导数求最值(含参)
含参数导数方法总结

导数题型总结(解析版)体型一:关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题"以及“充分应用数形结合思想”,创建不等关系求出取值范围。
注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值-——--用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-—--—(已知谁的范围就把谁作为主元);例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数",已知实数m是常数,(1)若在区间上为“凸函数",求m的取值范围;(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.解:由函数得(1) 在区间上为“凸函数”,则在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于∵当时, 恒成立,当时,恒成立等价于的最大值()恒成立,而()是增函数,则(2)∵当时在区间上都为“凸函数"则等价于当时恒成立变更主元法再等价于在恒成立(视为关于m的一次函数最值问题)例2a的取值范围.解:(Ⅰ)令得的单调递减区间为(-,a)和(3a,+)∴当x=a时,极小值= 当x=3a时,极大值=b。
(Ⅱ)由||≤a,得:对任意的恒成立①则等价于这个二次函数的对称轴(放缩法)即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。
上是增函数。
如何运用导数解决含参函数问题的研究

如何运用导数解决含参函数问题的研究作者:黄清鹏来源:《中学课程辅导·教师通讯》2018年第02期【内容摘要】导数的学习和解决方法的掌握,不仅是高中数学重要的组成部分,在高考中也是作为考试的考查重点。
含参函数问题主要是以函数为载体,运用导数工具来解决这一类问题,这是一种方法,主要是考查函数性质,促进学生深入研究和分析导数和更好地应用导数。
因此,运用导数解决含参函数问题,必须把握好最近几年函数命题的规律,深入了解和分析导数的性质和应用,结合试题特点和命题趋向的同时,要充分运用导数来解决含参函数问题。
要把握好导数的性质,根据导数来求出含参数函数问题中参数的取值范围,这种求存在性问题是常考的范围,也是常规的解题思路,通过等价转化将复杂的数学思想进行简单转化,有利于将学生不熟悉、复杂的问题简单化,进而变为他们熟悉、规范和简单的含参函数问题。
运用导数解决含参函数问题,对提高学生对导数性质认识和创新方法与思路去解决含参函数问题具有极强的指导意义。
【关键词】含参函数问题导数数学历年高考试题中常常出现含参函数问题,这考察的不仅是学生对含参函数问题的解决能力,也是学生解题思路的一种培养。
常用的解题方法就是导数求解法。
实际上,学生对这类含参函数问题比较头疼和恐惧,因为此类问题涉及的数学知识内容多、面广,具有极强的综合性。
学生面对这类问题时,不知道如何确定参数范围,也不知道所包括的函数关系或不等关系是怎么来的。
含参函数问题以函数为载体,对学生函数性质及导数应用的考察要求较为严格,也是近些年高考数学命题的趋向。
实际上,运用导数解决含参数函数问题,求参数取值范围,作为探索性问题对于数学解题来说非常常见,通过等价转化来把握住数学思想,就可以将这些复杂的数学问题转化成为学生熟悉的、规范的和简单的问题。
运用导数解决含参函数问题,就是基于不等式的结构特征,把握好含参数不等式的存在性,适当构造函数,来探讨含参函数的最值,利用导数就可以求出范围。
导数中含参分类问题课件

对转化与化归思想运用不当
01
总结词:运用不当
02
详细描述:有些同学在处理 问题时,无法将问题转化为 更简单的形式或者无法从简 单形式中归纳出问题的答案 。
03
错误示例:在求解函数的单 调区间时,无法将函数的单 调性与导数的关系对应起来 ,或者在求解函数的极值时 ,无法利用单调性来求解。
04
正确理解:转化与化归思想 是一种将复杂问题转化为简 单问题的思考方式。在处理 导数问题时,需要将问题转 化为与导数相关的简单形式 ,并利用导数的性质来求解 。
讨论函数的最值
总结词
通过求函数在区间端点或一阶导数不连续点的函数值来判定原函数的最值。
详细描述
根据最值的定义,函数在某个区间内的最大值和最小值分别出现在区间端点或一阶导数不连续点上。 因此,在讨论函数的最值时,我们需要先求出函数的端点值和一阶导数不连续点的函数值,然后比较 这些值找出最大值和最小值。
数形结合思想在导数中的应用非常广泛,它可以 帮助我们直观地理解问题的本质,从而更好地解 决问题。
数形结合思想是解决导数中含参分类问题的有效 手段。
数形结合思想是数学中非常重要的思想方法之一 。
03
导数中含参分类问题的常见类型及解题方 法
讨论函数的单调性
总结词
通过研究导函数的正负性来判定原函数的单调性。
实际应用问题
经济问题
