -=-+=-,若对[]12130,3,,22x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x =,则实数m 的取值范围是()A .22,e 4⎡⎤-⎣⎦B .21,e 5⎡⎤-⎣⎦C .22,e 5⎡⎤-⎣⎦D .21,e 4⎡⎤-⎣⎦【答案】D【解析】因为22()2(1)1f x x x m x m =-+=-+-,[]0,3x ∈,所以()f x 在[0,1)上递减,在(1,3]上递增,所以()f x 的最小值为(1)1f m =-,因为(0),(3)3f m f m ==+,3m m +>,所以()f x 的最大值为3m +,所以()f x 的值域为[1,3]m m -+,因为21()e 1x g x -=-在13,22x ⎡⎤∈⎢⎥⎣⎦上递增,所以()g x 的值域为2[0,e 1]-,因为对[]12130,3,,22x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x =,所以[1,3]m m -+是2[0,e 1]-的子集,所以2103e 1m m -≥⎧⎨+≤-⎩,解得21e 4m ≤≤-,即m 的取值范围21e 4m ≤≤-故选:D 【变式6-1】(23-24高一上·甘肃酒泉·期末)已知函数()2f x ax =-,()122,13,1,31,x x g x x x -⎧≤≤=⎨-+-≤<⎩对1[3,3]x ∀∈-,2[3,3]x ∃∈-,使得()()12f x g x =成立,则实数a 的取值范围是()A .[1,1]-B .[]0,4C .[]1,3D .[2,2]-【答案】D【解析】因为()122,13,1,31,x x g x x x -⎧≤≤=⎨-+-≤<⎩所以[)23,1x ∈-时,()[]22218,1g x x =-+∈-,[]21,3x ∈时,()[]21221,4x g x -=∈,综上()[]28,4g x ∈-.当0a >时,1[3,3]x ∀∈-,[]1()32,32f x a a ∈---,由题意,[][]32,328,4a a ---⊆-,即328324a a --≥-⎧⎨-≤⎩,解得02a <≤;当0a =时,1()2f x =-,符合题意;当0a <时,1[3,3]x ∀∈-,[]1()32,32f x a a ∈---,由题意,[][]32,328,4a a ---⊆-,即328324a a -≥-⎧⎨--≤⎩,解得20a -≤<;综上可得[]2,2a ∈-.故选:D.【变式6-2】(23-24高一上·江苏南通·期中)已知函数()f x 为偶函数,且[]2,0x ∈-时,()f x x =-.(1)求(]0,2x ∈时,()f x 的解析式;(2)若函数()()20g x ax a a =+-≠,对[][]122,2,2,2x x ∀∈-∃∈-,使得()()21g x f x =成立,求实数a 的取值范围.【答案】(1)()f x x =--,(]0,2x ∈;(2)6a ≤-或2a ≥.【解析】(1)(]0,2x ∈时,[)2,0x -∈-,所以()f x x x -=--=--,因为()f x 为偶函数,所以()()f x f x -=,则()f x x =--(]0,2x ∈;(2)因为()f x 为偶函数,所以()f x 在[]2,0-和[]0,2上的值域相同,当(]0,2x ∈时,()f x x =--,令t 23x t =-,t ⎡∈⎣,所以函数化为()222314y t t t =--=--,t ⎡∈⎣,所以1t =时,min 4y =-;t =max y =-即()f x 在[]22-,上的值域为4,⎡--⎣.又对[]12,2x ∀∈-,[]22,2x ∃∈-,使得()()21g x f x =成立,所以()f x 的值域是()g x 的值域的子集,①当0a >时,()g x 在[]22-,上的值域为[]23,2a a -+则4232aa -≥-⎧⎪⎨-≤+⎪⎩,解得2a ≥②当a<0时,()g x 在[]22-,上的值域为[]2,23a a +-,则4223a a -≥+⎧⎪⎨-≤-⎪⎩,解得6a ≤-综上所述,实数a 的取值范围为6a ≤-或2a ≥.【变式6-3】(21-22高一下·上海黄浦·月考)已知函数2()f x x x k =-+,若2log ()2f a =,2(log )f a k =,1a ≠.(1)求,a k 的值,并求函数(log )a f x 的最小值及此时x 的值;(2)函数()42g x mx m =+-,若对任意的1[1,3]x ∈,总存在2[1,3]x ∈,使得()()12f x g x =成立,求实数m 的取值范围.【答案】(1)2a =,2k =,x (log )a f x 有最小值74;(2)(,4][4,)-∞-+∞【解析】(1)因为2()f x x x k =-+,所以2()f a a a k =-+,所以()2222log 2log 44a a k a a k -+==⇒-+=,①因为2(log )f a k =,所以()2222log log l )og (f k a a a k =-+=,②由②得,()2222log log log 00a a a -=⇒=或21log a =,解得1a =或2a =因为0a >,且1a ≠,所以2a =,代入①得22242k k -+=⇒=,所以2,2a k ==,所以2()2f x x x =-+所以22222217(log )(log )(log )log 2(log )24a f x f x x x x ==-+=-+.所以当21log 2x =,即x =(log )a f x 有最小值74.(2)2()2f x x x =-+,当1[1,3]x ∈时,1()[2,8]f x ∈,因为对任意的1[1,3]x ∈,总存在2[1,3]x ∈,使得()()12f x g x =成立,所以1()f x 的值域是2()g x 值域的子集,当0m =时,()4g x =,舍去;当0m >时,因为2[1,3]x ∈,所以2()[4,4]g x m m ∈-++,所以4248m m -+≤⎧⎨+≥⎩,所以4m ≥;当0m <时,因为2[1,3]x ∈,所以2()[4,4]g x m m ∈+-+,所以4248m m +≤⎧⎨-+≥⎩,所以4m -;综上,实数m 的取值范围是(,4][4,)-∞-+∞ .一、单选题1.(23-24高一上·河北石家庄·期中)已知函数2()224x x f x a =-⋅+,若()0f x ≥恒成立,则实数a 的取值范围为()A .(,4]-∞B .(,2]-∞C .[4,)+∞D .[2,)+∞【答案】A【解析】因为()0f x ≥恒成立,即22240x x a -⋅+≥恒成立,所以422xx a ≤+恒成立,又由4242x x +≥=(当且仅当1x =时取等号),所以4a ≤.故选:A .2.(23-24高一上·吉林长春·期中)设函数()221(1)f x x x =-+-,不等式()()3f ax f x ≤+在(]1,2x ∈上恒成立,则实数a 的取值范围是()A .5,2⎛⎤-∞ ⎥⎝⎦B .