常用材料的物理性能(超详细,好经典)
塑料材料-聚丙烯(PP)的基本物理化学特性及典型应用介绍

聚丙烯(PP)的介绍聚丙烯概述聚丙烯采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。
聚丙烯的英文名称为Polypropylene,简称PP,俗称百折胶。
聚丙烯按其结晶度可以分为等规聚丙烯和无规聚丙烯,等规聚丙烯为高度结晶的热塑性树脂,结晶度高达95%以上,分子量在8~15万之间,以下介绍的聚丙烯主要为等规聚丙烯。
而无规聚丙烯在室温下是一种非结晶的、微带粘性的白色蜡状物,分子量低(3000~10000),结构不规整缺乏内聚力,应用较少。
聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。
PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。
然而,通过添加冲击改性剂,可以提高其抗冲击性能。
一、聚丙烯的特性(1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。
它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。
成型性好,但因收缩率大,厚壁制品易凹陷。
制品表面光泽好,易于着色。
(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。
PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙相似,但在油润滑下,不如尼龙。
(3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。
脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。
(4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。
塑料材料-聚酰胺(PA)尼龙(Nylon)-的基本物理化学特性及典型应用介绍

聚酰胺(PA)的介绍一、PA概述聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。
包括脂肪族PA,脂肪—芳香族PA和芳香族PA。
其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。
尼龙中的主要品种是尼龙6(PA6)和尼龙66(PA66),占绝对主导地位,其次是尼龙11,尼龙12,尼龙610,尼龙 612,另外还有尼龙 1010,尼龙46,尼龙7,尼龙9,尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙 MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。
尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。
性能:尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般为1.5-3万尼龙具有很高的机械强度,软化点高,耐热,磨擦系数低,耐磨损,自润滑性,吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂,电绝缘性好,有自熄性,无毒,无臭,耐候性好,染色性差。
缺点是吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。
尼龙与玻璃纤维亲合性十分良好。
尼龙中尼龙66的硬度、刚性最高,但韧性最差。
各种尼龙按韧性大小排序为: PA66<PA66/6<PA6<PA610<PA11<PA12。
尼龙的燃烧性为UL94v-2级,氧指数为24-28,尼龙的分解温度>299℃,在449~499℃时会发生自燃。
尼龙的熔体流动性好,故制品壁厚可小到1mm。
二、常用聚酰胺材料的性能与应用聚酰胺(PA)具有品种多、产量大、应用广泛的特点,是五大工程塑料之一。