在经济学中,导数可以用来研究 经济变量的变化率,通过导数的 分析可以更好地理解经济的运行
情况。
物理问题
在物理学中,导数可以用来描述物 理量的变化率,如速度、加速度等 。通过导数的分析可以更好地理解 物理现象。
图像处理
在图像处理中,导数可以用来描述 图像的边缘信息,通过导数的分析 可以更好地进行图像分割和识别。
运用导数解决含参问题

运用导数解决含参问题运用导数解决含参函数问题的策略以函数为载体,以导数为工具,考查函数性质及导数应用为目标,是最近几年函数与导数交汇试题的显著特点和命题趋向。
运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。
解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式化、简单的问题。
解决的主要途径:是将含参数不等式的存在性或恒成立问题根据其不等式的结构特征,恰当地构造函数,等价转化为:含参函数的最值讨论。
一、含参函数中的存在性问题利用题设条件能沟通所求参数之间的联系,建立方程或不等式(组)求解。
这是求存在性范围问题最显然的一个方法。
例题讲解例1:已知函数x x x f ln 21)(2+=,若存在],1[0e x ∈使不等式mx f ≤)(0,求实数m 的取值范围二、含参函数中的恒成立问题可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离,得到函数关系,从而使这种具有函数背景的范围问题迎刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。
类型有:(1)双参数中知道其中一个参数的范围;(2)双参数中的范围均未知。
一、选择题1 .(2013年课标Ⅱ)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .0x ∃∈R,0()0f x =B.函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0'()0f x =2 .(2013年大纲)已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,() A .9 B .6 C .-9 D .-6 3 .(2013年湖北)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞4.若函数32()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是: ( )A. 1(,)3+∞B. 1(,)3-∞C. 1[,)3+∞D. 1(,]3-∞ 5.函数2()f x ax b =-在区间(,0)-∞内是减函数,则,a b 应满足: ( ) A.0a <且0b = B.0a >且b R ∈C.0a <且0b ≠ D.0a <且b R ∈6. 函数y =a x 2+1的图象与直线y =x 相切,则a = ( )A . 18B .41C .21D .17.函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( )A .2B .3C .4D .5二、填空题8 .(2013年广东卷(文))若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =____.9.(2013年江西卷(文))若曲线1y x α=+(α∈R)在点(1,2)处的切线经过坐标原点,则α=_________。
含参变量积分求导法则

含参变量积分求导法则
含参变量积分求导法则是微积分中的一个重要概念,它是指对含有参
数的积分函数进行求导的方法。
在实际应用中,含参变量积分求导法
则被广泛应用于物理、工程、经济等领域,具有重要的理论和实际意义。
含参变量积分求导法则的基本思想是将含有参数的积分函数看作一个
整体,然后对其进行求导。
具体来说,假设有一个形如F(x,t)的含参变量积分函数,其中x为自变量,t为参数,那么对其进行求导的方法如下:
首先,将F(x,t)看作一个整体,对其进行求导,即:
dF/dx = ∫(∂F/∂x)dx + ∫(∂F/∂t)dt
其中,第一个积分符号表示对x进行积分,第二个积分符号表示对t
进行积分。
在这个式子中,∂F/∂x表示F对x的偏导数,∂F/∂t表示F 对t的偏导数。
接下来,根据积分的可加性,将第一个积分符号中的∂F/∂x提取出来,得到:
dF/dx = ∂/∂x ∫F(x,t)dt + ∫(∂F/∂t)dt
这个式子就是含参变量积分求导法则的基本形式。
它表示了含参变量
积分函数对自变量x的导数,可以通过对积分函数中的每一个t进行
积分,再对积分结果对x求导得到。
需要注意的是,含参变量积分求导法则只适用于一类特殊的积分函数,即积分上限和下限都是常数的情况。
如果积分上限和下限是变量,那
么就需要使用含参变量积分求导法则的推广形式。
总之,含参变量积分求导法则是微积分中的一个重要概念,它为我们