(],2-∞C .51,2⎡⎤-⎢⎥⎣⎦D .35,22⎡⎤-⎢⎥⎣⎦【答案】D【解析】因为()212f x x x +=+,()212f x x x -=+,所以()()11f x f x +=-,所以函数()221(1)f x x x =-+-关于直线1x =对称,当1x ≥时,()()2221(1)1f x x x x =-+-=-,则函数()f x 在[)1,+∞上单调递增,所以在(),1-∞上单调递减,又不等式()()3f ax f x ≤+在(]1,2x ∈上恒成立,所以12ax x -≤+在(]1,2x ∈上恒成立,即12ax x -≤+在(]1,2x ∈上恒成立,所以212--≤-≤+x ax x 在(]1,2x ∈上恒成立,所以1311--≤≤+a x x 在(]1,2x ∈上恒成立,所以max min1311⎛⎫⎛⎫--≤≤+ ⎪ ⎪⎝⎭⎝⎭a x x ,因为函数11y x =--在(]1,2x ∈上单调递增,所以max 1131122x ⎛⎫--=--=- ⎪⎝⎭,因为函数31=+y x 在(]1,2x ∈上单调递减,所以min3351122x ⎛⎫+=+= ⎪⎝⎭,所以3522a -≤≤,即35,22⎡⎤-⎢⎥⎣⎦.故选:D3.(22-23高一上·海南·期中)已知函数()24a x x x f =-+,()5g x ax a =+-,若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()1f x g x =成立,则实数a 的取值范围是()A .(],9-∞-B .[]9,3-C .[)3,+∞D .(][),93,-∞-+∞ 【答案】D【解析】要使对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,即()f x 在[]1,3-上值域是()g x 在[]1,3-上值域的子集,2()(2)4f x x a =-+-开口向上且对称轴为2x =,则[]1,3-上值域为[4,5]a a -+;对于()5g x ax a =+-:当a<0时()g x 在[]1,3-上值域为[25,52]a a +-,此时,0254525a a a a a <⎧⎪+≤-⎨⎪-≥+⎩,可得9a ≤-;当0a =时()g x 在[]1,3-上值域为{5},不满足要求;当0a >时()g x 在[]1,3-上值域为[52,25]a a -+;此时,0255524a a a a a >⎧⎪+≥+⎨⎪-≤-⎩,可得3a ≥;综上,a 的取值范围(][),93,-∞-+∞ .故选:D4.(23-24高一上·江西南昌·月考)已知函数()4f x x x=+,()2xg x a =+.若[]11,3x ∀∈,[]22,3x ∃∈,使得()()12f x g x ≥成立,则实数a 的取值范围是()A .4a ≤-B .3a ≤-C .0a ≤D .1a ≤【答案】C【解析】设()4f x x x=+在[]1,3上的最小值为()min f x ,()2xg x a =+在[]2,3上的最小值为()min g x .因为44x x +≥=,当且仅当4x x =,且0x >,即2x =时等号成立,所以,()min 4f x =.()2x g x a =+在[]2,3上单调递增,所以()()min 24g x g a ==+.由[]11,3x ∀∈,[]22,3x ∃∈,使得()()12f x g x ≥成立,可得()()min min f x g x ≥,即44a ≥+,所以0a ≤.故选:C.5.(22-23高二上·陕西西安·期中)已知()()()21ln 12xf x xg x m ⎛⎫=+=- ⎪⎝⎭,,若对任意[]10,3x ∈,[]21,2x ∈,使得()()12f x g x ≥,则实数m 的取值范围是()A .14⎡⎫+∞⎪⎢⎣⎭,B .14⎛-∞⎤ ⎝,C .12⎡⎫+∞⎪⎢⎣⎭D .12⎛⎤-∞- ⎥⎝⎦,【答案】C【解析】易知()2(ln 1)f x x =+在[0,3]上单调递增,()()min 00f x f ==,()1()2x g x m =-在[1,2]上单调递减,()()max 112g x g m ==-,对任意[]10,3x ∈,[]21,2x ∈,使得()()12f x g x ≥,则()()min maxf xg x ≥所以102m -≤,即12m ≥.故选:C.6.(21-22高一上·福建泉州·期中)已知函数()3f x ax =,0a >,223()2g x x a =+,若存在1x ,211,22x ⎡⎤∈-⎢⎥⎣⎦使得()()12f x g x ≥成立,则a 的取值范围为()A .25a <<B .02a <<C.52a <<或2a <-D .108a <≤【答案】D【解析】设任意的11,,22m n ⎡⎤∈-⎢⎥⎣⎦,且m n <,0a >,所以()()()()2233f a m n m m nm f n am a n n -=-++-=()223024n n a m n m ⎡⎤⎛⎫=-++<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,即()()f m f n <,所以()3f x ax =在11,22⎡⎤-⎢⎥⎣⎦上单调递增,所以()max 128a f x f ⎛⎫== ⎪⎝⎭;因为223()2g x x a =+,其对称轴为0x =,所以根据二次函数的性质可得223()2g x x a =+在11,22⎡⎤-⎢⎥⎣⎦可得到最小值2(0)g a =,若存在1x ,211,22x ⎡⎤∈-⎢⎥⎣⎦使得()()12f x g x ≥成立,只需()()max min f x g x ≥,所以28a a ≥,解得108a ≤≤,因为0a >,所以a 的取值范围为108a <≤,故选:D 二、多选题7.(23-24高一上·辽宁丹东·月考)12x x m -++≥对于x ∀∈R 恒成立,则m 的可能取值为()A .1B .2C .3D .4【答案】ABC【解析】设()12f x x x =-++,则()21,1123,2121,2x x f x x x x x x +≥⎧⎪=-++=-<<⎨⎪--≤-⎩,则()f x的图象如下所示:由图可知当21x -≤≤时()f x 取得最小值3,即123x x -++≥当且仅当21x -≤≤时取等号,因为12x x m -++≥对于x ∀∈R 恒成立,所以3m ≤,故符合题意的有A 、B 、C.故选:ABC8.(23-24高一上·湖南株洲·月考)已知函数()21([2,2])f x x x =-+∈-,2()2([0,3])g x x x x =-∈,则下列结论正确的是()A .[2,2]x ∀∈-,()f x a >恒成立,则a 的取值范围是(,3)-∞-B .[2,2]x ∃∈-,()f x a >,则a 的取值范围是(,3)-∞-C .[0,3]x ∃∈,()g x a =,则a 的取值范围是[1,3]-D .