(完整版)北师大版八年级三角形证明课后题汇总

合集下载

北师大版八年级数学(下) 第一章 三角形的证明 第2节 等边三角形的性质

北师大版八年级数学(下) 第一章  三角形的证明  第2节  等边三角形的性质

北师大版八年级数学(下)第一章三角形的证明第2课时等边三角形的性质例1:如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,则∠ADB的度数为()A.25°B.60°C.85°D.95°解:∠ADB=∠DBC+∠C=35°+60°=95°.故选:D.练习:等边三角形的两个内角平分线所成的锐角是()A.30°B.50°C.60°D.90°解:如图:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BO、CO是两个内角的平分线,∴∠OBC=∠OCB=30°,在△OBC中,∠DOC=∠OBC+∠OCB=30°+30°=60°.故选:C.作业:1.如图,在等边三角形ABC中,D是AC边上的点,延长BC到点E,使CE=CD,则∠E的度数为()A.15°B.20°C.30°D.40°解:∵△ABC是等边三角形,∴∠ACB=60°,∵CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE=2∠E=60°,∴∠E=30°,故选:C.例2:如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=.解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.练习:如图,BD为等边△ABC的边AC上的中线,E为BC延长线上一点,且DB=DE,若AB=6cm,则CE=cm.解:∵BD为等边△ABC的边AC上的中线,∴BD⊥AC,∵DB=DE,∴∠DBC=∠E=30°∵∠ACB=∠E+∠CDE=60°∴∠CDE=30°∴∠CDE=∠E,即CE=CD=AC=3cm.故填3.作业:2. 如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.解:∵△ABC是等边三角形,∴∠C=∠A=60°,∵CG=CD,∴∠GDC=30°,∵DF=DE,∴∠E=15°.故答案为:15.例3:三个等边三角形的摆放位置如图所示,若∠1+∠2=120°,则∠3的度数为()A.90°B.60°C.45°D.30°解:如图,∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°﹣180°,∴∠3=180°﹣(∠1+∠2)=60°,故选:B.练习:如图,△ABC是等边三角形,BC=BD,∠BAD=20°,则∠BCD的度数为()A.50°B.55°C.60°D.65°解:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∵BC=BD,∴AB=BD,∠BAD=∠ADB=20°,∴∠ABD=140°,∴∠CBD=80°,又∵BC=BD,∴∠BCD=50°=∠BDC,故选:A.作业:3. 如图,△ABC是等边三角形,BC⊥CD,且AC=CD,则∠BAD的度数为()A.50°B.45°C.40°D.35°解:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∵BC⊥CD,∴∠BCD=90°,∴∠ACD=60°+90°=150°,∵AC=CD,∴∠DAC==15°,∴∠BAD=60°﹣15°=45°.故选:B.例4:如图,在等边△ABC中,DA=DC,DM⊥BC,垂足为M,E是BC延长线上的一点,CE=CD.求证:MB=ME.证明:连接BD.∵△ABC是等边三角形,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴MB=ME.练习:如图,△ABC是等边三角形,△ACE是等腰三角形,∠AEC=120°,AE=CE,F 为BC中点,连接AF.(1)直接写出∠BAE的度数为;(2)判断AF与CE的位置关系,并说明理由.解:(1)∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∵EA=EC,∠AEC=120°,∴∠EAC=∠ECA=30°,∴∠BAE=∠BAC+∠CAE=90°.故答案为90°.(2)结论:AF∥EC.理由:∵AB=AC,BF=CF,∴AF⊥BC,∵∠ACB=60°,∠ACE=30°,∴∠BCE=90°,∴EC⊥BC,∴AF∥EC.作业:4.已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.证明:在等边△ABC中,AB=CA,∠BAC=∠ACB=60°,∴∠EAB=∠DCA=120°.在△EAB和△DCA中,,∴△EAB≌△DCA(SAS),∴AD=BE.例5:已知:如图,等边三角形ABC中,D、E分别是BC、AC上的点,且AE=CD.(1)求证:AD=BE;(2)求:∠BFD的度数.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠C=60°,AB=CA,在△ABE和△CAD中,∴△ABE≌△CAD(SAS),∴AD=BE(全等三角形对应边相等);(2)解:∵△ABE≌△CAD(已证),∴∠ABE=∠CAD(全等三角形对应角相等),又∵∠BFD=∠BAD+∠ABE,∴∠BFD=∠BAD+∠CAD=∠BAC,又∠BAC=60°,∴∠BFD=60°.练习:已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,又∵∠B=60°,∠DEF =60°,∠1=∠3,∴∠FDE=∠DEB,∴DF∥BC.作业:5.已知△ABC为等腰三角形,AC=BC,△ACE为等边三角形.(1)如图①,若∠ABC=70°,则∠CAB的大小=(度),∠EAB的大小=(度);(2)如图②,△BDC为等边三角形,AE与BD相交于点F,求证:FA=FB.解:(1)∵AC=CB,∴∠ABC=∠CAB=70°,∵△ACE为等边三角形,∴∠CAE=60°,∴∠EAB=∠CAB﹣∠CAE=70°﹣60°=10°;故答案为:70,10.(2)证明:∵AC=BC,∴∠CAB=∠CBA,∵△ACE,△BDC都为等边三角形,∴∠CAE=∠CBD=60°,∴∠CAB﹣∠CAE=∠CBA﹣∠CBD,即∠FAB=∠FBA,∴FA=FB.备用:在同一平面内,将两块正三角形的纸板的两个顶点重合在一起.(1)如图1重叠部分∠AOD=30°,求∠COB的大小;(2)如图2重叠部分∠AOD=15°,求∠COB的大小;(3)如图3,若两图形除O外没有重叠,∠AOD=10°,求∠COB的大小;(4)求∠AOD和∠COB的数量关系.解:(1)∵△COD和△AOB为正三角形,∠AOD=30°,∴∠COB=∠COD+∠AOB﹣∠AOD=60°+60°﹣30°=90°;(2)∵△COD和△AOB为正三角形,∠AOD=15°,∴∠COB=∠COD+∠AOB﹣∠AOD =60°+60°﹣15°=105°;(3)∵△COD和△AOB为正三角形,∠AOD=10°,∴∠COB=∠COD+∠AOB+∠AOD=60°+60°+10°=130°;(4)当∠AOD是两个角的重叠的角,则∠COB=120°﹣∠AOD;当∠AOD是两个角的相离时的角,且∠AOD≤60°,则∠COB=120°+∠AOD;当∠AOD是两个角的相离时的角,且∠AOD>60°,则∠COB=360°﹣(120°+∠AOD)=240°﹣∠AOD.。

