和、差、积、商的求导法则
合集下载
函数的和、差、积、商的求导法则

即
(tan x ) sec 2 x .
同理可得 (cot x ) csc 2 x .
例5 求 y sec x 的导数 .
解
1 y (sec x ) ( ) cos x (cos x ) sin x sec x tan x . 2 2 cos x cos x
机动 目录
1
( x 3 4 cos x sin 1) x ( 3 x 2 4 sin x )
上页
下页
返回
结束
例4 求 y tan x 的导数 . 解
sin x y (tan x ) ( ) cos x
(sin x ) cos x sin x(cos x ) cos 2 x 1 cos 2 x sin2 x sec2 x cos 2 x cos 2 x
( 3) [
i 1
n
f1 ( x ) f 2 ( x ) f n ( x ) f i ( x )] f1 ( x ) f 2 ( x ) f n( x )
f i( x ) f k ( x );
i 1 k 1 k i
n
n
二、高阶导数的概念
问题: 变速直线运动的加速度.
y 2 cos x cos x ln x 2 sin x ( sin x ) ln x 1 2 sin x cos x x 1 2 cos 2 x ln x sin 2 x . x
1 例3. y (1 x ) (3 ) , x3
2
解:
x x0
x x0
二阶导函数记作
d 2 y d 2 f ( x) f ( x ), y , 2 或 . 2 dx dx
函数的求导法则

首页 上页 返回 下页 结束 铃
复合函数的求导法则: dy = f ′(u)⋅ g′(x) 或 dy = dy ⋅ du . dx dx du dx
求 dy . 例10 y = ln sin x, dx
解 dy =(ln sin x)′= 1 ⋅(sin x)′ = 1 ⋅cosx=cot x . dx sin x sin x dy 3 2 , 求 例11 y = 1−2x . . dx 1 dy −4x 1 (1−2x2)− 2 ⋅(1−2x2)′ = 2)3 ]′ = 解 3 =[( −2x 1 . 3 ( −2x2)2 dx 3 3 1 复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y=f(u), u=ϕ(v), v=ψ(x), 则
详细证明 首页 上页 返回 下页 结束 铃
复合函数的求导法则: dy = f ′(u)⋅ g′(x) 或 dy = dy ⋅ du . dx dx du dx 例8 y=ex3 , 求 dy . 9 dx 解 函数 y=ex3可看作是由y=e u, u=x3复合而成的, 因此
dy dy du u 2 = ⋅ =e ⋅3x =3x2ex3 . dx du dx dy 例9 y =sin 2x2 , 求 . 10 1+ x dx 解 函数 y =sin 2x 是由 y=sin u , u = 2x 复合而成的, 1+ x2 1+ x2 dy dy du 2(1+ x2) −(2x)2 2(1− x2) = ⋅ =cosu⋅ = ⋅cos 2x2 . 因此 dx du dx (1+ x2)2 (1+ x2)2 1+ x
u(x) u′(x)v(x) −u(x)v′(x) >>> [ ]′ = . 2(x) v(x) v
复合函数的求导法则: dy = f ′(u)⋅ g′(x) 或 dy = dy ⋅ du . dx dx du dx
求 dy . 例10 y = ln sin x, dx
解 dy =(ln sin x)′= 1 ⋅(sin x)′ = 1 ⋅cosx=cot x . dx sin x sin x dy 3 2 , 求 例11 y = 1−2x . . dx 1 dy −4x 1 (1−2x2)− 2 ⋅(1−2x2)′ = 2)3 ]′ = 解 3 =[( −2x 1 . 3 ( −2x2)2 dx 3 3 1 复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y=f(u), u=ϕ(v), v=ψ(x), 则
详细证明 首页 上页 返回 下页 结束 铃
复合函数的求导法则: dy = f ′(u)⋅ g′(x) 或 dy = dy ⋅ du . dx dx du dx 例8 y=ex3 , 求 dy . 9 dx 解 函数 y=ex3可看作是由y=e u, u=x3复合而成的, 因此