[2,2]x ∀∈-,[0,3]t ∃∈,()()f x g t =【答案】AC【解析】对于A ,因为()21([2,2])f x x x =-+∈-单调递减,所以min ()3f x =-,又因为()f x a >恒成立,则a 的取值范围是(,3)-∞-,故A 正确;对于B ,因为()21([2,2])f x x x =-+∈-单调递减,所以max ()5f x =,又[2,2]x ∃∈-,()f x a >,则a 的取值范围是(,5)-∞,故B 错误;对于C ,2()2([0,3])g x x x x =-∈在[]0,1单调递减,(]1,3单调递增,所以min max ()(1)1,()(3)3,g x g g x g ==-==所以()[1,3]g x ∈-,因为[0,3]x ∃∈,()g x a =,所以a 的取值范围是[1,3]-,故C 正确;对于D ,由上述过程可知[]()3,5f x ∈-,()[1,3]g x ∈-,则不能保证[2,2]x ∀∈-,[0,3]t ∃∈,()()f x g t =,例如:当2x =-时,不存在[0,3]t ∈,()()f x g t =,故D 错误.故选:AC.三、填空题9.(23-24高一上·广东·月考)已知函数1()2xf x ⎛⎫= ⎪⎝⎭与2()24(0)g x x ax a =-+>,若对任意的1(0,1)x ∈,都存在2[0,2]x ∈,使得()()12f x g x =,则实数a 的取值范围是.【答案】,2⎫+∞⎪⎪⎣⎭【解析】1()2xf x ⎛⎫= ⎪⎝⎭,函数单调递减,1(0,1)x ∈,故()11,12f x ⎛⎫∈ ⎪⎝⎭,对任意的1(0,1)x ∈,都存在2[0,2]x ∈,使得()()12f x g x =,故()2g x 的值域包含1,12⎛⎫⎪⎝⎭,①当02a <<时,()()2min 142g x g a a ==-≤,解得22a ≤<,此时()()max 041g x g ==≥,成立;②当2a ≥时,函数在[]0,2上单调递减,()()max 041g x g ==≥,成立,()()min 12842g x g a ==-≤,解得158a ≥,即2a ≥;综上所述:2a ⎫∈+∞⎪⎪⎣⎭.故答案为:,2⎫+∞⎪⎪⎣⎭10.(23-24高一上·广东佛山·期中)已知函数()f x x x =,若对任意[],2x t t ∈+,不等式()()29f x t f x +≤恒成立,则实数t 的取值范围是.【答案】1⎡⎤⎣⎦【解析】因为()f x x x =,则有:当0x ≥时,()2f x x =,此时()f x 单调递增;当0x ≤时,()2f x x =-,此时()f x 单调递增,且()00f =,所以()f x 为R 上的连续函数且在R 上单调递增.又因为()()99333===f x x x x x f x ,则()()()293+≤=f x t f x f x ,可得23+≤x t x ,即23≤-t x x 对任意[],2x t t ∈+恒成立,注意到23y x x =-的图象开口向下,则()()223322t t t t t t ⎧≤-⎪⎨≤+-+⎪⎩,解得01≤≤t ,所以实数t 的取值范围为1⎡⎤⎦.故答案为:1⎡⎤⎣⎦.11.(23-24高一下·上海嘉定·月考)已知函数()()22log 1f x x =+,()12xg x m ⎛⎫=+ ⎪⎝⎭,若对于任意[]11,1x ∈-,存在[]21,1x ∈-,使得()()12f x g x ≤,则实数m 的取值范围为.【答案】[)1,-+∞【解析】因为[]11,1x ∈-,所以[]2111,2x ∈+,所以()[]221log 10,1x ∈+,即()[]10,1f x ∈,由[]21,1x ∈-,则211,222xm m m ⎡⎤+∈++⎢⎥⎛⎪⎭⎣⎫ ⎦⎝,即()21,22g x m m ⎡⎤∈++⎢⎥⎣⎦,因为对于任意[]11,1x ∈-,存在[]21,1x ∈-,使得()()12f x g x ≤,所以()()12max max f x g x ≤,则21m +≥,解得1m ≥-,即[)1,m ∈-+∞.故答案为:[)1,-+∞.四、解答题12.(22-23高一上·江西赣州·期中)函数()log a f x b x =⋅(其中a ,b 为常数,且0a >,1a ≠)的图象经过点(),4A a ,()4,8B .(1)求函数()f x 的解析式;(2)若不等式110x xm b a ⎛⎫⎛⎫--≥ ⎪ ⎪⎝⎭⎝⎭在区间[]1,2-上有解,求实数m 的取值范围.【答案】(1)2()4log f x x =;(2)2m ≤【解析】(1)由题意得log 4log 48a a b a b ⋅=⎧⎨⋅=⎩,解之得24a b =⎧⎨=⎩,故2()4log f x x =;(2)由(1)知11042x xm ⎛⎫⎛⎫--≥ ⎪ ⎪⎝⎭⎝⎭在区间[]1,2-上有解,即1142x x m ⎛⎫⎛⎫≤- ⎪ ⎪⎝⎭⎝⎭在区间[]1,2-上有解,所以max 1142x x m ⎡⎤⎛⎫⎛⎫≤-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,因为2211111114222224x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫-=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,由于[]1,2x ∈-得11,224x ⎡⎤∈⎢⎥⎣⎦,所以当122x =即=1x -时,1142x x ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭有最大值为2,因此m 的取值范围为2m ≤.13.(23-24高一上·内蒙古赤峰·期末)已知函数()()21log 212x f x x =+-.(1)解不等式()112f x x >+;(2)设()()g x f x x =+,()22h x x x m =-+,若对任意的[]10,4x ∈,存在[]20,5x ∈,使得()()12g x h x ≥,求m 的取值范围.【答案】(1)(),0∞-;(2)(,2]-∞【解析】(1)因为()112f x x >+,所以()211log 21122x x x +->+,所以()22221log 211log log 22x x xx ++->⇔>,由对数函数2log y x =的单调性可知:2122x x +>,所以21x <,由指数函数2x y =的单调性可知:0x <,所以不等式的解集为(),0∞-;(2)()()21log 212x g x x =++,因为对任意的[]10,4x ∈,存在[]20,5x ∈,使得()()12g x h x ≥,所以()g x 在[]0,4上的最小值不小于()h x 在[]0,5上的最小值;因为()21log 21,2x y y x =+=均在[]0,4上单调递增,所以()21()log 212x g x x =++在[]0,4上单调递增,所以()()min 01g x g ==,因为()()22211h x x x m x m =-+=-+-,所以()h x 在[]0,1上单调递减,在[]1,5上单调递增,所以()()min 11h x h m ==-,所以11m ≥-,解得2m ≤,所以m 的取值范围为(,2]-∞.。