常见PP、PE、PU、PVC、ABS等材料的物理化学特性及应用

常见PP、PE、PU、PVC、ABS 等材料的物理化学特性及应用、名称PP:聚丙烯PE:聚乙烯PU:聚氨酯PVC :聚氯乙烯ABS :丙烯腈/ 丁二烯/苯乙烯共聚物PS:聚苯乙烯PSA :苯乙烯-丙烯腈共聚物PVDF :聚偏氟乙烯PC:聚碳酸酯EVA:乙烯-醋酸乙烯共聚物二、材料特性及应用PP:聚丙烯PP是一种半结晶性材料。
它比PE要更坚硬并且有更高的熔点。
由于均聚物型的PP温度高于0C以上时非常脆,因此许多商业的PP材料是加入1~4%乙烯的无规则共聚物或更高比率乙烯含量的钳段式共聚物。
共聚物型的PP 材料有较低的热扭曲温度(100C)、低透明度、低光泽度、低刚性,但是有有更强的抗冲击强度。
PP的强度随着乙烯含量的增加而增大。
PP的维卡软化温度为150C。
由于结晶度较高,这种材料的表面刚度和抗划痕特性很好。
PP不存在环境应力开裂问题。
通常,采用加入玻璃纤维、金属添加剂或热塑橡胶的方法对PP进行改性。
PP的流动率MFR范围在1~40。
低MFR的PP材料抗冲击特性较好但延展强度较低。
对于相同MFR的材料,共聚物型的强度比均聚物型的要高。
由于结晶,PP的收缩率相当高,一般为1.8~2.5%。
并且收缩率的方向均匀性比PE-HD等材料要好得多。
加入30%的玻璃添加剂可以使收缩率降到0.7%。
均聚物型和共聚物型的PP材料都具有优良的抗吸湿性、抗酸碱腐性、抗溶解性。
然而,它对芳香烃(如苯)溶剂、氯化烃(四氯化碳)溶剂等没有抵抗力。
PP也不象PE那样在高温下仍具有抗氧化性。
聚丙烯(PP)是常见塑料中较轻的一种,其电性能优异,可作为耐湿热高频绝缘材料应用。
PP属结晶性聚合物,熔体冷凝时因比容积变化大、分子取向程度高而呈现较大收缩率(1.0% -1.5% )。
PP在熔融状态下,用升温来降低其粘度的作用不大。
因此在成型加工过程中,应以提高注塑压力和剪切速率为主,以提高制品的成型质量。
PP 是一种半结晶的热塑性塑料。
具有较高的耐冲击性,机械性质强韧,抗多种有机溶剂和酸碱腐蚀。
1.4材料的热传导(材料物理性能)

则影响热导率的因素即为公式中的参数:
v: v是声子平均速度,是常数,只有在温度较高时,由于介质的
结构松驰而蠕变,使介质的弹性模量迅速下降,v减小。 温度便趋于一恒定值。
c: c是声子的体积热容,热容c在低温下与T3成比例,在超过德拜 l:声子平均自由程l随着温度升高而降低。
物质种类不同,导热系数随温度变化的规律也有很大不同。
温度梯度是个矢量,其方向沿热流指向温度升高的方向,
负号表示沿热流是指向温度降低的方向。即:
dT/dx<0时,△Q>0,热量沿x轴正方向传递;
dT/dx>0时,△Q<0,热量沿x轴负方向传递。
导热系数λ的物理意义是指单位温度梯度下,单位时间内通过单位垂 直面积的热量,所以它的单位为W/(m2〃K)或J/(m2〃s〃K)。
固体中的辐射传热的热导率计算过程 辐射能量 辐射能量与温度的四次方成正比。
Er 4n 3T 4 / v
σ是斯蒂芬-波尔兹曼常数(为5. 67×10-8W/(m2.K4),n是折射率, υ是光速(3 ×1010cm/s)。
5)容积热容
cR
E 16 n 3T 3 ( ) T v
6) 传导率
晶格偏离谐振程度 越大,热阻越大。
物质组分原子量之 差越小,质点的原子量 越小,密度越小 德 拜温度越大,结合能大
热传导系数越大
(完整版)聚乙烯性能汇总

聚丙烯(polypropylene)是由丙烯单体经聚合作用而部分结晶的聚合物,英文缩写为PP。
其聚合方法有4种,即溶液法、溶剂淤浆法、液相本体法和气相法。
由于聚合方法的不同,所得到的聚丙烯树脂性能有差异。
据资料,聚丙烯最主要的两个性能是熔体质量流动速率和立体等规度。
1.熔体流动速率(MFR)——热塑性材料在一定的温度和压力下,熔体每10min通过标准口模的质量,单位为g/10min.塑料熔体流动速率(MFR),以前又称为熔体流动指数(MFI)和熔融指数(MI)。
一般说来,我们在聚丙烯加工的时候,以MFR来表示它的流动性能,熔融指数是与聚合物的分子量相对应的,与聚合物的相对分子质量成反比而与粘度成反比。
MFR的测量一般由一台挤出式塑度仪完成。