研究含有参数的积分函数提供了一种有效的方法。
在实际应用中,我
们可以根据这个法则,对含参变量积分函数进行求导,从而得到更加
精确的结果。
(完整版)用导数求函数的单调区间含参问题

用导数求函数的单调区间——含参问题一、问题的提出应用导数研究函数的性质:单调性、极值、最值等,最关键的是求函数的单调区间,这是每年高考的重点,这也是学生学习和复习的一个难点。
其中,学生用导数求单调区间最困难的是对参数分类讨论。
尽管学生有分类讨论的意识,但是找不到分类讨论的标准,不能全面、准确分类二、课堂简介请学生求解一下问题,写出每一题求单调区间的分类讨论的特点。
例1、 求函数R a a x x x f ∈-=),()(的单调区间。
解:定义域为),0[+∞ ,23)('x ax x f -=令,0)('=x f 得,3a x = (1) 0≤a ,0)('≥x f 恒成立,)(x f 在),0[+∞上单调递增;(2) 0>a ,令0)('>x f 得∴>3a x )(x f 在)3,0[a 上单调递减,在),3[+∞a 上单调递增。
所以,当0≤a 时,)(x f 在),0[+∞上单调递增;当0>a 时,)(x f 在)3,0[a 上单调递减,在),3[+∞a 上单调递增。
分类讨论特点:一次型,根3a 和区间端点0比较 例2、 求函数R a x a ax x x f ∈+-+-=,1)1(2131)(23的单调区间。
解:定义域R),1)](1([1)('2---=-+-=x a x a ax x x f令,0)('=x f 得1,121=-=x a x(1) 211>>-a a 即,令0)('>x f 得∴<->11x a x 或)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调递增。
(2) 211==-a a 即,0)('≥x f 恒成立,所以)(x f 在R 上单调递增。
(3) 211<<-a a 即,令0)('>x f 得∴>-<11x a x 或)(x f 在)1,(--∞a 上单调递增,)1,1(-a 上单调递减,),1(+∞上单调递增。
含参数导数问题的巧妙解法

参数范围统一解,函切两等显神通何凌州一.前言在高考中,有许多涉及到参数的导数问题,许多学生害怕求导后根据参数的分类讨论,于是常常白白放弃得分的机会。
事实上,有一种方法可以很好地解决此类问题,笔者在市面上的教辅练习中暂未找到系统介绍此方法的章节,故想把该方法分享给大家。
暂将该方法定名为“参数范围统一解,函切两等显神通”。
二.标题解释“参数范围统一解”说明了该方法运用的广泛性,凡是函数中有一个参数的,均可以用此方法,例:f(x)=e x−1−a(1+ln x)。
若没有参数,例:f(x)=e x−1−1−ln x就无法使用该方法。
“函切两等显神通”说明了完成一道题需要两个等式,即函数值相等,切线值相等,这两个等式是该类题目能够完成的关键。
三.例题已知函数 f(x)=e x−1−a(1+ln x)有两个零点,求a的取值范围。
此题分析:若此题为一道大题,解题步骤会稍微有些麻烦,需要用到隐形零点的方法。
若此题为一道小题,可以直接运用笔者介绍的下述方法。
第一步:f(x)=0可推出:e x−1=a(1+ln x)①②第二步:对等式左右两边同时求导得:e x−1=ax第三步:①÷②可得: 1=(1+ln x)x第四步:解出(或观察出)x的解:x=1第五步:将x的解代入①式或②式,解到a的值: a=1第六步:大致绘制当a=1时a(1+ln x)和e x−1的图像(两图像相切),此时有一个交点后续:通过对图像的认知,判断a与0和1的关系进而得到答案即:分类讨论要按照a<0,a=0,0<a<1,a=1,a>1标准分类,原因是a的正负性会影响a(1+ln x)的正负性,如果a取负数(如−1)会造成图像中g(x)上下翻转a<0的情况0<a<1的情况a=1的情况a>1的情况上述4幅图都是以a=1为出发点,事实上,当a=1时两图像相切,图中有且只有一个交点。
对于g(x)=a(1+ln x)而言,a=1在代入时可视为直接忽略掉。
导数解答题:求最值(题目含答案)

《导数:求最值》 姓名:1、已知函数(1ln )(),(1)1x x f x x x +=>- (1)设0x 为函数()f x 的极值点,求证: 00()f x x =;(2)若当1x >时,ln (1)0x x k x k +-+>恒成立,求正整数k 的最大值.