数字电路实验报告——24进制计数器逻辑功能及其应用
二十四进制计数器实验报告

二十四进制计数器实验报告实验成员:88155010 李仲哲88155037 周梓成硬件:DE2-70驱动板实验要求:使用Verilog硬件描述语言设计一个基本时序逻辑电路1位24进制计数器,并可控制加减。
并利用驱动板自带晶振。
实验步骤:首先创建新工程,编写Verilog HDL语言设计代码。
代码如下:module qwe(iclk,rst_n,flag,q,overflow);input iclk,flag; --------------------------------输入端口声明。
input rst_n;--------------------------------------输出端口声明。
output reg [4:0] q; ---------------------------- 分配输出信号灯q0,q1,q2,q3,q4。
integer i;output overflow;wire clk_1Hz;Divider50MHz (1'b1,iclk,i1hz); -----------------引用分频器代码Divider50MHz.v中的变量i1hz。
always @(posedge i1hz or negedge rst_n)beginif(~rst_n) q <= 5'h0;elsebeginif(flag) i = 1; ----------------------------------当变量为1时计数器加。
else i = -1; ---------------------------------反之计数器减。
if(5'h17 == q) q <= 5'h0;else q <= q + i;endendassign overflow = 5'h17 == q;其中flag为控制加减开关变量,我们为其分配开关SW0引脚为PIN_AA23。
数字电路实验报告——24进制计数器逻辑功能及其应用

24进制计数器逻辑功能及其应用一、实验目的:1. 熟悉中等规模集成电路计数器74LS160的逻辑功能,使用方法及应用。
2. 掌握构成计数器的方法。
二、实验设备及器件:1. 数字逻辑电路实验板1片2. 74HC90同步加法二进制计数器2片3. 74HC00二输入四与非门1片4. 74HC04 非门1片三、实验原理:计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多。
按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。
根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。
根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。
集成计数器74HC90是二-五-十进制计数器,其管脚排列如图。
四、实验内容实验电路图:用74HC00与非门和74HC04的非门串联,构成与门。
74HC00的引脚图和真值表如图:74HC04的引脚图与真值表如图:按实验电路图,参照各个芯片的引脚图和真值表,连接电路。
其中Q0到Q3分别连到数码管的对应的D0到D3,CP0端接到时钟脉冲,然后检查电路无误后,加电源,观察现象。
实验结果:个位数码管随时间显示0、1、2、3、4、5、6、7、8、9,十位数码管显示个位进位计数结果,按0、1、2变化,当数字增加到23后,数码管自动清零,又从零开始变化。
五、实验心得:本次实验,通过对计数器工作过程的探索,基本上了解了数码计数器的工作原理,以及74HC160的数字特点,让我更进一步掌握了如何做好数字电子数字实验,也让我认识到自身理论知识的不足和实践能力的差距,以及对理论结合实践的科学方法有了更深刻理解。
24进制计数器设计报告

..1. 设计任务1.1设计目的1. 了解计数器的组成及工作原理。
2. 进一步掌握计数器的设计方法和计数器相互级联的方法。
3. 进一步掌握各芯片的逻辑功能及使用方法。
4. 进一步掌握数字系统的制作和布线方法。
5. 熟悉集成电路的引脚安排。
1.2 设计指标1. 以24为一个周期,且具有自动清零功能。
2. 能显示当前计数状态。
1.3 设计要求1. 画出总体设计框图,以说明计数器由哪些相对独立的功能模块组成,标出各个模块之间互相联系,时钟信号传输路径、方向。
并以文字对原理作辅助说明。
2. 设计各个功能模块的电路图,加上原理说明。
3. 选择合适的元器件,利用multisim 仿真软件验证、调试各个功能模块的电路,在接线验证时设计、选择合适的输入信号和输出方式,在确定电路充分正确性同时,输入信号和输出方式要便于电路的测试和故障排除。
4. 在验证各个功能模块基础上,对整个电路的元器件和布线进行合理布局。
5.打印PCB 板,腐蚀,钻孔,插元器件,焊接再就对整个计数器电路进行调试。
2.设计思路与总体框图.计数器由计数器、译码器、显示器三部分电路组成,再由555定时器组成的多谐振荡器来产生方波,充当计数脉冲来作为计数器的时钟信号,计数结果通过译码器显示。
图1所示为计数器的一般结构框图。
2CRCR CR▲图 1 计数器结构框图3.系统硬件电路的设计3.1 555多谐荡电路555多谐振荡电路由NE555P 芯片、电阻和电容组成。
由NE555P 的3脚输 出方波。
▲图 2 555电路计数脉冲(由555电路产生)异步清零计数器个位位数码示像译码驱动CP CP强制清零3.2 计数器电路集成计数芯片一般都设置有清零输入端和置数输入端,而且无论是清零还是置数都有同步和异步之分。
有的集成计数器采用同步方式,即当CP触发沿到来时才能完成清零或置数任务;有的集成计数器则采用异步方式,即通过触发器的异步输入端来直接实现清零或置数,与CP信号无关。
74ls90实现24进制计数器心得体会