dy dy du u 2 = ⋅ =e ⋅3x =3x2ex3 . dx du dx dy 例9 y =sin 2x2 , 求 . 10 1+ x dx 解 函数 y =sin 2x 是由 y=sin u , u = 2x 复合而成的, 1+ x2 1+ x2 dy dy du 2(1+ x2) −(2x)2 2(1− x2) = ⋅ =cosu⋅ = ⋅cos 2x2 . 因此 dx du dx (1+ x2)2 (1+ x2)2 1+ x
u(x) u′(x)v(x) −u(x)v′(x) >>> [ ]′ = . 2(x) v(x) v
函数导数四则运算法则

函数导数四则运算法则
函数导数的四则运算法则是指当对函数的四则运算时,其导数的运算规则。
函数导数四则运算法则是微积分中的一个重要概念,在进行函数的计算时,以及在实际应用中,都有着重要的作用。
函数导数四则运算法则一共有四条,分别是:
1、加法法则:如果f(x)和g(x)是两个函数,那么它们的
和的导数是:f'(x)+g'(x)。
2、减法法则:如果f(x)和g(x)是两个函数,那么它们的
差的导数是:f'(x)-g'(x)。
3、乘法法则:如果f(x)和g(x)是两个函数,那么它们的
积的导数是:f(x)g'(x)+g(x)f'(x)。
4、除法法则:如果f(x)和g(x)是两个函数,那么它们的
商的导数是:[f'(x)g(x)-f(x)g'(x)]/[g(x)]^
2。
这四条函数导数四则运算法则也就是所谓的求导法则,是在函数求导中常用到的,它们分别表示了当函数进行加减乘除运算时,其导数的计算方法。
这些法则可以帮助我们更加简便、快速地求出函数的导数,从而解决函数求导中的问题。
函数导数的四则运算法则在实际应用中也有着重要的作用,比如在机器研究中,梯度下降法就使用了这些法则,它可以用来求解机器研究的复杂优化问题;此外,它还可以应用于统计学中的概率论,例如统计推断中的梯度下降法也使用了函数导数四则运算法则。
总之,函数导数四则运算法则是微积分中的一个重要概念,在数学计算、实际应用等方面都有着重要的作用,因此,研究这些法则也是十分重要的。
和、差、积、商的求导法则

且 (ay) ayln a 0 , 在 Ix (0,) 内,有
(loga x) (a1y)
1 a y ln a
1. x ln a
特别地 (lnx) 1 .
x
首页
上页
下页
《高等数学》电子教案山东农业大学科技学院
三、复合函数的求导法则
定理 如果函 u数 (x)在点 x0可导 , 而yf(u)
同理可得 (cx o) tcs2x c.
首页
上页
下页
《高等数学》电子教案山东农业大学科技学院
例4 求ysexc的导. 数
解 y(sex)c( 1 )
coxs
(cosx) cos2 x
sin x cos 2 x
se x tc a x .n
同理可得 (c x )s c cx scc x o . t
2sinxcoxs1 x
2co2xsln x1si2n x. x
首页
上页
下页
《高等数学》电子教案山东农业大学科技学院
例3 求ytaxn的导. 数 解 y(tax)n (six n)
coxs (sx i)n cc o x o 2 ssxsixn (cx o ) s co2scxo2ssxin2 x co12sxse2cx 即(tx a ) n se 2x.c
n3xn1co xns fn1[ n(sx in)n] n1(sx in)n f[ n(sx in)n] (sx in)n.
首页
上页
下页
《高等数学》电子教案山东农业大学科技学院
五、双曲函数与反双曲函数的导数
(six n ) hcoxsh(cox)sh sin xh tanxhsinxh
第二节函数的和、差、积、商的求导法则

(loga
x)
1 (a y )
1 a y ln a
1. x ln a
特别地
(ln x) 1 . x
10/21
三、常数和基本初等函数的导数公式
(1) (C ) 0;
(2) ( x ) x 1 ( 0);
(3) (sinx) cos x;
(4) (cos x) sin x;
(5) (tan x) sec2 x;
v( x0 x) v( x0 ) x
lim
u( x0
x) x
u( x0 )
v( x0 )
u( x0 )
v( x0
x) x
v( x0 )
x 0
v( x0 x) v( x0 )
u( x0 )
v( x0 ) u( x0 ) [v( x0 )]2
v( x0 )
f ( x) 在 x0 处可导且(3)成立.