【解】(1)因为(1ln )(),(1)1x x f x x x +=>-,故22ln ()(1)x x f x x --'=-, 0x 为函数)(x f 的极值点,0()0f x '∴=, 即002ln 0x x --=,于是0011ln x x -=+,故00000000(1ln )(1)()11x x x x f x x x x +-===-- (2) ln (1)0x x k x k +-+>恒成立,分离参数得(1ln )()1x x k f x x +<=- 则1>x 时,()f x k >恒成立,只需min ()f x k >,22ln ()(1)x x f x x --'=-,记()2ln g x x x =--,1()10g x x '∴=->, ()g x ∴在),1(+∞上递增,又(3)1ln30,(4)2ln 40g g =-<=->,()g x ∴在),1(+∞上存在唯一的实根0x , 且满足0(3,4)x ∈, ∴当01x x <<时()0g x <,即()0f x '<;当0x x >时()0g x >,即()0f x '>,min 00()()(3,4)f x f x x ==∈,故正整数k 的最大值为32、 已知()()()2ln ,1,02m f x x g x x m x m ==-++>. (1)记()()()h x f x g x =-,讨论()h x 的单调性;(2)若()()f x g x <在()0,m 上恒成立,求m 的最大整数.【解】(1)()()2ln 12m h x x x m x =+-+的定义域为{}|0x x >,()()()()()2111111mx m x mx x h x mx m x x x-++--'=+-+==. 令()0h x '=得1x m=或1x =. ∴当1m =时,()()0,h x h x '≥在()0,+∞上单调递增;当1m >时,令()0h x '>,得()10,1,x m ⎛⎫∈+∞ ⎪⎝⎭,令()0h x '<,得1,1x m ⎛⎫∈ ⎪⎝⎭, ∴()h x 在10,m ⎛⎫ ⎪⎝⎭,()1,+∞上单调递增,在1,1m ⎛⎫ ⎪⎝⎭上单调递减; 当01m <<时,令()0h x '>,得()10,1,x m ⎛⎫∈+∞ ⎪⎝⎭,令()0h x '<,得11,x m ⎛⎫∈ ⎪⎝⎭, ∴()h x 在()10,1,,m ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,m ⎛⎫ ⎪⎝⎭上单调递减. (2)由(1)可知,()0h x <在()0,m 上恒成立,当01m <≤时,()h x 在()0,1上单调递增,∴()()1011022m m h x h m ≤=+--=--<,故01m <≤时,()0h x <在()0,m 上恒成立. 当1m >时,()h x 在10,m ⎛⎫ ⎪⎝⎭上单调递增,在1,1m ⎛⎫ ⎪⎝⎭上单调递减,在()1,+∞上单调递增, 而111111ln 1ln 1022h m m m m m m ⎛⎫=+--=--< ⎪⎝⎭,欲使()0h x <在()0,m 上恒成立,则只须()0h m ≤, ∵()()3ln 12m h m m m m =+-+, 当2m =时,()2ln 246ln 220h =+-=-<,当3m =时,()2733ln 312ln 3022h =+-=+>,故m 的最大整数为2.3、(Ⅰ)当1a =时,求()f x 在点()()3,3f 处的切线方程;(Ⅱ)求函数()f x 在[0,2]上的最小值. 【解】(I )当1a =时,1x ≠- 所以()f x 在点(3,(3))f 处的切线方程为,即3490x y --= (II )()f x 的定义域为{|,x x R ∈1x ≠- }① 当0a =时,在(0,2]上导函数,所以()f x 在[0,2]上递增, 可得()f x 的最小值为(0)0f = ②当02a <<时,导函数()f x '的符号如下表所示③当2a ≥时,在[0,2)上导函数()0f x '<,所以()f x 在[0,2]上递减,所以()f x 的最小值为 综上,函数()f x 在[0,2]上的最小值为4、已知函数()ln f x x x x =+.(1)求函数()f x 的图像在点(1,1)处的切线方程;(2)若k ∈Z ,且()(1)k x f x -<对任意1x >恒成立,求k 的最大值;【解】(1)解:因为()ln 2f x x '=+,所以()12f '=,函数()f x 的图像在点(1,1)处的切线方程21y x =-;(2)解:由(1)知,()ln f x x x x =+,所以()(1)k x f x -<对任意1x >恒成立,即ln 1x x x k x +<-对任意1x >恒成立.令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-, 令()ln 2h x x x =--()1x >,则()1110x h x x x -'=-=>, 所以函数()h x 在()1,+∞上单调递增.因为()()31ln30,422ln 20h h =-<=->,所以方程()0h x =在()1,+∞上存在唯一实根0x ,且满足()03,4x ∈.当01()0x x h x <<<时,,即()0g x '<,当0()0x x h x >>时,,即()0g x '>所以函数()ln 1x x x g x x +=-在()01,x 上单调递减,在()0,x +∞上单调递增. 所以()()()()()000000min 001ln 123,411x x x x g x g x x x x ++-====∈⎡⎤⎣⎦--. 