其具体的操作方法参考GB/T 3682-2000,可以在方法A或者B中任选一种,选择方法B时,熔体的密度值为0.7386g/cm3。
试验条件为M(温度:230℃,负荷:2.16kg)或P(温度:230℃,负荷:5.0kg),试验前,应用氮气吹扫料筒5s-10s,氮气压力为0.05MPa。
2.立体规整度(等规度)——等规度(tacticity)指的是有规异构体(tacticity polymer)占有全部高分子的百分数。
在缩聚反应中,大分子结构中甲基基团的立体位置基本以等规体、无规体、间规体三种结构形式存在,其中,间规体的数量甚微,可以忽略,而等规度即是描述有规异构所占比例的物理量。
这样,聚丙烯的性质主要取决于等规结构分子在均聚物中的百分数。
由于无规异构体的溶解度较强,故此聚丙烯分子可以被萃取,所以,其等规度我们可以用萃取法来测得。
3.分子量及分子量分布——化学式中各原子的相对原子质量的总和,就是相对分子质量(Relative molecular mass),而分子量分布则是用分子量分布系数来表示的,分子量分布表示聚合物的相对分子质量在其平均值周围扩展的程度。
分子量测定有端基分析法、溶液依数性法、渗透压法、气相渗透法、粘度法等许多方法,根据不同的分子量范围采用不同的方法。
(重)常见材料的力学性能

(重)常见材料的力学性能附录常用材料的力学及其它物理性能一、玻璃的强度设计值 f g(MPa)JGJ102-2003表5.2.1二、铝合金型材的强度设计值 (MPa)GB50429-2007表4.3.4三、钢材的强度设计值(1-热轧钢材) f s(MPa) JGJ102-2003表5.2.3四、钢材的强度设计值(2-冷弯薄壁型钢) f s(MPa)五、材料的弹性模量E(MPa)JGJ102-2003表5.2.8、JGJ133-2001表5.3.9六、材料的泊松比υJGJ102-2003表5.2.9、JGJ133-2001表5.3.10、GB50429-2007表4.3.7七、材料的膨胀系数α(1/℃)JGJ102-2003表5.2.10、JGJ133-2001表5.3.11、GB50429-2007表4.3.7八、材料的重力密度γg (KN/m )JGJ102-2003表5.3.1、GB50429-2007表4.3.7九、板材单位面积重力标准值(MPa )JGJ133-2001表5.2.2十、螺栓连接的强度设计值一(MPa) JGJ102-2003表B.0.1-1十一、螺栓连接的强度设计值二(MPa)十二、焊缝的强度设计值(MPa) JGJ102-2003表B.0.1-3十三、不锈钢螺栓连接的强度设计值(MPa) JGJ102-2003表B.0.3十四、楼层弹性层间位移角限值GB/T21086-2007表20十五、部分单层铝合板强度设计值(MPa)JGJ133-2001表5.3.2十六、铝塑复合板强度设计值(MPa)JGJ133-2001表5.3.3十七、蜂窝铝板强度设计值(MPa)JGJ133-2001表5.3.4十八、不锈钢板强度设计值(MPa)附录常用材料的力学及其它物理性能十九、玻璃的强度设计值f g(N/mm2)二十、铝合金型材的强度设计值 f a(N/mm2)二十一、钢材的强度设计值(1-热轧钢材)f s(N/mm2)二十二、钢材的强度设计值(2-冷弯薄壁型钢) f s(N/mm2)二十三、材料的弹性模量E(N/mm2)二十四、材料的泊松比υ二十五、材料的膨胀系数α(1/℃)二十六、材料的重力密度γg (KN/m3)二十七、板材单位面积重力标准值(N/m2)二十八、螺栓连接的强度设计值(N/mm2)二十九、焊缝的强度设计值(N/mm2)三十、不锈钢螺栓连接的强度设计值(N/mm2)三十一、楼层弹性层间位移角限值钢筋混凝土框支层1/1000多、高层钢结构1/300 三十二、部分单层铝合板强度设计值(MPa)三十三、铝塑复合板强度设计值(MPa)JGJ133-2001表5.3.3板厚t(mm) 抗拉强度f ta2抗剪强度f va24 70 20 三十四、蜂窝铝板强度设计值(MPa)JGJ133-2001表5.3.4板厚t(mm) 抗拉强度f ta3抗剪强度f va320 10.5 1.4 三十五、不锈钢板强度设计值(MPa)。
纳米材料的物理性能.