恒成立或存在性问题课件-2024届高三数学二轮复习

要点 解决恒成立或有解问题的常见结论 下列是恒成立问题的一些常见结论: (1)不等式f(x)≥0在定义域内恒成立,等价于f(x)min≥0; (2)不等式f(x)≤0在定义域内恒成立,等价于f(x)max≤0; (3)不等式f(x)>g(x),x∈(a,b)恒成立,等价于F(x)=f(x)-g(x)>0,x∈(a,b) 恒成立.
例1 已知a≠0,函数f(x)=ax(x-2)2(x∈R).若对任意x∈[-2,1],不等式 f(x)<32恒成立,求a的取值范围.
【解析】 方法一:因为f(x)=ax(x2-4x+4)=ax3-4ax2+4ax. 所以f′(x)=3ax2-8ax+4a=a(3x2-8x+4)=a(3x-2)(x-2). 当a>0时,f(x)在-2,23上单调递增, 在23,1上单调递减. 故f(x)的最大值为f23=3227a<32,即a<27.
即22aa+ +b4+ b+1= 2=0, 0,解得ab= =- -1313, . 经验证,符合题意. (2)在 14,1 上存在x0,使得不等式f(x0)-c≤0成立,只需c≥f(x)min,x∈ 14,1, 因为f′(x)=-23-31x2+1x=-2x2-3x32x+1=-(2x-1)3x(2 x-1), 所以当x∈14,12时,f′(x)<0,f(x)单调递减;
题型二 存在性问题
例2 已知函数f(x)=-ax2+ln x(a∈R).
(1)讨论f(x)的单调性;
(2)若存在x∈(1,+∞),f(x)>-a,求实数a的取值范围. 【解析】 (1)函数f(x)的定义域为(0,+∞),f′(x)=-2ax+1x=1-x2ax2.
当a≤0时,f′(x)>0,则f(x)在(0,+∞)上单调递增.
高考数学二轮复习考点知识与题型专题讲解33--- 恒成立问题与有解问题(解析版)

高考数学二轮复习考点知识与题型专题讲解33 恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 . 二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可; (2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1. (1)求f (x )的极值;(2)设g (x )=(x -t )2+⎝⎛⎭⎪⎫ln x -m t 2,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值. 【解析】解 (1)f ′(x )=-x e x,当x ∈(0,+∞)时,f ′(x )<0,当x ∈(-∞,0)时,f ′(x )>0, ∴当x =0时,f (x )有极大值f (0)=e 0-1=0,f (x )没有极小值. (2)由(1)知f (x )≤0,又因为g (x )=(x -t )2+⎝⎛⎭⎪⎫ln x -m t 2≥0,所以要使方程f (x 1)=g (x 2)有解,必然存在x 2∈(0,+∞),使g (x 2)=0,所以x =t ,ln x =m t,等价于方程ln x =m x有解,即方程m =x ln x 在(0,+∞)上有解,记h (x )=x ln x ,x ∈(0,+∞),则h ′(x )=ln x +1, 令h ′(x )=0,得x =1e,所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,h ′(x )<0,h (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,h ′(x )>0,h (x )单调递增, 所以当x =1e 时,h (x )min =-1e ,所以实数m 的最小值为-1e.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【解析】解 f ′(x )=2ax -1-ln x -(2a -1)=2a (x -1)-ln x (x >0), 易知当x ∈(0,+∞)时,ln x ≤x -1,则f ′(x )≥2a (x -1)-(x -1)=(2a -1)(x -1).当2a -1≥0,即a ≥12时,由x ∈[1,+∞)得f ′(x )≥0恒成立,f (x )在[1,+∞)上单调递增,f (x )≥f (1)=0,符合题意;当a ≤0时,由x ∈[1,+∞)得f ′(x )≤0恒成立,f (x )在[1,+∞)上单调递减,f (x )≤f (1)=0,显然不符合题意,a ≤0舍去;当0<a <12时,由ln x ≤x -1,得ln 1x ≤1x -1,即ln x ≥1-1x,则f ′(x )≤2a (x -1)-⎝⎛⎭⎪⎫1-1x =⎝ ⎛⎭⎪⎫x -1x (2ax -1),∵0<a <12,∴12a>1.当x ∈⎣⎢⎡⎦⎥⎤1,12a 时,f ′(x )≤0恒成立, ∴f (x )在⎣⎢⎡⎦⎥⎤1,12a 上单调递减, ∴当x ∈⎣⎢⎡⎦⎥⎤1,12a 时,f (x )≤f (1)=0, 显然不符合题意,0<a <12舍去.综上可得,a ∈⎣⎢⎡⎭⎪⎫12,+∞. 【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k ·⎝⎛⎭⎪⎫1-1x -12恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【解析】 (1)因为f (x )=x 2-4x -6ln x ,所以定义域为(0,+∞),所以f ′(x )=2x -4-6x,且f ′(1)=-8,f (1)=-3,所以切线方程为y =-8x +5.又f ′(x )=2x(x +1)(x -3),令f ′(x )>0解得x >3,令f ′(x )<0解得0<x <3,所以f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)xf ′(x )-f (x )>x 2+6k ⎝ ⎛⎭⎪⎫1-1x -12等价于k <x +x ln x x -1,记h (x )=x +x ln x x -1,则k <h (x )min ,且h ′(x )=x -2-ln x (x -1)2,记m (x )=x -2-ln x ,则m ′(x )=1-1x>0,所以m (x )为(1,+∞)上的单调递增函数,且m (3)=1-ln 3<0,m (4)=2-ln 4>0,所以存在x 0∈(3,4),使得m (x 0)=0,即x 0-2-ln x 0=0,所以h (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,且h (x )min =h (x 0)=x 0+x 0ln x 0x 0-1=x 0∈(3,4),所以k 的最大整数解为3.