北师大版八年级数学(下) 第一章 三角形的证明 第5节 直角三角形的性质与判定

北师大版八年级数学(下) 第一章  三角形的证明  第5节  直角三角形的性质与判定

北师大版八年级数学(下)第一章三角形的证明第5节直角三角形的性质与判定例1:在△ABC中,∠A=90°,∠B=2∠C,则∠C的度数为()A.30°B.45°C.60°D.30°或60°解:∵在△ABC中,∠A=90°,∠B=2∠C,∴2∠C+∠C=90°,∴∠C=30°,故选:A.练习:在Rt△ABC中,∠C=90°,∠A﹣∠B=50°,则∠A的度数为()A.80°B.70°C.60°D.50°解:∵∠C=90°,∴∠A+∠B=90°,∵∠A﹣∠B=50°,∴2∠A=140°,∴∠A=70°,故选:B.作业:1.直角三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是()A.22.5°B.45°C.67.5°D.135°解:设∠B=x°,则∠A=3x°,由直角三角形的性质可得∠A+∠B=90°,∴x+3x=90,解得x=22.5,∴∠B=22.5°,故选:A.例2:在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C,⑤∠A=2∠B=3∠C中,能确定△ABC是直角三角形的条件有()A.2个B.3个C.4个D.5个解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC 是直角三角形;④因为∠A=∠B=∠C,所以∠A+∠B+∠C=∠C+∠C+∠C=180°,则∠C=90°,所以△ABC是直角三角形;⑤因为3∠C=2∠B=∠A,∠A+∠B+∠C=∠A+∠A+∠A=180°,∠A=,所以△ABC为钝角三角形.所以能确定△ABC是直角三角形的有①②③④共4个,故选:C.练习:在下列条件中:①∠A=∠B﹣∠C,②∠A﹣∠B=90°,③∠A=∠B=2∠C,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①由∠A+∠B+∠C=180°,∠A=∠B﹣∠C得到:2∠B=180°,则∠B=90°,则△ABC是直角三角形,故符合题意;②∠A﹣∠B=90°得到:∠A>90°,则△ABC不是直角三角形,故不符合题意;③由∠A+∠B+∠C=180°,∠A=∠B=2∠C得到:5∠C=180°,则∠C=36°,则∠A =∠B=72°<90°,则△ABC不是直角三角形,故不符合题意;④由∠A+∠B+∠C=180°,∠A=∠B=∠C得到:∠C=90°,则△ABC是直角三角形,故符合题意;综上所述,是直角三角形的是①④,共2个.故选:B.作业:2. 在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①∠A+∠B=∠C,是直角三角形;②∠A:∠B:∠C=1:2:3,是直角三角形;③∠A=2∠B=3∠C,则设∠A=x,∠B=,∠C=,则x++=180°,解得x=,∴∠A=,,,∴△ABC不是直角三角形;④∠A=∠B=∠C,不是直角三角形,是等边三角形,能确定△ABC是直角三角形的条件有2个,故选:B.例3:在Rt△ABC中,斜边AB=3,则AB2+BC2+CA2=.解:∵△ABC为直角三角形,AB为斜边,∴AC2+BC2=AB2,又AB=3,∴AC2+BC2=AB2=9,则AB2+BC2+CA2=AB2+(BC2+CA2)=9+9=18.故答案为:18练习:如图所示,在△ABC中,∠ABC=90°,分别以AB、BC、AC为边向外作正方形,面积分别为225、400、S,则S为()A.175B.600C.25D.625解:由勾股定理得,AB2+BC2=AC2,则S=25+400=625,故选:D.作业:3. 已知△ABC中∠C=90°,c为斜边,a、b为直角边,若a+b=17cm,c=13cm,则△ABC的面积为()A.15cm2B.30cm2C.45cm2D.60cm2解:∵a+b=17,∴(a+b)2=289,∴2ab=289﹣(a2+b2)=289﹣c2=289﹣169=120∴ab=30,故选:B.例4:如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.解:如图,连接AC.∵△ABC中,∠B=90°,AB=3,BC=4,∴AC==5.∵CD=12,AD=13,AC=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∴S阴影=S△ACD﹣S△ABC=×5×12﹣×3×4=30﹣6=24.练习:如图,在Rt△ABD中,∠ABD=90°,AD=10,AB=8.在其右侧的同一个平面内作△BCD,使BC=8,CD=2.求证:AB∥DC.证明:∵在Rt△ABD中,∠ABD=90°,AD=10,AB=8,∴BD===6,∵BC=8,CD=2,∴62+(2)2=82,∴△BDC是直角三角形,∴∠BDC=90°,∴∠ABD=∠BDC,∴AB∥DC.作业:4. 如图所示,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.(1)连接BC,求BC的长;(2)判断△BCD的形状,并说明理由.解:(1)∵∠A=90°,∴BC===15;(2)△BCD是直角三角形,理由:∵BC2=152=225,BD2=82=64,CD2=172=289,∴BC2+BD2=CD2=289,∴△BCD是直角三角形.例5:如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.解:(1)△ABC为直角三角形,理由:由图可知,,BC=,AB==5,∴AC2+BC2=AB2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,即=h,解得,h=2,即AB边上的高为2.练习:如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°.(1)连接AC,求证:△ACD是直角三角形;(2)求△ACD中AD边上的高.解:(1)证明:连接AC,在Rt△ABC中,AC2=AB2+BC2=32+42=25,∴AC=5,∵CD=12,AD=13,∴AC2+CD2=AD2,∴∠ACD=90°,∴△ACD是直角三角形;(2)解:过点C作CH⊥AD于点H,则S△ACD=AD×CH=AC×CD,∴×13×CH=×5×12,∴CH=.作业:5.如图,在正方形网格中,小正方形的边长为1,A,B,C为格点(1)判断△ABC的形状,并说明理由.(2)求BC边上的高.解:(1)结论:△ABC是直角三角形.理由:∵BC2=12+82=65,AC2=22+32=13,AB2=62+42=52,∴AC2+AB2=BC2,∴△ABC是直角三角形.(2)设BC边上的高为h.则有•AC•AB=•BC•h,∵AC=,AB=2,BC=,∴h=.例6:写出命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题.该逆命题是命题(填“真”或“假”).解:“如果两个三角形全等,那么这两个三角形的周长相等.”写成它的逆命题:如果两个三角形的周长相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的周长相等,那么这两个三角形全等;假练习:“两直线平行内错角相等”的逆命题是命题.(填“真”或“假”)解:∵原命题的条件为:两直线平行,结论为:内错角相等,∴其逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,是真命题;故答案为:真.作业:6.已知命题“等腰三角形两腰上的高线相等”,它的逆命题是,该逆命题是命题.(“真”、“假”).解:命题“等腰三角形两腰上的高线相等”的逆命题是“如果一个三角形两条边上的高线相等,那么这个三角形是等腰三角形”,是真命题,故答案为:如果一个三角形两条边上的高线相等,那么这个三角形是等腰三角形;真.。

