ZL80装载机液力变矩器设计
液力变矩器叶片设计共11页word资料

液力变矩器叶片设计学院:机械学院专业:机自(车辆)学号: 201907728姓名:翟昆仑液力变矩器是AT自动变速箱的核心部件之一,液力变矩器的工作轮主要包括:泵轮、涡轮和导轮。
其设计的关键是各工作轮的叶片设计。
本次设计采用的是环量分配法。
环量设计法的理论基础是束流理论,认为其在选定的设计速比下,循环圆平面中间流线上每增加相同的弧长,液流沿叶片中间流线应增加相同的动量矩,以保证流道内的流动状况良好。
设计过程为:根据前期循环圆的确定,在泵轮转矩方程T B=Q(r B2r B1)中r B2r B1项是确定泵轮动量矩变化的一个因数,经计算测量得出泵轮进口角=120°,进口半径外环为95mm,内环为123.5mm,出口角B2=110°,半径外B1环196mm,内环167mm,这样转速比为0.5,在1800r/min时输出转矩为140N·m[11]。
则根据公式:计算出循环轴面流速为9.632 m/s对泵轮带入这些数值:r B1= r B1( B1+ V B1B1),所得数值为:0.906 。
类似的,在出口处:r B2= r B2( B2+ V B2B2),所得数值为:4.0732。
则r改变量r B2r B1,即得:4.0732-0.906=3.1672。
4.1 泵轮叶片设计4.1 泵轮叶片设计图将此改变量分为十份,按其中九分各占10.5%,一份占5%划分,元线9与元线10之间的增量为5%,以减少液体在叶片出口处的能量增量及其涡流损失。
其次,在设计流线上,每一点的相应叶片角可根据公式计算=计算出每一截面元线在设计流线上的角度后,就应求内环和外环上的相应角度。
为了确定元线与内环之交点处的叶片角,采用按反势流分布计算公式,类似地,外环上可以利用下列公式计算:,所以在叶片入口处:,,计算后整理成表:表4-1 变矩器泵轮角度计算参数设计流线上的外环上的内环上的0.35680.36080.36450.36780.37110.37780.38310.38910.39090.39760.4056半径和偏量,可以方便并精准的确定叶片形状。
工程机械液力变矩器现代设计方法及应用

工程机械液力变矩器现代设计方法及应用李凌云(湖北工业大学,湖北武汉430068;江苏省宿迁经贸高等职业学校,江苏宿迁223600)一、设计思路转变(一)设计方法创新传统的工程机械液力变矩器设计基于一维束流理论设计,是一个需要大量经验和实验数据的开环系统,设计周期偏长,设计费用高,性能参数难以达到最优,难以满足新时期工程机械发展对液力变矩器设计工作的要求。
近些年国内研究人员提出基于三维流动理论进行液力变矩器设计,应用立体力学CFD 技术以及激光可视流场技术,开发出具有完全自主知识产权的CAX/CFD 集成设计系统,提供直接面向用户需求的集成化一体化设计系统,保证了产品匹配性能以及时效性,同时也为国家工程机械液力变矩器设计提供了新的方法与理论。
(二)关键技术现阶段,工程机械液力变矩器设计主要面临着流场可视化分析、叶片成型、三维瞬态流场计算等难题,变矩器内部液体不可视,叶片空间曲面复杂,稳态流场计算精度难以保证,受到TC内流场特性认知缺乏的影响,CFD 计算建模科学性一般。
(三)工程合作经过工业生产和工程合作,可以快速将研究成果推广向更多的国内TC 制造厂商以及工程机械主机厂,在工程机械液力变矩器生产实践中推动工程机械液力变矩器系统化设计工作的开展,尽快建立工程机械液力变矩器型号谱系,给液力变矩器开发设计以及快速选型工作打好基础,同时在工程应用中进一步丰富设计方法,拓宽其应用领域,提高设计制造水平。
二、工程机械液力变矩器现代设计方法的应用(一)三维稳态流场计算传统的一维束流理论忽视了稳态流场计算的时变性,因而计算精度不高,而三维瞬态流场计算方法则通过多流动区域耦合滑动网格法、湍流模型大涡数值模拟、全流道模型等技术,更准确真实地预测流体流动情况以及涡旋、脱流、分离流动等多种不同的流动现象,更准确地做出TC 使用性能预测。
1.多流动区域耦合滑动网格法TC 工作过程中,泵轮和涡轮转速不一致,循环流动会导致叶轮交界面上的工作介质同时出现流进流出运动,因此数值计算难以设定固定进出口边界条件,瞬态流场整体模拟比较困难。
铲车液力变矩器工作原理