(3)证明:g (x )=x 2-a ln x , 则g ′(x )=2x -a x =(2x +a )(2x -a )x,令g ′(x )=0,得x 0=a2,当x ∈⎝⎛⎭⎪⎫0,a 2时,g ′(x )<0,当x ∈⎝⎛⎭⎪⎫a2,+∞时,g ′(x )>0,所以g (x )在⎝⎛⎭⎪⎫0,a 2上单调递减,在⎝ ⎛⎭⎪⎫a2,+∞上单调递增,而要使g (x )有两个零点,要满足g (x 0)<0,即g ⎝⎛⎭⎪⎫a 2=⎝⎛⎭⎪⎫a 22-a ln a2<0⇒a >2e.因为0<x 1<a2,x 2>a2,令x 2x 1=t (t >1),由g (x 1)=g (x 2),可得x 21-a ln x 1=x 22-a ln x 2,即x 21-a ln x 1=t 2x 21-a ln tx 1,所以x 21=a ln tt 2-1,而要证x 1+3x 2>4x 0,只需证(3t +1)x 1>22a ,即证(3t +1)2x 21>8a ,即(3t +1)2a ln t t 2-1>8a ,又a >0,t >1,所以只需证(3t +1)2ln t -8t 2+8>0,令h (t )=(3t +1)2ln t -8t 2+8,则h ′(t )=(18t +6)ln t -7t +6+1t,令n (t )=(18t +6)ln t -7t+6+1t,则n ′(t )=18ln t +11+6t -1t2>0(t >1),故n (t )在(1,+∞)上单调递增,n (t )>n (1)=0,故h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,所以x 1+3x 2>4x 0. 【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π. 【解析】 (1)易知函数f (x )为偶函数,故只需求x ∈[0,+∞)时f (x )的最小值.f ′(x )=2x -πsinx ,当x ∈⎝⎛⎭⎪⎫0,π2时,设h (x )=2x -πsin x ,h ′(x )=2-πcos x ,显然h ′(x )单调递增,而h ′(0)<0,h ′⎝ ⎛⎭⎪⎫π2>0,由零点存在性定理知,存在唯一的x 0∈⎝⎛⎭⎪⎫0,π2,使得h ′(x 0)=0.当x ∈(0,x 0)时,h ′(x )<0,h (x )单调递减,当x ∈⎝⎛⎭⎪⎫x 0,π2时,h ′(x )>0,h (x )单调递增,而 h (0)=0,h ⎝ ⎛⎭⎪⎫π2=0,故x ∈⎝ ⎛⎭⎪⎫0,π2,h (x )<0,即x ∈⎝ ⎛⎭⎪⎫0,π2,f ′(x )<0,f (x )单调递减,又当x ∈⎝ ⎛⎭⎪⎫π2,+∞时,2x >π>πsin x ,f ′(x )>0,f (x )单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫π2=π24.(2)证明:依题意得x 1∈⎝ ⎛⎭⎪⎫0,π2,x 2∈⎝ ⎛⎭⎪⎫π2,+∞,构造函数F (x )=f (x )-f (π-x ),x ∈⎝⎛⎭⎪⎫0,π2,F ′(x )=f ′(x )+f ′(π-x )=2π-2πsin x >0,即函数F (x )单调递增,所以F (x )<F ⎝ ⎛⎭⎪⎫π2=0,即当x ∈⎝ ⎛⎭⎪⎫0,π2时,f (x )<f (π-x ),而x 1∈⎝⎛⎭⎪⎫0,π2,所以f (x 1)<f (π-x 1),又f (x 1)=f (x 2),即f (x 2)<f (π-x 1),此时x 2,π-x 1∈⎝ ⎛⎭⎪⎫π2,+∞.由(1)可知,f (x )在⎝ ⎛⎭⎪⎫π2,+∞上单调递增,所以x 2<π-x 1,即x 1+x 2<π.【典例5】已知函数f (x )=a ex -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【解析】解 f (x )的定义域为(0,+∞),f ′(x )=a e x -1-1x.当0<a <1时,f (1)=a +ln a <1. 当a =1时,f (x )=ex -1-ln x ,f ′(x )=ex -1-1x.当x ∈(0,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以当x =1时,f (x )取得最小值,最小值为f (1)=1, 从而f (x )≥1. 当a >1时,f (x )=a ex -1-ln x +ln a ≥ex -1-ln x ≥1.综上,a 的取值范围是[1,+∞).【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓ ❷fxmin<aa -1↓ ❸求fxmin【解析】解 (1)f ′(x )=a x+(1-a )x -b . 由题设知f ′(1)=0,解得b =1. (2)f (x )的定义域为(0,+∞), 由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=a x +(1-a )x -1=1-a x ⎝ ⎛⎭⎪⎫x -a 1-a (x -1).①若a ≤12,则a1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f (1)<a a -1,即1-a 2-1<aa -1,解得-2-1<a <2-1. ②若12<a <1,则a 1-a>1,故当x ∈⎝ ⎛⎭⎪⎫1,a 1-a 时,f ′(x )<0,当x ∈⎝⎛⎭⎪⎫a 1-a ,+∞时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫1,a 1-a 上单调递减,在⎝ ⎛⎭⎪⎫a 1-a ,+∞上单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f ⎝ ⎛⎭⎪⎫a 1-a <aa -1. 而f ⎝ ⎛⎭⎪⎫a 1-a =a ln a 1-a +a 221-a +a a -1>a a -1, 所以不符合题意.③若a >1,则f (1)=1-a 2-1=-a -12<a a -1.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围. 【解析】解 设h (x )=f (x )-2x -c , 则h (x )=2ln x -2x +1-c ,其定义域为(0,+∞),h ′(x )=2x-2.当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0.所以h (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减. 从而当x =1时,h (x )取得最大值,最大值为h (1)=-1-c . 故当-1-c ≤0,即c ≥-1时,f (x )≤2x +c . 所以c 的取值范围为[-1,+∞).【典例8】已知函数f (x )=ln x -ax ,g (x )=x 2,a ∈R . (1)求函数f (x )的极值点;(2)若f (x )≤g (x )恒成立,求a 的取值范围.