(1) [u( x) v( x)] / x x0 u( x0 ) v( x0 );
(2) [u( x) v( x)] / x x0 u( x0 ) v( x0 ) u( x0 ) v( x0 );
(
3)
[
u( v(
x) x)
]
/
x
x
0
u( x0 ) v( x0 ) u( x0 ) v( x0 ) v2( x0 )
8/21
例5 求 y arcsin x 的导数.
解
y sin x 在
Ix
(
2
,
2
)
内单调、可导
,
且 (sin x) cos x 0, 在 I y (1,1) 内有
(arcsin y) 1 (sin x)
函数的求导法则

导数与微分
14
证 任取x I x , 给x以增量x (x 0, x x I x )
由y f ( x)的单调性可知 y 0,
于是有
y x
1 x
,
y
y 0 (x 0),
f ( x)连续,
又知 ( y) 0
f ( x) lim y lim 1 1
x0 x y0 x ( y)
导数与微分
11
例5 求 y sec x 的导数 .
解
y (sec x) ( 1 ) cos x
(cos cos 2
x) x
sin x cos2 x
sec x tan x.
同理可得 (csc x) csc x cot x.
导数与微分
12
例 求 y sinh x 的导数 .
解 y (sinh x) [1 (e x e x )] 1 (e x e x ) cosh x.
导数与微分
6
例2 f (x) x3 4 cos x sin ,求f '(x)及f '
2
2
导数与微分
7
例3 y ex (sin x cos x), 求y'
导数与微分
8
例 求 y x3 2 x2 sin x 的导数 .
导数与微分
9
例 求 y sin 2x ln x 的导数 .
即 f ( x) 1 .
y
( y)
导数与微分
15
例6 求函数 y arcsin x 的导数.
解
x
sin
y在
I
y
(
2
,
)内单调、可导 2
,
且 (sin y) cos y 0, 在 I x (1,1)内有
第二章 导数与微分 第二节 函数的和、差、积、商的求导法则

证明略证明略二例题分析的导数tan的导数cossincossincoscossincosseccossec的导数tanseccossincotcsc内容小结1和差积商的求导法则2重要结论cotcsctansec
函数的和、 第二节 函数的和、差、积、商的求导法则
一、和、差பைடு நூலகம்积、商的求导法则
定理2.1 如 函 u(x), v(x)在 x处 导 则 定理 果 数 点 可 , 它
u u′v − uv′ (3) ( )′ = . 2 v v
证明(略)
二、例题分析
求y = x 4 − cos x + 3 x + ln 5的导数 例1:
解:
y′ = ( x 4 )′ − (cos x)′ + (3 x )′ + (ln 5)′
= 4 x + sin x + 3 ln 3
3 x
例2: 求 y = 2 x sin x 的导数 . 解:
即 (tan x)′ = sec2 x.
同理可得
(cot x)′ = − csc2 x.
例4:求 y = sec x 的导数 . 解
1 y ′ = (sec x )′ = ( )′ cos x − (cos x )′ sin x = sec x tan x . = = 2 2 cos x cos x
(1) (u ± v)′ = u′ ± v′
证明(略) 此法则可推广到任意有限项的情形. 例如,
(2)
(uv)′ = u′v + u v′
证: 设 f (x) = u(x)v(x) , 则有
u(x + h)v(x + h) − u(x)v(x) f (x + h) − f (x) = lim f ′(x) = lim h→0 h→0 h h
二节基本的导数公式与运算法则-精选

n22xx1n12x1(2(x2)x()22x1)(2x)
机动 目录 上页 下页 返回 结束
n2 2x x1n1(2 5x)25n ((22 xx )1 n)1 n1
作业: P5813(2)(3)(8),14(2)(4)15(4)(8)(13)(14)216
(5) (sxi)ncoxs
机动 目录 上页 下页 返回 结束
(6) (cxo )s sixn (7) (tax)nse2xcc1o2xs
(8) (cxo)tcs2xcs1i2nx
(9 ) (sx)e s ce xtcaxn (1)0 (c x )s c cx sc cx ot
(sixn)coxssinx(cox)s
(cox)2s
coxcs oxssixn(sixn) co2xs
1 sec2 x co2sx
类似地可求得 (co x)ts1 i2nxcs2xc