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

【点拨】
∵1 宣=12矩,1 欘=112宣,1 矩=90°,∠A=1 矩,
∠B=1


∴∠A
= 90°,

B

1
1 2
1 ×2
×90°=
67.5°,
∴∠C=90°-∠B=90°-67.5=22.5°.
3 (母题:教材P34复习题T5)若三角形三个内角的比为 1 ∶2 ∶3,则这个三角形是__直__角____三角形.
(2)若AE是△ABC的角平分线,AE,CD相交于点F,求证: ∠CFE=∠CEF. 【证明】∵AE是△ABC的角平分线,∴∠DAF=∠CAE. ∵∠FDA=90°,∠ACE=90°, ∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°. ∴∠AFD=∠CEA. ∵∠AFD=∠CFE, ∴∠CFE=∠CEA,即∠CFE=∠CEF.
解:如图②,延长 MN 至点 C′,使 NC′=NC,连接 AC′, 则 AC′的长即为蚂蚁爬行的最短路程. 在 Rt△AMC′中,AM=3×2=6(cm), MC′=20+2=22(cm). 由勾股定理,得 AC′2=AM2+MC′2=62+222=520, 则 AC′=2 130 cm. 答:蚂蚁需要爬行的最短路程是 2 130 cm.
∵∠C=90°,∴∠4+∠5=90°. ∴∠3+∠5=90°,即∠FBG=90°. 又∵DF⊥EG,DE=DG,∴FG=EF. 在Rt△FBG中,BG2+BF2=FG2,∴AE2+BF2=EF2.
【点方法】
欲证AE2+BF2=EF2,应联想到勾股定理,把AE, BF和EF转. 化. 为同一个直角三角形的三边.
【点拨】
∵直角三角形的三边a,b,c满足c>a>b,∴该直角三 角形的斜边为c,∴c2=a2+b2,∴c2-a2-b2=0,∴S1= c2-a2-b2+b(a+b-c)=ab+b2-bc. ∵S2=b(a+b-c)= ab+b2-bc,∴S1=S2,故选C.