【解析】解 (1)f (x )=ln x -ax 的定义域为(0,+∞),f ′(x )=1x-a .当a ≤0时,f ′(x )=1x-a >0,所以f (x )在(0,+∞)上单调递增,无极值点; 当a >0时,由f ′(x )=1x -a >0,得0<x <1a,由f ′(x )=1x -a <0,得x >1a,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,所以函数f (x )有极大值点1a,无极小值点.(2)由条件可得ln x -x 2-ax ≤0(x >0)恒成立, 则当x >0时,a ≥ln xx-x 恒成立,令h (x )=ln x x -x ,x >0,则h ′(x )=1-x 2-ln x x2, 令k (x )=1-x 2-ln x ,x >0, 则当x >0时,k ′(x )=-2x -1x<0,所以k (x )在(0,+∞)上单调递减,又k (1)=0,所以在(0,1)上,h ′(x )>0,在(1,+∞)上,h ′(x )<0, 所以h (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 所以h (x )max =h (1)=-1,所以a ≥-1. 即a 的取值范围为a ≥-1. 【典例9】已知x =1e为函数f (x )=x aln x 的极值点.(1)求a 的值;(2)设函数g (x )=kxe x ,若对∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,求k 的取值范围.【解析】解 (1)f ′(x )=axa -1ln x +x a·1x=x a -1(a ln x +1),f ′⎝ ⎛⎭⎪⎫1e =⎝ ⎛⎭⎪⎫1e a -1⎝⎛⎭⎪⎫a ln 1e +1=0,解得a =2,当a =2时,f ′(x )=x (2ln x +1),函数f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,所以x =1e为函数f (x )=x aln x 的极小值点,因此a =2.(2)由(1)知f (x )min =f ⎝ ⎛⎭⎪⎫1e =-12e ,函数g (x )的导函数g ′(x )=k (1-x )e -x.①当k >0时,当x <1时,g ′(x )>0,g (x )在(-∞,1)上单调递增;当x >1时,g ′(x )<0,g (x )在(1,+∞)上单调递减,对∀x 1∈(0,+∞),∃x 2=-1k ,使得g (x 2)=g ⎝ ⎛⎭⎪⎫-1k =1e k -<-1<-12e ≤f (x 1),符合题意. ②当k =0时,g (x )=0,取x 1=1e,对∀x 2∈R 有f (x 1)-g (x 2)<0,不符合题意.③当k <0时,当x <1时,g ′(x )<0,g (x )在(-∞,1)上单调递减;当x >1时,g ′(x )>0,g (x )在(1,+∞)上单调递增,g (x )min =g (1)=ke,若对∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,只需g (x )min ≤f (x )min ,即k e ≤-12e,解得k ≤-12. 综上所述,k ∈⎝⎛⎦⎥⎤-∞,-12∪(0,+∞). 规律方法 (1)由不等式恒成立求参数的取值范围问题的策略 ①求最值法,将恒成立问题转化为利用导数求函数的最值问题.②分离参数法,将参数分离出来,进而转化为a >f (x )max 或a <f (x )min 的形式,通过导数的应用求出f (x )的最值,即得参数的范围.(2)不等式有解问题可类比恒成立问题进行转化,要理解清楚两类问题的差别.【典例10】设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0;(3)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立. 【解析】.(1)解 f ′(x )=2ax -1x =2ax 2-1x (x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a. 当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)证明 令s (x )=e x -1-x ,则s ′(x )=e x -1-1. 当x >1时,s ′(x )>0,所以e x -1>x , 从而g (x )=1x -1ex -1>0.(3)解 由(2)知,当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1,由(1)有f ⎝⎛⎭⎫12a <f (1)=0,而g ⎝⎛⎭⎫12a >0. 所以f (x )>g (x )在区间(1,+∞)内不恒成立; 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1),当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎡⎭⎫12,+∞.【典例11】已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).【解析】.解 (1)f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0.解得0<x <1+52. 故f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1+52. (2)令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x. 当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减, 故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则有G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x. 由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1.当x∈(1,x2)时,G′(x)>0,故G(x)在[1,x2)内单调递增.从而当x∈(1,x2)时,G(x)>G(1)=0,即f(x)>k(x-1).综上,k的取值范围是(-∞,1).。
2021届高三二轮复习微专题课件——不等式恒成立或有解问题(共37张PPT)

1.已知函数 f(x)=ax-1+ln x,若存在 x0>0,使得 f(x0)≤0 有解,则实数 a 的取值范
围是
(C )
A.a>2
B.a<3
(x)的定义域是(0,+∞),不等式ax-1+ln x≤0 有解, 即a≤x-xln x在(0,+∞)上有解.