《材料科学前沿》学号:S1*******流水号:S2*******姓名:张东杰指导老师:郝耀武纳米晶材料的物理性能摘要:纳米材料由于其独特的微观结构和奇异的物理化学性质,目前已成为材料领域研究的热点之一。
纳米晶材料具有优异的物理特性,这是由所组成的微粒的尺寸、相组成和界面这三个方面的相互作用来决定的。
本文简要介绍了纳米晶材料的定义,综述了纳米晶材料的各种物理特性。
关键词:纳米材料,纳米晶材料,物理性能1、引言纳米材料是指三维空间尺度至少有一维处于纳米量级(1~100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。
由于其组成单元的尺度小,界面占用相当大的成分。
因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。
纳米体系使人们认识自然又进入一个新的层次,它是联系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域。
实际上由纳米粒子组成的材料向宏观体系演变过程中存在结构上有序度的变化和在状态上的非平衡性质,使体系的性质产生很大的差别。
对纳米材料的研究将使人们从微观到宏观的过渡有更深入的认识。
纳米材料按其结构可分为四类:晶粒尺寸至少在一个方向上在几个纳米范围内的称为三维纳米材料;具有层状结构的称为二维纳米材料;具有纤维结构的称为一维纳米材料;具有原子簇和原子束结构的称为零维纳米材料。
纳米晶材料(纳米结构材料)的概念最早是由H.Gleiter出的,这类固体是由(至少在一个方向上)尺寸为几个纳米的结构单元(主要是晶体)所构成。
纳米晶材料是一种非平衡态的结构,其中存在大量的晶体缺陷。
当然,纳米材料也可由非晶物质组成,例如:半晶态高分子聚合物是由厚度为纳米级的晶态层和非晶态层相间地构成的故是二维层状纳米结构材料。
又如纳米玻璃的组成相均为非晶态,它是由纳米尺度的玻璃珠和界面层所组成。
我们这里主要讨论纳米晶材料的物理性能。
常用材料的物理性能(超详细-好经典)

材料的物理性能材料的物理性能:密度、相对密度、弹性、塑性、韧性、刚性、脆性、缺口敏感性、各向同性、各向异性、吸水率和模塑收缩率等。
•弹性:是材料在变形后部分或全部恢复到初始尺寸和形状的能力。
•塑性:是材料受力变形后保持变形的形状和尺寸的能力。
•韧性:是聚合物材料通过弹性变形或塑性变形吸收机械能而不发生破坏的能力。
•延展性:材料受到拉伸或压延而未受到破坏的延伸性称为延展性。
•脆性:是聚合物材料在吸收机械能时易发生断裂的性质。
•缺口敏感性:材料从已存在的缺口、裂纹或锐角部位发生开裂,裂纹很快贯穿整个材料的性质称为缺口敏感性。
•各向同性:各向同性的材料为在任何方向上物理性能相同的热塑性或热固性材料。
•各向异性:各向异性材料的性质与测试方向有关,增强塑料在纤维增强材料的排列方向上有较高的性能。
•吸水性:吸水性是材料吸水后质量增加的百分比表示。
模塑收缩性:模塑收缩性是指零件从模具中取出冷却至室温后,其尺寸相对于模具尺寸发生的收缩。
冲击性能:是材料承受高速冲击载荷而不被破坏的一种能力,反应了材料的韧性。
塑料材料在经受高冲击力而不被破坏,必须满足两个条件:①能迅速通过形变来分散和冲击能量;②材料内部产生的内应力不超过材料的断裂强度。
疲劳性能:塑料制品受到周期性反复作用的应力,包括拉伸、弯曲、压缩或扭曲等不同类型的应力,而发生交替变形的现象,称为疲劳。
抗撕裂性:抗撕裂性是薄膜、片材、带材一类薄型瓣重要力学性能。
蠕变性:指材料在恒定的外力(在弹性极限内,包括拉伸、压缩、弯曲等)作用下,变形随时间慢慢增加的现象。
应力松弛:指塑料制品维持恒定应变所需要的应力随时间延长而慢慢松弛的现象。