铲车液力变矩器工作原理铲车液力变矩器是铲车传动系统中的重要部件,它通过液压原理实现动力传递和变速功能。
液力变矩器的工作原理是利用液体在转子间的流动来传递动力,并通过调整液体的流动来实现变速功能。
本文将从液力变矩器的结构和工作原理两个方面来详细介绍。
首先,液力变矩器的结构包括泵轮、涡轮和导向轮。
泵轮和涡轮之间通过液体相互作用来传递动力,导向轮则用来控制液体的流向。
当铲车发动机工作时,泵轮受发动机输出轴的动力驱动,液体被泵轮抛出,形成高速液体流。
涡轮接收泵轮抛出的液体流,使液体流动能量转化为动力,从而驱动铲车的传动系统。
导向轮的作用是控制液体流向,通过调整导向轮的位置来改变液体的流动方向,从而实现变速功能。
其次,液力变矩器的工作原理是基于液体的流动和液压原理。
当铲车需要进行加速或减速时,导向轮会调整液体的流向,使液体流动的能量得到调整,从而改变液力变矩器的输出转矩和速度。
在铲车启动和行驶过程中,液力变矩器能够根据实际工况自动调整输出转矩和速度,以满足铲车的动力需求。
这种自动调整的特性使得铲车能够在不同工况下保持稳定的动力输出,提高了铲车的工作效率和驾驶舒适性。
总的来说,铲车液力变矩器是铲车传动系统中的重要部件,它通过液压原理实现动力传递和变速功能。
液力变矩器的工作原理是基于液体的流动和液压原理,通过调整液体的流向来实现变速功能。
液力变矩器能够根据实际工况自动调整输出转矩和速度,以满足铲车的动力需求,提高了铲车的工作效率和驾驶舒适性。
因此,了解铲车液力变矩器的工作原理对于提高铲车的使用效率和维护保养具有重要意义。
学习任务4 液力变矩器结构与拆装

液力变矩器结构与拆装
(三)液力变矩器的工作原理
工作原理-变矩原理
液流自泵轮冲向涡轮,涡轮受一力矩即为泵轮的MB,液流自涡轮冲向 导轮使导轮受一力矩MD ,导轮不动又反作用于涡轮上,涡轮受到的总 力矩MT为上两力矩的向量和。即MT= MB+ MD,增加的力矩为MD。
学习任务4
液力变矩器结构与拆装
(三)液力变矩器的工作原理
当导轮对涡轮的反作用力矩为正值时,导轮不转
动,产生一个正的反作用力矩;
当导轮对涡轮的反作用力矩为负值时,允许导轮顺
时针转动,不产生反作用力矩。
滚柱
弹簧
内座圈
外座圈
学习任务4
液力变矩器结构与拆装
(三)液力变矩器的工作原理
工作原理-液流流向
涡流
环流
循环圆
1-泵轮
2-涡轮
3-导轮
4-泵轮
学习任务4
起到离合器的作用,完成发动机与自动变速
器传动机构之间的动力传递。
在一定范围内无级变速、变矩,可将发动机
的转矩增大2-4倍输出。
驱动液压控制系统的油泵运转。
(二)液力变矩器一般结构
泵轮
涡轮
导轮
学习任务4
液力变矩器结构与拆装
学习任务4
液力变矩器结构与拆装
1.泵轮
泵轮在变矩器壳体内,许多曲面叶片径向 安装在内。在叶片的内缘上安装有导环,提供
液力变矩器的结构
典型工程机械液力变矩器
学习任务4
液力变矩器结构与拆装
学习时间
2学时
知识准备
一、液力变矩器的功用、结构与工作原理
二、典型工程机械液力变矩器
学习任务4
液力变矩器结构与拆装
ZLl装载机工作装置液压研究设计

目录摘要错误!未定义书签。
ABSTRACT错误!未定义书签。
绪论错误!未定义书签。
1 ZL50轮式装载机总体参数的确定21.1轮式装载机的基本组成21.2轮式装载机的工作原理31.3轮式装载机总体参数的确定31.3.1装载机动臂提升、下降、及铲斗前倾时间确定91.4ZL50轮式装载机的总体布置101.5各部件布置的具体要求[6]101.6控制桥荷力分配111.7ZL50轮式装载机的稳定性计算错误!未定义书签。
2 液压系统的初步介绍错误!未定义书签。
2.1液压系统的工作原理错误!未定义书签。
2.2液压系统的组成部分错误!未定义书签。
2.3液压传动的优点错误!未定义书签。
2.4液压传动的缺点错误!未定义书签。
2.5技术要求错误!未定义书签。
2.6ZL50轮式装载机液压系统设计已明确的参数错误!未定义书签。
3 液压系统设计错误!未定义书签。
3.1制定液压系统方案错误!未定义书签。
3.1.1油路循环方式的分析与选择[9]错误!未定义书签。
3.1.2确定液压执行元件的形式错误!未定义书签。
3.1.3各机构液压回路的确定错误!未定义书签。