北师大版八年级下册三角形证明复习含答案

北师大版八年级下册三角形证明复习含答案

北师大版八年级下册三角形证明复习含答案三角形证明专题复习一.选择题(共15小题)1.如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF =()A.3B.4C.5D.62.如图,已知△ABC的面积为8,在BC上截取BD=BA,作∠ABC的平分线交AD于点P,连接PC,则△BPC的面积为()A.2B.4C.5D.63.如图,已知△ABC,AB=5,∠ABC=60°,D为BC边上的点,AD=AC,BD=2,则DC=()A.0.5B.1C.1.5D.24.如图,△ABC中,∠B=60°,AB=8,点D在BC边上,且AD =AC.若BD=,则CD的长为()A.4B.C.5D.5.如图,△ABC中,AB=AC,DE垂直平分AC,若△BCD的周长是14,BC=6,则AC 的长是()A.6B.8C.10D.146.如图,在△ABC中,∠ABC=60°,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且,则线段BE的长为()A.B.2C.3D.7.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC 的角平分线,则三角形ADC的面积为()A.3B.10C.12D.158.如图,△ABC的一角被墨水污了,但小明很快就画出跟原来一样的图形,他所用定理是()A.SAS B.SSS C.ASA D.HL9.如图,上午8时,一艘船从A处出发以15海里/小时的速度向正北航行,10时到达B处,从A、B两点望灯塔C,测得∠NAC=42°,∠NBC=84°,则B处到灯塔C的距离为()A.15海里B.20海里C.30海里D.求不出来10.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE,分别交AB,AC于点D,E.若AD=3,BC=5,则△BEC的周长为()A.8B.10C.11D.1311.如图,∠MON=60°,OA平分∠MON,P是射线OA上的一点,且OP=4,若点Q是射线OM上的一个动点,则PQ的最小值为()A.1B.2C.3D.412.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E 满足△OCE是等腰三角形,那么∠OEC的度数不可能为()A.120°B.75°C.60°D.30°13.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对14.如图,△ABC中,BO 平分∠ABC,CO平分∠ACB,M,N经过点O,且MN∥BC,若AB=5,△AMN的周长等于12,则AC的长为()A.7B.6C.5D.415.如图,在△ABC中,AB=AD=DC,∠BAD=26°,则∠C的度数是()A.36°B.38.5°C.64°D.77°二.填空题(共15小题)16.△ABC中,AD⊥BC于D,∠ACD=60°,若AD=2,AB=2,则BC=______.17.已知等腰三角形的周长是14,设其腰长是x,底边长是y,则y与x的函数关系式为y =______,自变量x的取值范围是______.18.如图,已知∠AOB=30°,点P在边OA上,OP=14,点E,F在边OB上,PE=PF,EF=6.若点D是边OB上一动点,则∠PDE =45°时,DF的长为______.19.如图,在等腰三角形ABC中,AB=AC,∠B=50°,D为BC 的中点,点E在AB上,∠AED=70°,若点P是等腰三角形ABC的腰上的一点,则当△DEP是以∠EDP为顶角的等腰三角形时,∠EDP的度数是______.20.如图,D为△ABC中BC边上一点,AB=CB,AC=AD,∠BAD=24°,则∠C=______°.21.已知等腰三角形的底角为15°,腰长为8cm,则这个三角形的面积为______cm2.22.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是______.23.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,若∠EBC =30°,则∠A的度数为______.24.如图,在△ABC中,∠C=90°,∠ADC=60°,∠B=30°,若CD=3cm,则BD=______cm.25.如图,在△ABC中,BA=BC,∠ABC=120°,BD⊥BC交AC 于点D,BD=1,则AC 的长______.26.在△ABC中,AB=AD=CD,且∠C=40°,则∠BAD的度数为______.27.如图,在△ABC中,AD=BD=BC,若∠A=x°,则∠ABC=______度(用含x的代数式表示).28.如图,在△ABC中,AC=AD=BD,∠B=28°,则∠CAD的度数为______°.29.如图,点O是边长为2的等边三角形ABC内任意一点,且OD⊥AC,OE⊥AB,OF⊥BC,则OD+OE+OF=______.30.如图,△ABC中,AD平分∠BAC,∠ACB=3∠B,CE⊥AD,AC=8,BC=BD,则CE=______.三.解答题(共20小题)31.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE∥DF.32.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,分别交BC于点D、E,已知△ADE的周长5cm.(1)求BC的长;(2)分别连接OA、OB、OC,若△OBC的周长为13cm,求OA 的长.33.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点P为AC的中点,点D为AB 边上一点,且AD=PD,延长DP交BC的延长线于点E,若AB=2,求PE的长.34.如图,△ABC是等边三角形,延长BC到E,使CE=BC.点D是边AC的中点,连接ED并延长ED交AB于F求证:(1)EF⊥AB;(2)DE=2DF.35.如图,在△ABC中,∠ACB=110°,∠B>∠A,D,E为边AB 上的两个点,且BD=BC,AE=AC.(1)若∠A=30°,求∠DCE的度数;(2)∠DCE的度数会随着∠A度数的变化而变化吗?请说明理由.36.已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.37.在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.(1)如图1,连接BE、CE,则BE=CE吗?说明理由;(2)若∠BAC=45°,BE的延长线与AC垂直相交于点F时,如图2,BD=AE吗?说明理由.38.如图,三角形ABC中,AC=BC,D是BC上的一点,连接AD,DF平分∠ADC交∠ACB的外角∠ACE的平分线于F.(1)求证:CF∥AB;(2)若∠DAC=40°,求∠DFC的度数.39.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,求BD的长.40.如图,在△ABC中,∠BAC=90°,BD平分∠ABC,CD∥AB 交BD于点D,已知∠1=32°,求∠D的度数.41.如图,在△ABC中,AB=AC,∠BAC=100°,BD平分∠ABC,且BD=AB,连接AD、DC.(1)求证:∠CAD=∠DBC;(2)求∠BDC的度数.42.如图,点O是△ABC边AC上的一个动点,过O点作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长.43.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.44.如图,在△ABC中,∠BAC=120°,∠B=40°,边AB的垂直平分线与边AB交于点E,与边BC交于点D.(1)求∠ADC的度数;(2)求证:△ACD为等腰三角形.45.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.46.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB 于E,交AC于F,若BE=3,EF=5,试求CF的值.47.如图,在△ABC中,AB=AC,点D在线段BC上,AD=BD,△ADC是等腰三角形,求△ABC三个内角的度数.48.如图,∠BAD=90°,AB=AC,AC的垂直平分线交BC于D.(1)求∠BAC的度数;(2)若AB=10,BC=10,求△ABD的周长.49.如图,已知∠1与∠2互为补角,且∠3=∠B,(1)求证:EF∥BC;(2)若AC=BC,CE平分∠ACB,求证:AF=CF.50.如图,等边△ABC的边长为12,D为AB边上一动点,过点D作DE⊥BC于点E.过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)当AD取何值时,DE=EF?三角形证明专题复习参考答案与试题解析一.选择题(共15小题)1.解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.2.解:∵BD=BA,BP是∠ABC的平分线,∴AP=PD,∴S△BPD=S△ABD,S△CPD=S△ACD,∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,∵△ABC 的面积为8,∴S△BPC=×8=4.故选:B.3.解:过点A作AE⊥BC于点E,∵AD=AC,∴E是CD的中点,在Rt△ABE中,AB=5,∠ABC=60°,∴BE=,∵BD=2,∴DE=﹣2=,∴CD=1,故选:B.4.解:过点A作AE⊥BC,∵AD=AC,∴E是CD的中点,∵∠B=60°,AB=8,在Rt△ABE中,BE=4,∵BD=,∴DE=4﹣=,∴CD=5,故选:C.5.解:∵DE垂直平分AC,∴AD=CD.∵△BCD的周长是14,BC=6,∴AB=BD+CD=14﹣6=8,∵AB=AC,∴AC=8.故选:B.6.解:连接BD,如图,∵DE=DF,DE⊥AB,DF⊥BC,∴BD平分∠ABC,∴∠ABD=∠ABC=×60°=30°,在Rt△BDE中,BE=DE=×=3.故选:C.7.解:作DH⊥AC于H,如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,∴AC==10,∵AD为∠BAC的角平分线,∴DB=DH,∵×AB×CD=DH×AC,∴6(8﹣DH)=10DH,解得DH=3,∴S△ADC=×10×3=15.故选:D.8.解:作△DEF,使DE=AB,∠A=∠D,∠E=∠B,根据ASA定理可知,△DEF与原来的图形一样,他所用定理是ASA,故选:C.9.解:根据题意得:AB=2×15=30(海里),∵∠NAC=42°,∠NBC=84°,∴∠C=∠NBC﹣∠NAC=42°,∴∠C=∠NAC,∴BC=AB=30海里.即从海岛B到灯塔C的距离是30海里.故选:C.10.解:∵AB的垂直平分线DE分别交AB、AC于点D、E,∴AE =BE,∵AD=3,∴AB=6,∴AE+EC=AC=AB=6,∵BC=5,∴△EBC的周长=BC+BE+CE=BC+AE+CE=BC+AC=6+5=11;故选:C.11.解:作PQ′⊥OM于Q′,∵∠MON=60°,OP平分∠MON,∴∠POQ′=30°,∴PQ′=OP=2,由垂线段最短可知,PQ的最小值是2,故选:B.12.解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;综上,∠OEC的度数不可能为60°,故选:C.13.解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.14.解:∵BO平分∠CBA,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=5,△AMN的周长等于12,∴△AMN的周长=AM+MN+AN=AB+AC=5+AC=12,∴AC=7,故选:A.15.解:在△ABC中,AB=AD=DC,∵在三角形ABD中,AB=AD,∠BAD=26°,∴∠B=∠ADB=(180°﹣26°)×=77°,又∵AD=DC,在三角形ADC中,∴∠C=∠ADB=77°×=38.5°.故选:B.二.填空题(共15小题)16.解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵∠ACD=60°,∴∠CAD=30°,∵AD=2,∴CD=AD=2,∵AB=2,∴BD===4,如图1,BC=BD+CD=6,如图2,BC=BD﹣CD=2,综上所述,BC=6或2,故答案为:6或2.17.解:∵2x+y=14,∴y=14﹣2x,即x<7,∵两边之和大于第三边∴x>,综上可得<x<7故答案为:y=﹣2x+14,<x<7.18.解:如图,过点P作PH⊥OB于点H,∵PE=PF,。