塑胶材料●塑胶材料可分为两大类:热塑性塑料、热固性塑料。
●热塑性塑料从构象(形态不同)可分为三种类型:无定型聚合物(PS、PC、PMMA)、半结晶聚合物(PE、PP、PA)、液晶聚合物(LCP)。
●热塑性塑料受热后会软化,并发生流动,冷却后凝固变硬,成为固态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料的物理性能材料的物理性能:密度、相对密度、弹性、塑性、韧性、刚性、脆性、缺口敏感性、各向同性、各向异性、吸水率和模塑收缩率等。
•弹性:是材料在变形后部分或全部恢复到初始尺寸和形状的能力。
•塑性:是材料受力变形后保持变形的形状和尺寸的能力。
•韧性:是聚合物材料通过弹性变形或塑性变形吸收机械能而不发生破坏的能力。
•延展性:材料受到拉伸或压延而未受到破坏的延伸性称为延展性。
•脆性:是聚合物材料在吸收机械能时易发生断裂的性质。
•缺口敏感性:材料从已存在的缺口、裂纹或锐角部位发生开裂,裂纹很快贯穿整个材料的性质称为缺口敏感性。
•各向同性:各向同性的材料为在任何方向上物理性能相同的热塑性或热固性材料。
•各向异性:各向异性材料的性质与测试方向有关,增强塑料在纤维增强材料的排列方向上有较高的性能。
•吸水性:吸水性是材料吸水后质量增加的百分比表示。
模塑收缩性:模塑收缩性是指零件从模具中取出冷却至室温后,其尺寸相对于模具尺寸发生的收缩。
冲击性能:是材料承受高速冲击载荷而不被破坏的一种能力,反应了材料的韧性。
塑料材料在经受高冲击力而不被破坏,必须满足两个条件:①能迅速通过形变来分散和冲击能量;②材料内部产生的内应力不超过材料的断裂强度。
疲劳性能:塑料制品受到周期性反复作用的应力,包括拉伸、弯曲、压缩或扭曲等不同类型的应力,而发生交替变形的现象,称为疲劳。
抗撕裂性:抗撕裂性是薄膜、片材、带材一类薄型瓣重要力学性能。
蠕变性:指材料在恒定的外力(在弹性极限内,包括拉伸、压缩、弯曲等)作用下,变形随时间慢慢增加的现象。
应力松弛:指塑料制品维持恒定应变所需要的应力随时间延长而慢慢松弛的现象。
塑胶材料●塑胶材料可分为两大类:热塑性塑料、热固性塑料。
●热塑性塑料从构象(形态不同)可分为三种类型:无定型聚合物(PS、PC、PMMA)、半结晶聚合物(PE、PP、PA)、液晶聚合物(LCP)。
●热塑性塑料受热后会软化,并发生流动,冷却后凝固变硬,成为固态。
热塑性塑料由曲线状高分子组成,在加热时仅仅发生物理变化,其分子链上的基团稳定,分子间不发生化学反应。
在多数热塑性塑料能被化学溶剂溶解,它对化学品的耐蚀性较热固性塑料差,其使用温度比热固性塑料低,机械性能和硬度也相对偏低。
由于它的生产工艺成熟,来源广泛及可回收再利用,目前得到广泛的使用。
●通用的工程塑料:PA 聚酰胺、POM 聚甲醛、PC 聚碳酸酯、PPO改性聚苯醚、PET/PBT聚酯。
塑胶材料的分类一、按树脂的受热变化分类1.热固性塑料:酚醛树脂、氨基树脂、环氧树脂、不饱和树脂、氰酸酯树脂、呋喃树脂、烯丙基树脂、醇酸树脂等。
2.热塑性塑料:目前的使用达95%以上。
二、按树脂的应用分类1.通用塑料:产量大、应用范围广、成型加工性好、成本低的一类树脂。
2.工程塑料:力学性能较好,尺寸稳定性高、抗蠕变性好、可在较高温度下使用(增强后热变形温度大于150℃)3.一般塑料:指用量大、应用范围广、性能一般的一类塑料。
产量占整个树脂的90%以上。
4.特种塑料:指具有独特性能、价格高、产量少、应用范围窄的一类塑料。
5.热塑性弹性体:性能介于塑料和橡胶之间。
Thermoplastic elastomer(TPE),或Thermoplastic rubber(TPR)。