3.2绘制液压系统原理图错误!未定义书签。
3.2.1铲斗收起与前倾错误!未定义书签。
3.2.2动臂升降错误!未定义书签。
3.3确定液压系统的主要参数错误!未定义书签。
3.3.1液压缸载荷组成[10]错误!未定义书签。
3.3.2初选系统工作压力错误!未定义书签。
3.3.3计算液压缸的主要结构尺寸错误!未定义书签。
3.3.4计算液压缸所需流量[12]错误!未定义书签。
3.3.5计算液压执行元件的实际工作压力错误!未定义书签。
3.4液压元件的选择与专用件设计错误!未定义书签。
3.4.1液压泵的选择错误!未定义书签。
3.4.2液压阀的选择错误!未定义书签。
3.4.3辅元件的选择错误!未定义书签。
3.5液压系统的性能验算错误!未定义书签。
3.5.1液压系统压力损失[14]错误!未定义书签。
ZL80装载机液力变矩器设计-开题报告

学生姓名
系部 汽车与交通工程学院 专业、班级
指导教师姓名
职称
讲师
从事 专业
车辆工程
是否外聘 □是■否
题目名称
ZL80 装载机液力变矩器设计
良特性,自动适应性、无级变速、良好稳定的低速性能、减振隔振及 无机械磨损等,是其它传动元件无可替代的。历经百年的发展,液力变矩器的应用不断扩大,从汽车、工程 机械、军用车辆到石油、化工、矿山、冶金机械等领域都得到了广泛的应用。液力变矩器的流场理论、设计 和制造、实验等研究工作,近年来,也得到了突飞猛进的发展。
二、设计(论文)的基本内容、拟解决的主要问题 汽车工业一直是 CAD/CAM/CAE 系统应用的先锋,使用 CAD 软件,结合所学相关知识,对 ZL80 装
载机液力变矩器进行优化设计,使其结构更合理,基本内容如下: 1)液力变矩器设计方案:将液力变矩器和液力减速器进行结构上的一体化设计符合车辆传动系统发展的要 求,减小传动系统的尺寸、简化操纵控制,提高传动系统的功率密度; 2)液力变矩器性能计算:利用实验数据,对液力变矩器的原始特性进行计算,由此可以评价传动装置与动 力元件的匹配和工作性能,进而评价整车性能; 3)减速制动器及闭锁离合器设计计算; 4)单向联轴器的设计计算; 5)关键零件设计校核:作用在液力变矩器工作轮上的圆周力通过涡轮作用在变矩器轴上,并且此圆周力为 一变力,对轴的工作可靠性和寿命有直接的影响;因此,在设计完变矩器轴后,应进行轴的强度校核。
发动机共同工作的外特性,利用液力变矩器的低速大扭矩特性,在低档起步和客服困难路面时使变矩器工作 在液力工况,提高了起步性能,加速性能和换挡性能;其自适应性还提高了平均行驶速度,增加了动力传动 系统和减振隔振的性能,减小了动负荷,从而提高了工作寿命等。在高速行驶后,控制离合器在其高效区闭 锁工作在机械工况,提高传动效率,提高车辆的燃油经济型。
变矩器变速箱原理及常见故障处理方法装载机维修技术

11
2、四元件综合式液力变矩器。 其构造示意图如图所示。 四元件综合式液力变矩器的
缺点 ①结构较为复杂 ②制造难度大 ③生产成本高 ④维修困难 ⑤传动效率低
47
3、安轮系形式分类:定轴式、行星式
⑴定轴式变速器
48
⑵ 行星式变速器
49
工程机械常用的变速器 ⑴ 滑动齿轮人力换挡变速器 ⑵ 啮合套人力换挡变速器 ⑶ 滑动齿轮和啮合套组合人力换挡变速器 ⑷ 直齿轮(和斜齿轮)长啮合动力换挡变
液压泵
变矩器 柴油机
前传动轴
后传动轴 变速箱
前驱动桥
后驱动桥
5
变矩器——变速箱
ZL系列装载机 变矩器-变速器装配图
6
二、液力变矩器
液力变矩器安装在变速器齿轮的输入端, 通过驱动盘固定在发动机的后端。
7
液力变矩器的功用
1、成倍增长发动机产生的转矩。 2、起到自动离合器的作用,传送或断开发 动机至变速器的转矩。 3、缓冲发动机及传动系的扭转振动。 4、起到飞轮的作用,使发动机转动平稳。 5、驱动液压控制系统的液压泵。
阀等各挡公用油路和部件上。在出现这种故障时,可以观察到整机不行走时主传 动轴也不转动。
对于这类故障,首先检查变速箱内液压油油量是否足够,方法是使发动机处 于怠速状态,观察油位应在变速箱侧面的油标中部,如看不到油面应补足油液。 油位正常后区分故障是突然出现还是逐渐出现。如属突发性故障,应拆检减压阀 是否脏污、阀芯表面是否划伤卡死在最小供油位置,可通过清洗研磨解决再检查 行走泵连接套花键是否损坏;如故障征兆缓慢出现,一般属于行走系零部件逐渐 磨损或油液清洁度差造成的故障,可按以下顺序检查: (1)判断故障是否在变矩器。检查安装在车后架上的机械油回油滤清器,如滤网上 附着有大量的铝粉,即可断定变矩器内轴承损坏导致“三轮”磨损,应拆卸变矩 器,更换损坏的零部件并清洗油路。