北师大版八年级下册数学第一章 三角形的证明含答案

北师大版八年级下册数学第一章 三角形的证明含答案

北师大版八年级下册数学第一章三角形的证明含答案一、单选题(共15题,共计45分)1、如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是()A.BF=EFB.DE=EFC.∠EFC=45°D.∠BEF=∠CBE2、如图,在△ABC中,∠C=90°,AD平分∠BAC,且DE⊥AB于E,DE=5,BC=11,则BD的长为( )A.5B.6C.7D.83、如图,在△ABC中,∠ACB=90°,∠A=20°.将△ABC绕点C按逆时针方向旋转得△A′B′C,且点B在A′B′上,CA′交AB于点D,则∠BDC的度数为()A.40°B.50°C.60°D.70°4、如图,在△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A. B. C. 平分 D.5、若等腰三角形一个外角等于100°,则它的顶角度数为().A.20°B.80°C.20°或80°D.无法确定6、等腰三角形中,,一边上的中线将这个三角形的周长分为和两部分,则这个等腰三角形的底边长为()A.7B.7或11C.11D.7或107、如图,△ABC中,AB=AC,D,E,F分别在BC,AC,AB上,若BD=CE,CD=BF,则∠EDF()A. 90°-∠AB. 90°-∠AC. 180°-∠AD. 180°-2∠A8、如图,在△ABC中,∠ACB为钝角。

用直尺和圆规在边AB上确定一点D。

使∠ADC=2∠B,则符合要求的作图痕迹是()A. B. C.D.9、如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是()A.△AEE′是等腰直角三角形B.AF垂直平分EE'C.△E′EC∽△AFDD.△AE′F是等腰三角形10、如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为()A.80°B.70°C.60°D.45°11、如图,在□ABCD中,AB=5,BC=8,∠ABC,∠BCD的角平分线分别交AD于E和F,BE与CF交于点G,则△EFG与△BCG面积之比是()A.5:8B.25:64C.1:4D.1:1612、如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A.30°B.45°C.50°D.70°13、在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A.6B.9C.12D.1514、以下列各组数据为边长,可以构成等腰三角形的是()A.2,3,4B.5,5,10C.2,2,1D.1,2,315、如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB 于点D,交AC于点E,则△BEC的周长为()A.13B.14C.15D.16二、填空题(共10题,共计30分)16、如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为________.17、如图,菱形ABCD的边长是4,∠ABC=60°,点E,F分别是AB,BC边上的动点(不与点A,B,C重合),且BE=BF,若EG∥BC,FG∥AB,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为________.18、在△ABC中,如果AB=AC=10,cosB= ,那么△ABC的重心到底边的距离为________.19、如图,AE 是△ABC 的角平分线,AD⊥BC 于点D,若∠DAE=8°,∠C=36°,则∠BAC 的度数是________.20、在等腰△ABC中,AB=AC,∠B=40°,则∠A=________.21、如图,等腰三角形ABC中,AB=AC,∠A=40°,CD⊥AB于D,则∠DCB等于________.22、已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为________.23、如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=3,则EF的长为________24、等腰三角形的底边长为6,底边上的中线长为4,它的腰长为________.25、如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、推理填空如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBC=∠F,求证:CE∥DF.请完成下面的解题过程.∵BD平分∠ABC,CE平分∠ACB(已知)∴∠DBC= ∠________,∠ECB= ∠________(角平分线的定义)又∵∠ABC=∠ACB(已知)∴∠________=∠________.又∵∠________=∠________(已知)∴∠F=∠________∴CE∥DF________.28、已知:在中,点是的中点,于点,平分,交的延长线于点,交于点.求证:.29、如图,CD平分∠ACB,DE∥BC,∠AED=46°,求∠CDE的度数.30、如图,在△ABC中,CD=CA,CE⊥AD于点E,BF⊥AD于点F.求证:∠ACE=∠DBF.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、D5、C6、B7、A8、B9、D10、B11、D12、C13、D14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

八年级数学下册第一章三角形的证明1.2教材习题课件新版北师大版

八年级数学下册第一章三角形的证明1.2教材习题课件新版北师大版

又∵AB=AD,∴AE=AF.
A
在△AEC和△AFC中,
E
F
∵AE=AF,∠EAC=∠FAC,AC=AC, B
D
∴△AEC≌△AFC(SAS),
∴EC =FC.
∴这两根彩线的长度相等.
C
(2) 如果AE=1 AB,AF= 1 AD,那么彩线的长度相等吗?
如果AE=
1
3
AB,AF=
1
3
AD呢?由此你能得到什么结论?
(1) 分别在AB,AD的中点E,F处拉两根彩线EC,FC,
证明:这两根彩线的长度相等; (1)证明:如图,连接AC. 在△ABC和△ADC中,
A E B
F D
∵AB=AD,BC=DC,AC=AC,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC.
C
∵E,F分别为AB,AD的中点,
∴AB=2AE,AD=2AF.
∵∠BDC=∠ABD+∠A,
A
∴∠A=∠BDC-∠ABD=2x°-x°=x°.
∵∠A+∠ABC+∠C=180°,
D
∴x+2x+2x=180.解得x=36 ∴∠A=36°.
B
C
2. 已知:如图,在△ABC中,AB=AC,D为BC的中点,
点E,F分别在AB和AC上,并且AE=AF.
求证:DE=DF.
A
八(下)数学教材习题
习题 1.2
1. 如图,在△ABC中,AB=AC,BD平分∠ABC,交AC
于点D. 若BD=BC,则∠A等于多少度?
解:设∠ABD=x°,
A
∵BD平分∠ABC,
∴∠ABC=2∠ABD=2x°. ∵AB=AC, ∴∠C=∠ABC=2x°.