有SBS、SEBS、SIS、SEPS、POE、TPV、TPU、TPVC、TPEE、TPA等。
三、按树脂的结构分类1.聚烯烃类2.乙烯基类3.聚酰胺类4.聚脂类5.其他种类还有纤维素类、聚胺酯类、酚醛类、氨基树脂类及环氧树脂等四、按所含树脂的种类分类1.单一树脂2.塑料合金塑料从工程应用上来分:1.工程塑料2.一般用途类塑料3.特殊用途类塑料通用热塑性塑料包括聚乙烯类、聚丙烯类、聚氯乙烯类、聚苯乙烯类和ABS类五种,占整个树脂的80%以上。
塑料中通常添加的助剂种类●机械强度和耐磨性很好,但没有自润滑作用。
低温性能好,在-40度下仍表现较好的韧性,易着色。
还具有超强的易加工性(加工工艺性好),外观特性,低蠕变性和优异的尺寸稳定性以及很高的抗冲击强度●材料湿度应保证小于0.1%。
熔化温度:210~280C;模具温度:25~70C。
建议温度:45C。
●ABS的热变形温度为65~70度。
●使用温度:-40~100度。
●收缩率:0.4~0.7%,通常取0.6%。
设计注意:耐候性不佳,长期暴露在阳光下,易变色、降低强度;易燃烟量大。
PC 聚碳酸酯(防弹胶)●透明度可达到90%,刚硬且韧性好,抗冲击强度高,使用温度可在-120—130℃之间长期使用,但耐应力、开裂性差。
●典型应用范围:电气和商业设备(计算机元件、连接器等),器具(食品加工机、电冰箱抽屉等),交通运输行业(车辆的前后灯、仪表板等)。
●熔化温度:260~340C。
模具温度:70~120C。
注射压力:尽可能地使用高注射压力。
注射速度:对于较小的浇口使用低速注射,对其它类型的浇口使用高速注射。
●收缩率一般为0.5%~0.7% 通常取0.6%设计注意:耐疲劳强度较低,易产生应力开裂,在制品中尽量少用金属嵌件;不耐碱;耐磨性较差。
PC/ABS 聚碳酸酯和丙烯腈-丁二烯-苯乙烯共聚物和混合物●PC/ABS具有PC和ABS两者的综合特性。
例如ABS的易加工特性和PC的优良机械特性和热稳定性。
●二者的比率将影响PC/ABS材料的热稳定性。
PC/ABS这种混合材料还显示了优异的流动特性。
可改善应力开裂性,提高耐冲击性、耐磨损性、耐热水老化性。
PC/PBT 聚碳酸酯和聚对苯二甲酸丁二醇酯的混合物●典型应用范围:齿轮箱、汽车保险杠以及要求具有抗化学反应和耐腐蚀性、热稳定性、抗冲击性以及几何稳定性的产品。
●注塑模工艺条件:干燥处理:建议110~135C,约4小时的干燥处理。
熔化温度:235~300C。
模具温度:37~93C。
●化学和物理特性: PC/PBT具有PC和PBT二者的综合特性,例如PC的高韧性和几何稳定性以及PBT的化学稳定性、热稳定性和润滑特性等。
收缩率在0.5%左右。
PE 聚乙烯(俗称为软胶)聚乙烯的主要品种有:低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、线型低密度聚乙烯LLDPE、高分子量聚乙烯(UHMWPE)及茂金属聚乙烯。
改性品种肯乙烯-乙酸乙烯脂(EVA)和氯化聚乙烯(CPE)。
一般性能:在常温下呈白色蜡状,为半透明颗粒,柔而韧,易变形,比水轻,无味无毒;耐化学品性好又脆化温度可达-70度;防潮性和电气绝缘性良好。
HDPE 高密度聚乙烯●在常温下呈白色蜡状,为半透明颗粒,柔而韧,易变形,比水轻,无味无毒;耐化学品性好又脆化温度可达-70度;防潮性和电气绝缘性良好。
●典型应用范围:电冰箱容器、存储容器、家用厨具、密封盖等。
●熔化温度:220~260C。
对于分子较大的材料,建议熔化温度范围在200~250C之间。
模具温度:50~95C。