【精品】液力变矩器叶片设计

液力变矩器叶片设计学院:机械学院专业:机自(车辆)学号:201107728姓名:翟昆仑液力变矩器是AT自动变速箱的核心部件之一,液力变矩器的工作轮主要包括:泵轮、涡轮和导轮。
其设计的关键是各工作轮的叶片设计。
本次设计采用的是环量分配法。
环量设计法的理论基础是束流理论,认为其在选定的设计速比下,循环圆平面中间流线上每增加相同的弧长,液流沿叶片中间流线应增加相同的动量矩,以保证流道内的流动状况良好。
设计过程为:根据前期循环圆的确定,在泵轮转矩方程T B=Q(r B2r B1)中r B2r B1项是确定泵轮动量矩变化的一个因数,经计算测量得出泵轮进口角B1=120°,进口半径外环为95mm,内环为123.5mm,出口角B2=110°,半径外环196mm,内环167mm,这样转速比为0.5,在1800r/min时输出转矩为140N·m[11].则根据公式:计算出循环轴面流速为9。
632m/s对泵轮带入这些数值:r B1=r B1(B1+V B1B1),所得数值为:0.906。
类似的,在出口处:r B2=r B2(B2+V B2B2),所得数值为:4.0732。
则r改变量r B2r B1,即得:4。
0732—0。
906=3。
1672。
4.1泵轮叶片设计4。
1泵轮叶片设计图将此改变量分为十份,按其中九分各占10。
5%,一份占5%划分,元线9与元线10之间的增量为5%,以减少液体在叶片出口处的能量增量及其涡流损失。
其次,在设计流线上,每一点的相应叶片角可根据公式计算=计算出每一截面元线在设计流线上的角度后,就应求内环和外环上的相应角度。
为了确定元线与内环之交点处的叶片角,采用按反势流分布计算公式,类似地,外环上可以利用下列公式计算:,所以在叶片入口处:,,计算后整理成表:表4-1变矩器泵轮角度计算参数元线序号设计流线上的外环上的内环上的0 0。
3568 110°104°32′109°25′1 0.3608 110°15′105°13′108°46′2 0.3645 110°22′106°26′108°55′3 0.3678 110°27′107°56′107°23′4 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要
随着车辆动力技术的提高和车辆向高速、重载、自动化方向的发展, 车辆的安全性能受到了人们的普遍重视,从而对车辆制动系统的可靠性、 稳定性和操纵性提出了更高的要求,车辆制动装置的性能优劣直接关系到 车 辆 的机动性和行车安全。本论文针对一种新型 ZL80 装载机液力变矩器 进行了系统、深入地研究。 本文基于束流理论,建立了 ZL80 装载机液力变矩器在牵引工况和制 动工况的数学模型,对液力变矩器的原始特性和净外特性进行了理论计算 和分析,为研究该液力元件和发动机共同工作特性提供了理论依据。 本文基于 MATLAB 设计了 ZL80 装载机液力变矩器, 研究了该液力元件 在车辆下长坡连续制动工况和紧急制动工况的制动性能,从而使得液力制 动力得到充分利用,改善和提高了车辆的制动性能,实现了车辆的恒扭矩 制动。 基于以上分析,对新型 ZL80 装载机液力变矩器进行台架试验,可得 到该液力元件的原始特性、闭锁离合器闭锁过程充油动态特性和在此过程 中液力变矩器的动态性能、闭锁离合器结合充油动态特性。
关键词 :ZL80 装载机液力变矩器;闭锁;液力减速器;束流理论;特性
ABSTRACT