北师大版八年级数学下册第一章 三角形的证明练习(包含答案)

北师大版八年级数学下册第一章 三角形的证明练习(包含答案)

第一章三角形的证明一、单选题1.已知等腰三角形的一个角等于42°,则它的底角为:()A.42°B.69°C.69°或84°D.42°或69°2.等腰三角形的两条边长分别为9cm和12cm,则这个等腰三角形的周长是()A.30cm B.33cm C.24cm或21cm D.30cm或33cm 3.如图所示,V ABC是等边三角形,且BD=CE,∠1=15︒,则∠2的度数为()A.15︒B.30°C.30°D.60︒4.下列各组线段能构成直角三角形的是()A.1,2,3B.7,12,13C.5,8,10D.15,20,255.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是()A.3.5B.4.2C.5.8D.76.如图,在V ABC中,∠A=90︒,∠C=30︒,PQ垂直平分BC,与AC交于点P,下列结论正确的是(). ∠ △°A . PC < 2P AB . PC > 2P AC . AB < 2P AD . AB > 2P A7.在联欢会上,有 A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在 ∆ABC 的()A .三边中垂线的交点C .三条角平分线的交点B .三边中线的交点D .三边上高的交点8 如图所示,Rt△ABC 中, C 90° △AB 的垂直平分线 DE 交 BC 于 D ,交 AB 于点 E .当∠B 30时,图中一定不相等的线段有()△A .AC △AE BEC .△CD DEB .AD △BDD .AC △BD9.如图,△ABC 中,AB =5,AC =4,以点 A 为圆心,任意长为半径作弧,分别交 A B 、AC于 D 和 E ,再分别以点 D 、E 为圆心,大于二分之一 DE 为半径作弧,两弧交于点 F ,连接AF 并延长交 BC 于点 G ,GH ⊥AC 于 H ,GH =2,则△ABG 的面积为( )A.4B.5C.9D.1010.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④二、填空题11.如图,已知在∆ABC中,AB=AC,点D在边BC上,要使BD=CD,还需添加一个条件,这个条件是_____________________.(只需填上一个正确的条件)12.如图是一块菜地,已知AD=8米,CD=6米,∠D=90︒,AB=26米,BC=24米.则这块菜地的面积是_____.13.如图,在V ABC中,AC=BC,分别以点A和点C为圆心,大于1AC长为半径画2弧,两弧相交于点M、N,连接MN分别交BC、AC于点D、E,连接AD.若∠B=70︒,则∠BAD的度数是_____度.14.如图,∆ABC中,∠BAC=90︒,AD⊥BC,∠ABC的平分线BE交AD于点F,AG 平分∠DAC.给出下列结论:①∠BAD=∠C;②∠EBC=∠C;③AE=AF;④FG//AC;⑤EF=FG.其中正确的结论是______.三、解答题15.如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=△45°,求证:ACD为等腰三角形;(△2)若ACD为直角三角形,求∠BAD的度数.16.如图,已知O是等边三角形ABC内一点,D是线段BO延长线上一点,且OD=OA,∠AOB=120︒,求∠BDC的度数.17.如图,一架2.5m长的梯子AB斜靠在一竖直墙AO上,这时AO为2.4m.(1)求OB的长度;(2)如果梯子底端B沿地面向外移动0.8m到达点C,那么梯子顶端A下移多少m?△18.如图,在ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,分别交BC于点D、E,已知△ADE的周长5cm.(1)求BC的长;(2)分别连接OA、OB、△OC,若OBC的周长为13cm,求OA的长.19.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以点D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN.(1)求证:MN=BM+NC;(2)△求AMN的周长.答案1.D 2.D 3.D 4.D 5.D 6.C.△, ,△, △﹣ △, △﹣ ﹣ △,△, △,△, △﹣ ﹣ △﹣ ﹣ 7.A8.D9.B10.C11.AD ⊥BC12.96△△△13.3014.①③④15.(1) AB=AC B=30°B= C=30°BAC=180°30°﹣30°=120°, BAD=45°CAD= BAC BAD=120° 45°=75°△, ADC= B+ BAD=75° ADC= CADAC=CD△即 ACD 为等腰三角形;(2)有两种情况: △当 ADC=90°△时,B=30°BAD= ADC B=90° 30°=60°;△当 CAD=90°△时, BAD= BAC CAD=120° 90°=30°;△即 BAD 的度数是 60°或 30°.⎨∠BAO = ∠CAD16.∵∠AOB=120°,∴∠AOD=60°∵AO=OD ,∴△AOD 是等边三角形∴ ∠BAC = 60︒ , AB = AC∵△ABC 是等边三角形,∴∠BAC=60°,AB=AC∴∠BAC=∠OAD ,∴∠BAO+△OAC=△OAC+△CAD△∴∠BAO= CAD在△BAO 和△CAD 中⎧ AO = AD ⎪⎪ ⎩AB = AC∴ ∆ABO ≌ ∆ACD∴ ∠AOB = ∠ADC = 120︒△ ∠BDC = ∠ADC - ∠ADO = 60︒17.(1)解:在 Rt ∆AOB 中,由勾股定理OB 2 = AB 2 - AO 2= 2.52 - 2.4 2= 0.49∴ OB = 0.49 = 0.7(2)设梯子的 A 端下移到 D , OC = 0.7 + 0.8 = 1.5∴在Rt∆OCD中,由勾股定理∴OD2=CD2-DC2=2.52-1.52=4∴OD=4=2∴顶端A下移了:2.4=2=0.4m18.解:(1)∵DM是线段AB的垂直平分线,∴DA=DB,同理,EA=EC,∵△ADE的周长5,∴AD+DE+EA=5,∴BC=DB+DE+EC=AD+DE+EA=5(cm);(△2)∵OBC的周长为13,∴OB+OC+BC=13,∵BC=5,∴OB+OC=8,∵OM垂直平分AB,∴OA=OB,同理,OA=OC,∴OA=OB=OC=4(cm).19.解:(1)∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°.∵△ABC是等边三角形,∴∠ABC=∠BCA=60°,∴∠DBA=∠DCA=90°,延长AB至F,使BF=CN,连接DF,由SAS△可证BDF≌△CDN,∴∠BDF=∠CDN,DF=DN,∵∠MDN=60°,∴∠FDM=∠BDM+∠CDN=60°,由SAS△可证DMN≌△DMF,∴MN=MF=MB+BF=MB+CN(2)由(1)知MN=MB+CN,∴△AMN的周长为AM+AN+MN=AM+MB+AN+CN=AB+AC=6。