74ls90实现24进制计数器心得体会用两片74LS90芯片,一片控制个位,为十进制;另一片控制十位,为六进制。
利用74LS90本身的两控制端(见摘要关于74LS90的注解)完成十进制,在达到1001(即十进制的九)时,给第二个芯片一个脉冲,这样反复,直到第二片达到0110时第二片自身清零,这样完成一次60的计数,且回到初态,两片74LS90全部清零,继续重复计数。
(见图3)时计数器具体设计方案为:用两片74LS90芯片,一片控制个位,为十进制;另一片控制十位,为二进制。
利用74LS90本身的两控制端(见摘要关于74LS90的注解)完成十进制,在达到1001(即十进制的九)时,给第二个芯片一个脉冲,这样反复,直到第二片达到0010(即十进制的二)且第一片达到0100(即十进制的四)时第一片和第二片同时清零,这样完成一次24的计数,且回到初态,继续重复计数。
(见图4)(3)译码输出显示单元电路为了将计数器输出的8421BCD 码显示出来,需用译码输出显示电路将计数器的输出数码转换为数码显示器件所需要的输出逻辑,我们采用较熟悉的七段译码显示电路。
本设计可选器件74LS47为译码电路。
EDA 24进制计数器的设计

《EDA技术》课程实验报告学生姓名:黄红玉所在班级:电信100227指导教师:高金定老师记分及评价:一、实验名称实验1:24进制计数器的设计二、任务及要求【基本部分】5分1、在QuartusII平台上,采用原理图输入设计方法,调用两片74160十进制计数器,采用反馈置数法,完成一个24进制同步计数器的设计,并进行时序仿真。
2、要求具备使能功能和异步清零功能。
3、设计完成后生成一个元件,以供更高层次的设计调用。
4、实验箱上选择恰当的模式进行验证,目标芯片为ACEX1K系列EP1K30TC144-3。
三、实验程序(原理图)四、仿真及结果分析在QuartusII平台上,采用原理图输入设计方法,调用两片74160十进制计数器,采用反馈置数法,设计一个24进制同步计数器的思路是,一片74160计数器作为个位计数,一片用来十位计数,要实现同步24进制,则个位接成0011,十位接成0010,再用一个四输入(一段接一个使能信号EN)的与非门接到两片74160计数器上的置数端LDN。
把原理图在QuartusII上画成后,进行编译,编译无误后,在新建一个波形文件,添加所有引脚,设置输入引脚的波形,最后在进行波形编译,无误后即可达到想要的24进制。
然后再根据EPF10K30E144芯片引脚对照,输入各个输入输出引脚的引脚号,再链接到试验箱检验,观察数码管的显示结果。
五、硬件验证1、选择模式:模式72、引脚锁定情况表:六、小结经过这次的实验工作,让我知道了许多的东西,也对QuartusII这个软件的一个初步认识及应用,也让我了解了许多在书本上所学不到的知识和技能,这为我们在以后的工作起了非常重要的作用。
数字电路数字时钟课程实验报告

数字时钟设计实验报告一、设计要求:设计一个24小时制的数字时钟。
要求:计时、显示精度到秒;有校时功能。
采用中小规模集成电路设计。
发挥:增加闹钟功能。
二、设计方案:由秒时钟信号发生器、计时电路和校时电路构成电路。
秒时钟信号发生器可由振荡器和分频器构成。
计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。
校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。
三、电路框图:图一数字时钟电路框图四、电路原理图:(一)秒脉冲信号发生器秒脉冲信号发生器是数字电子钟的核心部分,它的精度和稳定度决定了数字钟的质量。
由振荡器与分频器组合产生秒脉冲信号。
振荡器: 通常用555定时器与RC构成的多谐振荡器,经过调整输出1000Hz脉冲。
分频器: 分频器功能主要有两个,一是产生标准秒脉冲信号,一是提供功能扩展电路所需要的信号,选用三片74LS290进行级联,因为每片为1/10分频器,三片级联好获得1Hz标准秒脉冲。
其电路图如下:译码器译码器译码器时计数器分计数器秒计数器校时电路秒信号发生器图二秒脉冲信号发生器(二)秒、分、时计时器电路设计秒、分计数器为60进制计数器,小时计数器为24进制计数器。
60进制——秒计数器秒的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。
当计数到59时清零并重新开始计数。
秒的个位部分的设计:利用十进制计数器CD40110设计10进制计数器显示秒的个位。
个位计数器由0增加到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功能。
利用74LS161和74LS11设计6进制计数器显示秒的十位,当十位计数器由0增加到5时利用74LS11与门产生一个高电平接到个位、十位的CD40110的清零端,同时产生一个脉冲给分的个位。
其电路图如下:图三 60进制--秒计数电路60进制——分计数电路分的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。
数电实验报告:计数器及其应用