Along with the improvement of vehicle dynamical technology and the development of vehicle to high speed, great burden and automatization. People attach importance to security of vehicle widely. Higher requests are put forward to reliability, stability and manipulability of vehicle brake systems. The excellent or coarseness of vehicle brake systems influences the flexibility and security of vehicle directly. This thesis aims to a new ZL80 loaders hydraulic torque converter system and in-depth research. Based on the beam theory, a ZL80 loaders hydraulic torque converter in traction condition and braking modes of the mathematical model,Of the converter's original characteristics and net external characteristics, theoretical calculation and analysis for the study of the hydraulic components and engine joint work characteristics provides theory basis. This paper was designed based on MATLAB ZL80 loaders hydraulic torque converter, studied the hydraulic components in vehicle for braking condition and long slope of the emergency brake conditions braking performance, thus make the hydraulic braking force can be fully used,To improve and enhance the vehicle braking performance and to realize the vehicle's constant torque braking. Based on the above analysis, the new ZL80 loaders hydraulic torque converter bench test, can get the hydraulic components of original characteristics, atresia clutch atresia process dynamic characteristic and oil filled in this process hydraulic torque converter dynamic performance, atresia clutch oil filled with dynamic characteristics.
Abstract ................................................................................................................... Ⅱ 第 1 章 绪 论..........................................................................................................1
Key words : ZL80 loaders hydraulic torque converter; Atresia; Hydraulic reducer; Beam theory; charact.........................................................................................................