●HDPE的收缩率在1.5%~3%之间LDPE 低密度聚乙烯●典型应用范围:装饰塑料花,箱柜,管道联接器●熔化温度:180~280C模具温度:20~40C为了实现冷却均匀以及较为经济的去热,建议冷却腔道直径至少为8mm,并且从冷却腔道到模具表面的距离不要超过冷却腔道直径的1.5倍。
注射压力:最大可到1500bar。
保压压力:最大可到750bar。
●PE-LD的收缩率在1.5%~5%之间设计注意:表面印刷着色困难;耐候性不佳;动植物油、矿物油能使PE溶PE要好,有特别高的抗弯曲疲劳强度,可制作铰链,耐热性好,低温使用只能达-15度,但低于-35度时会脆裂。
易老化,不吸水(高频绝缘性能好)。
●熔化温度:220~275C,注意不要超过275C。
模具温度:40~80C,建议使用50度。
结晶程度主要由模具温度决定。
●收缩率相当高,一般为1.0~2.5%,设计注意:耐日光性差,易发生热氧老化;低温耐冲击性差;氧化酸能促使PP降解;避免与铜接触,铜盐溶液对PP有特殊的破坏作用;PP成型收缩率较高,热胀系数高,要防热应力脆化的发生;不易表面着色。
PA6 聚酰胺6或尼龙6●耐磨、高强、韧性好、有自润滑,可在-40~100度下长期使用。
吸水性大,使得制品尺寸变化大,成型前要在热空气中干燥。
●熔化温度:230~280C,对于增强品种为250~280C。
模具温度:80~90C。
●PA6的收缩率在1%到1.5%之间PA66聚酰胺66或尼龙66●典型应用范围:同PA6相比,PA66更广泛应用于汽车工业、仪器壳体以及其它需要有抗冲击性和高强度要求的产品。
熔化温度: 225~275C 。
对玻璃添加剂的产品为275~280C。
熔化温度应避免高于300C。
●模具温度:建议80C。
●PA66的收缩率在1%~2%之间设计注意:吸湿性大,在酸性介质里易发生溶胀和增塑倾向;吸水性会影响材料的电性能,因此在电性能要求高和环境湿度较大的环境不适宜;由于吸水性强,不宜用来设计高尺寸精度的零件。
POM聚甲醛(赛钢)●POM具有很低的摩擦系数和很好的几何稳定性,特别适合于制作齿轮和轴承。
由于它还具有耐高温特性,因此还用于管道器件(管道阀门、泵壳体),草坪设备等。
●POM是一种坚韧有弹性的材料,即使在低温下仍有很好的抗蠕变特性、几何稳定性和抗冲击。
可在-120—100℃之间长期使用。
●熔化温度:均聚物材料为190~230C;共聚物材料为190~210C。
●模具温度:80~105C。
为了减小成型后收缩率可选用高一些的模具温度。
●注射速度:中等或偏高的注射速度。
●POM的高结晶程度导致它有相当高的收缩率,可高达到2%~3.5%。
对于各种不同的增强型材料有不同的收缩率。
设计注意:对缺口比较敏感;在热水的长期作用下,会发生一定程度的湿热老化;户外产品要添加抗紫外线剂、抗氧化剂;耐辐射性不好PS聚苯乙烯(硬胶)●有良好的电气性能,耐电弧性能好,不吸潮,有较好的成型工艺性;属于硬质塑料,有较高的刚度和表面硬度;吸湿性小,是最耐辐射的聚合材料之一;常用于仪表外壳、接线盒、玩具等。
●熔化温度:180~280C。
对于阻燃型材料其上限为250C。
模具温度:40~50C。
注射压力:200~600bar。
●收缩率在0.2~0.7%之间,常取0.4%设计注意:耐热性低,连续使用温度60-70度,易燃烧;抗冲击性差,性脆、易开裂;大部分植物油和芳香油能使制品溶胀和产生开裂。
HIPS聚苯乙烯(不碎胶或高抗冲)●是在GPPS中加入适量(5%~20%)丁二烯橡胶改性,从而改善硬胶的抗冲击性能。
PVC(聚氯乙烯)●耐化学品性好;具有阻燃性(有氯原子);有良好的电绝缘性,使用温度不能超过80度。
●典型应用范围:电线护套,供水管道,家用管道,房屋墙板,商用机器壳体,电子产品包装,医疗器械,食品包装等。