数电实验报告:计数器及其应用数字电子技术实验报告实验四:计数器及其应用一、实验目的:1、熟悉常用中规模计数器的逻辑功能。
2、掌握二进制计数器和十进制计数器的工作原理和使用方法。
二、实验设备:1、数字电路实验箱;2、74LS90。
三、实验原理:1、计数是一种最简单基本运算,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时具有分频功能。
计数器按计数进制分有:二进制计数器,十进制计数器和任意进制计数器;按计数单元中触发器所接收计数脉冲和翻转顺序分有:异步计数器,同步计数器;按计数功能分有:加法计数器,减法计数器,可逆(双向)计数器等。
2、74LS90是一块二-五-十进制异步计数器,外形为双列直插,NC表示空脚,不接线,它由四个主从JK触发器和一些附加门电路组成,其中一个触发器构成一位二进制计数器;另三个触发器构成异步五进制计数器。
在74LS90计数器电路中,设有专用置“0”端R0(1),R0(2)和置“9”端S9(1)S9(2)。
其中前两个为异步清0端,后两个为异步置9端。
CP1, CP2为两个时钟输入端;Q0 ~Q3为计数输出端。
当R1=R2=S1=S2=0时,时钟从CP1引入,Q0输出为二进制;从CP2引入,Q3输出为五进制。
时钟从CP1引入,二Q0接CP1,则Q3Q2Q1Q0输出为十进制(8421码);时钟从CP2引入,而Q3接CP1,则Q0Q3Q2Q1输出为十进制(5421码)。
四、实验原理图及实验结果:1、实现0~9十进制计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~9十个数字。
2、实现六进制计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~5六个数字。
3、实现0、2、4、6、8、1、3、5、7、9计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0、2、4、6、8、1、3、5、7、9十个数字。
数字逻辑电路实验报告

数字逻辑电路实验报告数字逻辑电路实验报告引言:数字逻辑电路是现代电子科技中的重要组成部分,它广泛应用于计算机、通信、控制系统等领域。
本实验旨在通过实际操作,加深对数字逻辑电路原理的理解,并通过实验结果验证其正确性和可靠性。
实验一:基本逻辑门的实验在本实验中,我们首先学习了数字逻辑电路的基本组成部分——逻辑门。
逻辑门是数字电路的基本构建单元,它能够根据输入信号的逻辑关系,产生相应的输出信号。
我们通过实验验证了与门、或门、非门、异或门的工作原理和真值表。
以与门为例,当且仅当所有输入信号都为高电平时,与门的输出信号才为高电平。
实验中,我们通过连接开关和LED灯,观察了与门的输出变化。
实验结果与预期相符,验证了与门的正确性。
实验二:多位加法器的设计与实验在本实验中,我们学习了多位加法器的设计和实现。
多位加法器是一种能够对多位二进制数进行加法运算的数字逻辑电路。
我们通过实验设计了一个4位全加器,它能够对两个4位二进制数进行相加,并给出正确的进位和和结果。
实验中,我们使用逻辑门和触发器等元件,按照电路图进行布线和连接。
通过输入不同的二进制数,观察了加法器的输出结果。
实验结果表明,多位加法器能够正确地进行二进制数相加,验证了其可靠性。
实验三:时序电路的实验在本实验中,我们学习了时序电路的设计和实验。
时序电路是一种能够根据输入信号的时间顺序产生相应输出信号的数字逻辑电路。
我们通过实验设计了一个简单的时序电路,它能够产生一个周期性的脉冲信号。
实验中,我们使用计数器和触发器等元件,按照电路图进行布线和连接。
通过改变计数器的计数值,观察了脉冲信号的频率和周期。
实验结果表明,时序电路能够按照设计要求产生周期性的脉冲信号,验证了其正确性。
实验四:存储器的设计与实验在本实验中,我们学习了存储器的设计和实现。
存储器是一种能够存储和读取数据的数字逻辑电路,它在计算机系统中起到重要的作用。
我们通过实验设计了一个简单的存储器,它能够存储和读取一个4位二进制数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24进制计数器逻辑功能及其应用
一、实验目的:
1. 熟悉中等规模集成电路计数器74LS160的逻辑功能,使用方法及应用。
2. 掌握构成计数器的方法。
二、实验设备及器件:
1. 数字逻辑电路实验板1片
2. 74HC90同步加法二进制计数器2片
3. 74HC00二输入四与非门1片
4. 74HC04 非门1片
三、实验原理:
计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多。
按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。
根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。
根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。
集成计数器74HC90是二-五-十进制计数器,其管脚排列如图。
四、实验内容
实验电路图:
用74HC00与非门和74HC04的非门串联,构成与门。
74HC00的引脚图和真值表如图:
74HC04的引脚图与真值表如图:
按实验电路图,参照各个芯片的引脚图和真值表,连接电路。
其中Q0到Q3分别连到数码管的对应的D0到D3,CP0端接到时钟脉冲,然后检查电路无误后,加电源,观察现象。
实验结果:个位数码管随时间显示0、1、2、3、4、5、6、7、8、9,十位数码管显示个位进位计数结果,按0、1、2变化,当数字增加到23后,数码管自动清零,又从零开始变化。
五、实验心得:
本次实验,通过对计数器工作过程的探索,基本上了解了数码计数器的工作原理,以及74HC160的数字特点,让我更进一步掌握了如何做好数字电子数字实验,也让我认识到自身理论知识的不足和实践能力的差距,以及对理论结合实践的科学方法有了更深刻理解。