令h(x)=x-xln x,则h′(x)=-ln x.
索引
令 h(x)=ex-12x2-x-1(x>0), 则h′(x)=ex-x-1,令H(x)=ex-x-1, H′(x)=ex-1>0, 故h′(x)在(0,+∞)上是增函数, 因此h′(x)>h′(0)=0,故函数h(x)在(0,+∞)上递增, ∴h(x)>h(0)=0,即 ex-12x2-x-1>0 恒成立, 故当x∈(0,2)时,g′(x)>0,g(x)单调递增; 当x∈(2,+∞)时,g′(x)<0,g(x)单调递减.
A.x=2 是 f(x)的极小值点 B.函数 y=f(x)-x 有且只有 1 个零点 C.对任意两个正实数 x1,x2,且 x2>x1,若 f(x1)=f(x2),则 x1+x2>4 D.存在正实数 k,使得 f(x)>kx 恒成立 解析 对于函数 f(x)=2x+ln x,其定义域为(0,+∞),由于 f′(x)=-x22+x1, 令 f′(x)=0 可得 x=2,当 0<x<2 时,f′(x)<0,当 x>2 时,f′(x)>0, 可知 x=2 是 f(x)的极小值点,选项 A 正确;
在区间(1,e]上,g′(x)>0,函数g(x)为增函数.
由题意知g(x)min=g(1)=1-a+3≥0,得a≤4, 所以实数a的取值范围是(-∞,4].
索引
高三冲刺课程第3讲 恒成立有解问题(教师版)

恒成立与有解问题一、要点归纳1、恒成立问题的基本类型: 类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a . 类型2:设)0()(2≠++=a c bx ax x f(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立2()0b a f αα⎧-<⎪⇔⎨⎪>⎩或20b aαβ⎧≤-≤⎪⎨⎪∆<⎩ 或2()0ba f ββ⎧->⎪⎨⎪>⎩ ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立2()0baf αα⎧-<⎪⇔⎨⎪>⎩ 或 20b a αβ⎧≤-≤⎪⎨⎪∆<⎩ 或2()0ba f ββ⎧->⎪⎨⎪<⎩类型3:()f x α>对一切x I ∈恒成立min();f x α⇔>()f x α<对一切x I ∈恒成立max ().f x α⇔>类型4:()()f x g x >对一切x I ∈恒成立()f x ⇔的图象在()g x 的图象的上方或m i n m a x ()()()f x g x x I >∈ 【对于函数恒成立问题可以借助于函数图象去解决,二次函数图象及其他函数的利用是解这类题的关键.】2、有解问题的几种常见类型:(1)能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立. (2)设函数()x f ,若存在[]d c x ,∈,使得()m x f ≤,则()x f m max ≥.(3)若关于某个不等式,其解集是非空集合,求参数的取值范围,也可以转化为有解问题. (4)设函数()x f 在[]b a x ,∈有零点,求参数的取值范围,可以转化为有解问题.【对于有解问题的理解关键是转化,如何从已知的条件转化为参数与最值的关系.】二、典型例题 例1、已知)1()11()(2>+-=x x x x f (1)求)(1x f-;(2)判断)(1x f -的单调性;(3)若)()()1(1x a a x f x ->--对⎥⎦⎤⎢⎣⎡∈21,41x 恒成立,求的范围.【答案】3(1,)2-【解析】(111x x -=+,则1,x x =-=所以得1()(0,1)fx x -=∈(2)任给12,(0,1)x x ∈111212.()()0x x f x f x --<-=-=<且所以1()f x -在(0,1)上单调增.(3)(1(a a >-,则21((11a a a a >+>-得at =,则12t ⎡∈⎢⎣⎦,设2()(1)1g t a t a =+-+.()g t在12⎡⎢⎣⎦恒大于0则必有2211()(1)1022)10g a a g a a ⎧=+-+>⎪⎪⎨⎪=+-+>⎪⎩解得31211a a ⎧-<<⎪⎪⎨⎪-<<+⎪⎩所以3(1,)2a ∈-.【技巧点拨】① 本题综合了求反函数,函数的单调性和不等式的恒成立问题,虽有一定综合性,但难度一般;② 求反函数时不要漏写定义域;③ 判断函数的单调性可以利用定义证明,也可以采用常见函数的单调性证明; ④(3)中不等式的恒成立问题经过换元之后,转化为一次函数类型的恒成立问题即可.例2、已知函数xxx f 212)(-=(1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于[]2,1∈t 恒成立,求实数m 的取值范围. 【答案】[)5,-+∞【解析】(1)0x ≤时,()0f x =;当0x >时,1()22xxf x =-, 由条件可知1222xx -=,即2(2)2210x x -⋅-=则21x=0x >,所以,2log (1x =。
高考数学复习考点知识讲解课件68 恒成立与有解问题

若 a>-1 时,f(x)≥0 对任意 x>0 恒成立,转化为a+a 1≥2xx-ex 1对任意 x>0 恒成立.
设函数 F(x)=2xx-ex 1(x>0),
则 F′(x)=-2x+x12exx-1.
当 0<x<1 时,F′(x)>0;
当 x>1 时,F′(x)<0,
所以函数 F(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以 F(x)max=F(1)=1e,
— 17 —
(新教材) 高三总复习•数学
③若 a≥12,则 F′(x)≤0 在[1,+∞)上恒成立, ∴g′(x)在[1,+∞)上单调递减, g′(x)≤g′(1)=1-2a≤0. ∴g(x)在[1,+∞)上单调递减, ∴g(x)≤g(1)=0,∴f(x)-xl+nx1≤0. 综上所述,a 的取值范围是12,+∞.