机动 目录 上页 下页 返回 结束
例
设
f
(x)
ln x x2
,
求f
(e)
机动 目录 上页 下页 返回 结束
可导,且有
(arcsixn) (si1ny)
1 cos
y
1
1 sin2 y
1 1 x2
即(arcsx)in 1 1x2
类似地可得
(arccx)os 1 1x2
机动 目录 上页 下页 返回 结束
三、复合函数的求导法则
定理2.6 设函数 yf(u)与 u(x)构成了复合函数
(1)1 (arcxs)in 1 1x2
机动 目录 上页 下页 返回 结束
(1)2(arc)cox 1 1x2
(1)3(arcx)ta1n1x2
机动 目录 上页 下页 返回 结束
n2 2x x1n1(2 5x)25n ((22 xx )1 n)1 n1
作业: P5813(2)(3)(8),14(2)(4)15(4)(8)(13)(14)216
(5) (sxi)ncoxs
机动 目录 上页 下页 返回 结束
(6) (cxo )s sixn (7) (tax)nse2xcc1o2xs
(8) (cxo)tcs2xcs1i2nx
(9 ) (sx)e s ce xtcaxn (1)0 (c x )s c cx sc cx ot
(sixn)coxssinx(cox)s
(cox)2s
coxcs oxssixn(sixn) co2xs
1 sec2 x co2sx
类似地可求得 (co x)ts1 i2nxcs2xc
机动 目录 上页 下页 返回 结束
例
设
f
(x)
ln x x2
,
求f
(e)
机动 目录 上页 下页 返回 结束
可导,且有
(arcsixn) (si1ny)
1 cos
y
1
1 sin2 y
1 1 x2
即(arcsx)in 1 1x2
类似地可得
(arccx)os 1 1x2
机动 目录 上页 下页 返回 结束
三、复合函数的求导法则
定理2.6 设函数 yf(u)与 u(x)构成了复合函数
(1)1 (arcxs)in 1 1x2
机动 目录 上页 下页 返回 结束
(1)2(arc)cox 1 1x2
(1)3(arcx)ta1n1x2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注 1.基本初等函数的导数公式和上述求导法则
是初等函数求导运算的基础,必须熟练掌握
2.复合函数求导的链式法则是一元函数微分 学的理论基础和精神支柱,要深刻理解 ,熟 练应用——注意不要漏层
3.对于分段函数求导问题:在定义域的各个部 分区间内部,仍按初等函数的求导法则处理, 在分界点处须用导数的定义仔细分析,即分别 求出在各分界点处的左、右导数,然后确定导 数是否存在。
即 反函数的导数等于直接函数导数的倒数.
例6 求函数 y arcsin x 的导数.
解
x
sin
y在
I
y
(
2
,
)内单调、可导 2
,
且 (sin y) cos y 0, 在 I x (1,1)内有
(arcsin x) 1 1 (sin y) cos y
2
2
a
1 a2 x2 1 x2
a2
2
2 a2 x2 2 a2 x2
a2 x2.
例11 求函数 y ln x 2 1 ( x 2)的导数. 3 x2
解 y 1 ln( x 2 1) 1 ln( x 2),
2
3
y
1 2
1 x2 12x
先看一个例子
例8 y (1 x2 )2,求y
y (1 x2 )2 1 2x2 x4 y 4x 4x3 4x(1 x2 ) 这里我们是先展开,再求导,若像 y (1 x2 )1000 求导数,展开就不是办法,再像 y 5 1 x2 求导数,根本无法展开,又该怎么办?
一、和、差、积、商的求导法则
定理 如果函数 u( x), v( x)在点 x处可导,则它 们的和、差、积、商(分母不为零)在点 x处也 可导, 并且
(1) [u( x) v( x)] u( x) v( x);
(2) [u( x) v( x)] u( x)v( x) u( x)v( x);
ln(1
0)
1,
f (0) 1.
f
( x)
1, 1
1 x
,
x0 x0.
三、反函数的导数
定理 如果函数x ( y)在某区间I y内单调、可导
且( y) 0 , 那末它的反函数 y f ( x)在对应区间
I
内
x
也可导
,
且有
f ( x) 1 . ( x)
仔细分析一下,这三个函数具有同样的复合结构 我们从复合函数的角度来分析一下上例的结果。
y (1 x2 )2 是由y u2和u 1 x2复合而成的 yu 2u ux 2 x
yu ux 2u (2x) 4x(1 x2 ) yx
再如 y sin 2x
1 3( x
2)
x x2 1
1 3( x 2)
1
例12
求函数
y
sin
ex
的导数.