所以()()0min 3,4k g x x <=∈⎡⎤⎣⎦.故整数k 的最大值是3.5、已知函数32(),,f x ax x ax a x R =+-∈(1)讨论函数()()ln f x g x x x=-的单调区间; (2)如果存在[2,1]a ∈--,使函数()()(),[1,](1)h x f x f x x b b '=+∈->-在1x =-处取得最小值,试求b 的最大值.【解】(Ⅰ)∵2()ln g x ax x a x =+-- ∴2121()21(0)ax x g x ax x x x +-'=+-=>∴当18a ≤-时,()g x 在(0,)+∞上单调递减;当108a -<<时,()g x 在,)+∞上单调递减,在单调递增;当0a =时,()g x 在(0,1)上单调递减,(1,)+∞上单调递增;当0a >时,()g x 在上单调递减,)+∞上单调递增。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参导数求最值问题(1—2)
编制人:闵小梅审核人:王志刚
【使用说明及学法指导】
1.完成预习案中的相关问题;
2.尝试完成探究案中合作探究部分,注意书写规范;
3.找出自己的疑惑和需要讨论的问题准备课堂讨论质疑。
【学习目标】
1.掌握利用导数求函数最值的方法
2.会用导数解决含参函数的综合问题
【预习案】
一、知识梳理
函数的最值与导数
(1)函数f(x)在[a,b]上有最值的条件
如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
(2)求y=f(x)在[a,b]上的最大(小)值的步骤
①求函数y=f(x)在(a,b)内的极值.
②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
二、尝试练习
1.设函数f(x)=x3-x2
2
-2x+5,若对任意的x∈[-1,2],都有f(x)>a,则实
数a的取值范围是________ (-∞,7 2 )
2.已知函数f(x)=ax3-3x+1对x∈(0,1]总有f(x)≥0成立,则实数a的取值范围是________ [4,+∞)
【探究案】
一、合作探究:
例1. 设函数f (x )=ln x +ln(2-x )+ax (a >0).
(1)当a =1时,求f (x )的单调区间; 增(0,2),减(2,2)
(2)若f (x )在(0,1]上的最大值为12,求a 的值. a =12
二、拓展探究:
例2. 已知函数f(x)=lg(x +a x
-2),其中a >0且为常数. (1)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;ln a 2
(2)若对任意x∈[2,+∞)恒有f(x)>0,试确定实数a 的取值范围.(2,+∞)
三、深层探究:单调性的应用
例3.求f (x )=ax x e
-⋅ (a >0)在x ∈[1,2]上的最大值
【训练案】
1.设f(x)是[a,b]上的连续函数,且在(a,b)内可导,则下列结论中正确的是( )
A.f(x)的极值点一定是最值点
B.f(x)的最值点一定是极值点
C.f(x)在此区间上可能没有极值点
D.f(x)在此区间上可能没有最值点
2.若函数f(x)=32
39
x x x a
-+++在区间[-2,-1]上的最大值为2,则它在该区间上的最小值为( )
A.-5 B.7
C.10 D.-19
3.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则( )
A.0<b<1 B.b<1
C.b>0 D.b<1 2
4.已知函数f(x)=x2+2x+a ln x,若函数f(x)在(0,1)上单调,则实数a的取值范围是( )
A.a≥0 B.a<-4
C.a≥0或a≤-4 D.a>0或a<-4
5.函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是( ) A.0≤a<1 B.0<a<1
C.-1<a<1 D.0<a<1 2
6.已知函数f (x )=sin x -2x -a ,若f (x )在[0,π]上的最大值为-1,则实数a 的值是________ 1
7.若关于x 的不等式x 3-2x -a <0在[1,2]上恒成立,则a 的取值范围是_______(4,+∞)
8.若不等式ln kx x ≤1e 对任意的正实数x 恒成立,则实数k 的取值范围为_ _ 0<k ≤1
9.已知函数f (x )=2ln x +a x 2(a >0).若当x ∈(0,+∞)时,f (x )≥2恒成立,
求实数a 的取值范围。
a ≥e
10.已知函数f (x )=(x -k )2e x k .
(1)求f (x )的单调区间; 增(-∞,-k ),(k ,+∞);减(-k ,k ).
(2)若对于任意的x ∈(0,+∞),都有f (x )≤1e ,求k 的取值范围.⎣⎢⎡⎭⎪⎫-12,0。