(完整版)北师大版八年级三角形证明课后题汇总

(完整版)北师大版八年级三角形证明课后题汇总

1.1 等腰三角形1、将下面证明中每一步的理由写在括号内:已知:如图,AB=CD,AD=CB.求证:∠A=∠C.证明:连接BD.在△BAD和△DCB中,∵AB=CD( )AD=CB( )BD=DB( )∴△BAD≌△DCB( )∴∠A=∠C( )2、已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.3、如图,在△ABC中,∠BAC=108°,AB=AC,AD⊥BC,垂足为D,求∠BAD的度数。

4、如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,点E是AD上一点,连接BE,CE,请找出图中所有相等的角。

5、如图,在△ABC中,AB=BC,点D,E都在BC上,且AD=AE,证明BD=CE.1、如图,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D.若BD=BC,则∠A等于多少度?2、已知:如图,在△ABC中,AB=AC,D为BC中点,点E,F分别在AB和AC尚,并且AE=AF.求证:DE=DF3、已知:如图,D,E分别是等边三角形ABC的两边AB,AC上的点,且AD=CE。

求证:CD=BE4、如图,在一个风筝ABCD中,AB=AD,BC=DC⑴分别在AB,AD的中点E,F处拉两根彩线EC,FC.证明:这两根彩线的长度相等。

⑵如果AE=1/3AB,AF=1/3AD,那麼彩线的长度相等吗?如果AE=1/4AB,AF=1/4AD呢?由此你能得到什麼结论?1、已知:如图,∠CEA是△ABC的外角,AD平行BC,且∠1=∠2.求证:AB=AC.2、已知:如图,在△ABC中,AB=AC,点E在CA的延长线上,EP垂直于BC,垂足为P,EP交AB于点F。

求证:△AEF是等腰三角形。

3、如图,一艘船从A处出发,以18kn的速度向北航行,经过10h到处B处。

分别从A,B望灯塔C,测得∠NAC=42°,∠NBC=84°.求从B处到灯塔C 的距离.1、已知:如图,△ABC是等边三角形,与BC平行的直线分别交AB和AC于点D,E, 求证:△ADE是等边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 等腰三角形1、将下面证明中每一步的理由写在括号内:已知:如图,AB=CD,AD=CB.求证:∠A=∠C.证明:连接BD.在△BAD和△DCB中,∵AB=CD( )AD=CB( )BD=DB( )∴△BAD≌△DCB( )∴∠A=∠C( )2、已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.3、如图,在△ABC中,∠BAC=108°,AB=AC,AD⊥BC,垂足为D,求∠BAD的度数。

4、如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,点E是AD上一点,连接BE,CE,请找出图中所有相等的角。

5、如图,在△ABC中,AB=BC,点D,E都在BC上,且AD=AE,证明BD=CE.1、如图,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D.若BD=BC,则∠A等于多少度?2、已知:如图,在△ABC中,AB=AC,D为BC中点,点E,F分别在AB和AC尚,并且AE=AF.求证:DE=DF3、已知:如图,D,E分别是等边三角形ABC的两边AB,AC上的点,且AD=CE。

求证:CD=BE4、如图,在一个风筝ABCD中,AB=AD,BC=DC⑴分别在AB,AD的中点E,F处拉两根彩线EC,FC.证明:这两根彩线的长度相等。

⑵如果AE=1/3AB,AF=1/3AD,那麼彩线的长度相等吗?如果AE=1/4AB,AF=1/4AD呢?由此你能得到什麼结论?1、已知:如图,∠CEA是△ABC的外角,AD平行BC,且∠1=∠2.求证:AB=AC.2、已知:如图,在△ABC中,AB=AC,点E在CA的延长线上,EP垂直于BC,垂足为P,EP交AB于点F。

求证:△AEF是等腰三角形。

3、如图,一艘船从A处出发,以18kn的速度向北航行,经过10h到处B处。

分别从A,B望灯塔C,测得∠NAC=42°,∠NBC=84°.求从B处到灯塔C 的距离.1、已知:如图,△ABC是等边三角形,与BC平行的直线分别交AB和AC于点D,E, 求证:△ADE是等边三角形。

2、屋梁的一部分如图所示,其中BC⊥AC,∠A=30º,AB=7.4m,点D是AB的中点,且DE⊥AC,垂足为E,求BC的长。

3、如图,△ABC是等边三角形,过它的三个顶点分别作对边的平行线,得到一个新的三角形DEF,△DEF是等边三角形吗?你还能找到其他的等边三角形吗?点A,B,C分别是EF,ED,FD的中点吗?请证明你的结论.(2)如果△DEF是等边三角形,点A,B,C分别是EF,ED,FD的中点,那么△ABC是等边三角形吗?请证明你的结论.4、证明:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。

5、如图,ABCD是一张长方形纸片,且AD=2AB,沿过点D的折痕将A角翻折,使得点A落在BC上(如图中的点A、),折痕交AB于点E,那么∠ADE等于多少度?你能证明你的结论吗?(利用第4题的结论)1、如图,在四边形ABCD中,AB平行CD,E为BC上的一点,且∠BAE=45°,2、一个直角三角形屋梁如图所示,其中BC⊥AC,∠A=30°,AB=10m, CB₁⊥AB, B₁C₁⊥AC,垂足分别为B₁,C₁,那么BC的长是多少?B₁C₁呢?3、小红想测量离A处30m的大树的高度,她站在A处仰望树顶B,仰角为30°(即∠BDE=30°),已知小红身高1.52m.求大树的高度.4、如图,正四棱柱的底面边长为5cm,侧棱长为8cm,一只蚂蚁欲从正四棱柱底面上的顶点 A沿棱柱的表面到顶点C′处吃食物. 那么它需要爬行的最短路程的长是多少?5、DE⊥AC已知:如图,点D是△ABC的BC边上的中点,DE⊥AC于E,DF⊥AB于F,且DE=DF.求证:△ABC是等腰三角形.6、已知:如图,AB=CD,DE⊥于AC,BF⊥AC,垂足分别为E、F,且DE=BF。