— 2—
(新教材) 高三总复习•数学
— 返回 —
题型一 分离参数法求参数的取值范围 【例 1】 (2022·广东清远模拟)已知函数 f(x)=axex-(a+1)(2x-1). (1)若 a=1,求函数 f(x)的图象在点(0,f(0))处的切线方程; (2)当 x>0 时,函数 f(x)≥0 恒成立,求实数 a 的取值范围. [思路引导] (1)求出 f′(0)→利用点斜式求出切线方程. (2)由 f(x)≥0 分离参数 a→构造函数 F(x)=2xx-ex 1→利用导数确定 F(x)的单调性、最值 →得出结果.
[解] f(x)≥x+(1-x)ex,即 ex-ax2≥x+ex-xex,即 ex-ax-1≥0,x≥0. 令 h(x)=ex-ax-1(x≥0),则 h′(x)=ex-a(x≥0), 当 a≤1 时,由 x≥0 知 h′(x)≥0, ∴在[0,+∞)上 h(x)≥h(0)=0,原不等式恒成立. 当 a>1 时,令 h′(x)>0,得 x>lna; 令 h′(x)<0,得 0≤x<lna. ∴h(x)在[0,lna)上单调递减, 又∵h(0)=0,∴在[0,+∞)上 h(x)≥0 不恒成立,∴a>1 不合题意. 综上,实数 a 的取值范围为(-∞,1].
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例1】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值范围是
_ .
【例2】 若不等式1
21x a x
+
-+≥对一切非零实数x 均成立,则实数a 的最大值是_________.
【例3】 设函数2()1f x x =-,对任意23x ⎡⎫
∈+∞⎪⎢⎣⎭
,,2
4()(1)4()x f
m f x f x f m m ⎛⎫--+ ⎪⎝⎭
≤恒成立,则实数m 的取值范围是 .
典例分析
恒成立与有解问题
【例4】 若不等式220ax x ++>的解集为R ,则a 的范围是( )
A .0a >
B .18a >-
C .1
8
a > D .0a <
【例5】 已知不等式
()11112log 1122123
a a n n n +++>-+++L 对于一切大于1的自然数n 都成立,试求实数a 的取值范围.
【例6】 若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______.
【例7】 2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( )
A .0a ≤
B .4a <-
C .40a -<<
D .40a -<≤
【例8】 若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范围.
【例9】 不等式210x ax ++≥对一切102x ⎛⎤
∈ ⎥⎝⎦
,成立,则a 的最小值为( )
A .0
B .2-
C .5
2
- D .3-
【例10】 不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值范围为
( )
A .(][)14-∞-+∞U ,,
B .(][)25-∞-+∞U ,,
C .[12],
D .(][)12-∞∞U ,
,
【例11】 对任意[11]a ∈-,,
函数2()(4)42f x x a x a =+-+-的值恒大于零,则x 的取值范围为 .
【例12】 若不等式lg 21lg()
ax
a x <+在[1,2]x ∈时恒成立,试求a 的取值范围.
【例13】 若(]1x ∈-∞-,,()21390x x a a ++->恒成立,求实数a 的取值范围.
【例14】 设()222f x x ax =-+,当[)1x ∈-+∞,时,都有()f x a ≥恒成立,求a 的取值
范围.
【例15】设对所有实数x,不等式
()()2
2
2222
411
2
log2log log0
14
a a
a
x x
a a a
++
++>
+
恒成立,
求a的取值范围.
【例16】已知不等式22
412
ax x x a
+---
≥对任意实数恒成立,求实数a的取值范围.【例17】已知关于x的不等式20
x x t
++>对x∈R恒成立,则t的取值范围是.【例18】如果|1||9|
x x a
+++>对任意实数x恒成立,则a的取值范围是()A.{|8}
a a< B.{|8}
a a> C.{|8}
a a≥ D.{|8}
a a≤
【例19】 在R 上定义运算⊗:)1(y x y x -=⊗.若不等式1)()(<+⊗-a x a x 对任意
实数x 成立,则( )
A .11<<-a
B .20<<a
C .2
321<<-
a D .2
1
23<<-
a
【例20】 设不等式2220x ax a -++≤的解集为M ,如果[1,4]M ⊆,求实数a 的取值范围.
【例21】 如果关于x 的不等式23
208
kx kx +-<对一切实数x 都成立,则k 的取值范围
是 .
【例22】 已
知函数()1)f x x g x =+,若不等式(3)(392)0x x x f m f ⋅+--<对任意
x ∈R 恒成立,求实数m 的取值范围.
【例23】 已知集合(){}121212|00D x x x x x x k =>>+=,,,(其中k 为正常数).
⑴ 设12u x x =,求u 的取值范围;
⑵ 求证:当1k ≥时不等式2
12121122k x x x x k ⎛⎫⎛⎫⎛⎫
--- ⎪⎪ ⎪⎝⎭
⎝⎭⎝⎭≤对任意()12x x D ∈,恒成
立;
⑶ 求使不等式2
12121122k x x x x k ⎛⎫⎛⎫⎛⎫
--- ⎪⎪ ⎪⎝⎭
⎝⎭⎝⎭≥对任意()12x x D ∈,恒成立的2k 的范
围.
【例24】 若关于x 的方程9(4)340x x a +++=有解,求实数a 的取值范围.
【例25】 已知a ∈R ,若关于x 的方程21
04
x x a a ++-
+=有实根,则a 的取值范围是 .
【例26】 若关于x 的不等式22840x x a --->在14x <<内有解,则实数a 的取值范围是
( )
A .4a <-
B .4a >-
C .12a >-
D .12a <-
【例27】 已知函数()f x x a =-.
⑴ 若不等式()3f x ≤的解集为{}|15x x -≤≤,求实数a 的值;
⑵在⑴的条件下,若()(5)f x f x m ++≥对一切实数x 恒成立,求实数m 的取值范围.。