求证:(1)AE=CF;(2)AB⁄⁄CD.7、如图所示,把矩形ABC D沿对角线B D折叠,点C落在点F处,若AB=12 c m,BC=16c m.(1)求A E的长;(2)求重合部分的面积.8、如图所示,把矩形纸片ABC D沿EF折叠,使点B落在边A D上的点B′处,点A落在点A′处.(1)求证B′E=B F;(2)设A E=a,AB=b,B F=c,试猜想a,b,c之间的一种关系,并给出证明.3.1线段的垂直平分线1、如图,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于点E,交BC于点F,连接AF,求∠AFC的度数。

2、如图,在△ABC中,已知AC=27,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长等于50,求BC的长。

3、如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?你能画图说明吗?4、如图所示,在△ABC中,∠A=90°,AC=8 cm,AB=6 cm,BC边的垂直平分线DE 交BC于E,交AC于D,求△ABD的周长.5、如图所示,∠BAC=∠ABD,AC=BD,点O是AD,BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.4.1角平分线1、已知,如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E. 求证:PD=PE.2、已知:如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA,PE⊥OB,垂足分别为D、E,点F是OC上的另一点,连接DF,EF.求证:DF=EF.3、如图,在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E和F,且DE=DF,求DE的长。

4、如图,在三角形ABC中,AC=BC,∠A=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E。

(1)已知CD=4cm,求AC的长;(2)求证AB=AC+CD5、如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.6、已知:如图,∠C=90°,∠B=30°,AD是△ABC的角平分线。

求证:BD=2CD。

7、已知:如图,△ABC的外角∠CBD和∠BCE的平分线相较于点F.求证:点F在∠DAE的平分线上。

8、已知:如图,P是∠AOB平分线上的一点,PC垂直OA,PD垂直于OB,垂足分别为C,D,求证:(1)OC=OD(2)OP是CD的垂直平分线。

三角形证明单元总复习1、已知:如图,在三角形ABC中,AB=AC,点D,E分别在边AC,AB上,且三角形ABD=三角形ACE,BD与CE相交于点O。

求证:(1)OB=OC。

(2)BE=CD。

2、已知:如图,BD,CE是△ABC的高,且BD=CE。

求证:△ABC是等腰三角形。

3、在△ABC中,已知∠A,∠B,∠C的度数之比是1:2:3,AB=3,求AC的长。

4、已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P,求证:PM=PN。

5、如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D、E。

求证AE=2CE.6、如图,在四边形BCDE中,∠C=∠BED=90°,∠B=60°,延长CD,BE,两线交于点A,已知CD=2,DE=1,求Rt△ABC的面积。

7、如图,在三角形ABC中,∠B=64°,∠BAC=72°,D为BC上一点,DE交AC 于点F,且AB=AD=DE,连接AE,∠E=55°。

请判断△AFD的形状,并说明理由(证明)。

联系拓广8、如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交AC于点E。

已知△BCE的周长为8,AC-BC=2,求AB与BC的长。

《三角形的证明》课外巩固培优练习题1、如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 是OC 上另一点,连接DF 、EF 。

求证:DF=EF2、如图,AF 平分∠BAC ,P 是AF 上任一点,过P 向AB 、AC 作垂线PD 、PE ,D 、E 分别为垂足,连结DE , 求证:AF 垂直平分DE 。

3、如图,点D 是等边△ABC 边AB 上的一点,AB=3AD ,DE⊥BC 于点E ,AE 、CD 相交于点F . (1)求证:△ACD≌△BAE;(2)请你过点C 作CG⊥AE,垂足为点G ,探究CF 与FG 之间的数量关系,并证明.4、如图,已知AB=AC ,BD=CD ,DE ⊥AB 于E ,DF ⊥AC 于F 。

求证:DE=DF5、如图,在△ABC 中,AD 为∠BAC 的平分线,FE 垂直平分AD ,E 为垂足,EF 交BC 的延长线于F , A B C E P D F AD E CB求证:∠CAF =∠B6、如图,在Rt △ABC 中,∠C =90°E 为AB 的中点,且DE ⊥AB 于F ,∠CAD ︰∠BAD =1︰2, 试求∠B 和∠BAC 的度数。

7、如图,在△ABC 中,∠ACB =90°,D 是BC 延长线上一点,BD 的垂直平分线交AB 于P ,PD 交AC 于E ,求证:点P 也在AE 的垂直平分线上8、如图所示,已知AD//BC ,AE 平分∠DAB ,BE 平分∠ABC ,直线DC 过点E 交AD 于点D ,交BC 于点C ,求证:(1)E 为DC 的中点;(2)AD +BC=AB.2、如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D ,•求证:•BC=3AD.A C D EA B C PD E F3、 ABC ∆中,120A AC AB =∠=,,AB 的中垂线交AB 于D ,交CA 延长线于E ,求证:BC 21DE =。

5、在等边ΔABC 中,AE=CD ,BG ⊥AD ,求证:BP=2PG 。

6、已知:如图6,在△ABC 中,AD 是高,CE 是中线。

DC=BE ,DG ⊥CE ,G 为垂足。

求证:(1)G 是CE 的中点;(2)∠B=2∠BCE 。

7、如图7,在△ABC 中,∠C=2∠B ,D 是BC 上的一点,且AD ⊥AB ,点E 是BD 的中点,连AE 。

求证:(1)∠AEC=∠C ;(2)求证:BD=2AC 。

9、如图,在ABC ∆中,︒=∠90ACB ,︒=∠30CAB ,以AC 、AB 为边在ABC ∆外侧作等边ACD ∆和等边ABE ∆,连结DE 交AB 于F .求证:EFDF12、如图4,△ABC中,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC.求证:EF∥AB.13、如图5,△ABC中,AB=AC,∠ABD=∠CBD,BD⊥DE于D,DE交BC于E,求证:CD=12 BE.14.如图2,在Rt△ABC中,∠C=900,AD∥BC,∠CBE=12∠ABE,求证:DE=2AB图4FCDEBAMBAD图5BA DCEF图2。

相关文档
最新文档