解
y
e
sin
ex
cos
1
(
1 )
x
xx
1 x2
1 sin
ex
cos
1 x
.
例13 求 y sinh x 的导数 .
解 y (sinh x) [1 (e x e x )] 1 (e x e x ) cosh x.
初等函数微分法
求导数的方法称为微分法。用定义只能求出 一些较简单的函数的导数(常函数、幂函数、 正、余弦函数、指数函数、对数函数),对于 比较复杂的函数则往往很困难。本节我们就来 建立求导数的基本公式和基本法则,借助于这 些公式和法则就能比较方便地求出常见的函 数——初等函数的导数,从而是初等函数的求 导问题系统化,简单化。
——说明求导是一线性运算
⑤作为(3)的一种特殊情况,
若u
1,则(1) v
v v2
二、例题分析
例1 求 y x3 2x2 sin x 的导数 .
解 y 3x 2 4x cos x.
例2 求 y sin 2x ln x 的导数 . 解 y 2sin x cos x ln x
(cos x) cos2 x
sin x cos x
1 cos
x
sec
x tan
x
同理可得 (csc x) csc x cot x
例5
设
f (x)
x, ln(1
x),
x0 ,
求f ( x).
x0
解 当x 0时, f ( x) 1,
当x 0时,
dy dy du dv . dx du dv dx 例9 求函数 y ln sin x 的导数.
解 y ln u, u sin x.
dy dy du dx du dx
1 cos x u
cos x sin x
cot x
例10 求函数 y ( x2 1)10 的导数 .
解 dy 10( x 2 1)9 ( x 2 1)
dx 10( x2 1)9 2x 20x( x2 1)9 .
例5 求函数 y x a2 x2 a2 arcsin x 的导数 .
2
2
解
y ( x
a2
x2
)
a2 (
arcsin
x )
a (a 0)
y (2sin x cos x) 2[(sin x)cos x sin x(cos x)]
2(cos2 x sin2 x) 2cos 2x
注意到 y sin 2x y sin u,u 2x
yu cos u ux 2 yu ux 2cos u 2cos 2x yx
(3)
[u( x)] v( x)
u(
x)v(
x) u( v2(x)
x)v(
x)
(v( x) 0).
证(1)、(2)略.
证(3) 设 f ( x) u( x) , (v( x) 0),
v( x)
f ( x) lim f ( x h) f ( x)
h0
h
u( x h) u( x)
(loga
x)
1 (a y )
1 a y ln a
1. x ln a
特别地 (ln x) 1 .
x
四、复合函数的求导法则
前面我们已经会求简单函数——基本初等函数经 有限次四则运算的结果——的导数,但是像
ln
tan
x,e
x2
,sin
2 x2
x
1
等函数(复合函数)是否可导,可导的话,如何求 它们的导数
f ( x) lim ln(1 x h) ln(1 x)
h0
h
1
h
lim ln(1 )
h0 h
1 x
1, 1 x
当x 0时,
f
(0)
lim
h0
(0
h)
ln(1 h
0)
1,
f(0)
lim
h0
ln[1
(0
h)] h
nn
fi( x) fk ( x);
i1 k1 ki
④ 作为(2)的特殊情况
若v c,则(cu) cu 或 [Cf ( x)] Cf ( x); 即常数因子可以提到导数符号的外面
n
n
[ ki fi ( x)] ki fi( x)
i 1
i 1
即线性组合的导数等于导数的线性组合
y 2cos x cos x ln x 2sin x ( sin x) ln x 2 sin x cos x 1 x
2 cos 2x ln x 1 sin 2x. x
例3 求 y tan x 的导数 .
解 y (tan x) (sin x )
在I上可导,且有dy dy du dx du dx
证
由y
f (u)在点u0可导 ,
lim y u0 u
f (u0 )
故 y u
f (u0 )
( lim 0) u0
则 y f (u0 )u u
lim x 0
y x
② (1)可推广到任意有限个可导函数的情形
n
n
[ fi ( x)] fi( x);
i 1
i 1
③ (2)也可推广到任意有限个函数的情形
(uvw) uvw uvw uvw
n
[ fi ( x)] f1( x) f2( x) fn( x)
i 1
f1( x) f2( x) fn( x)
lim [
x0
f
(
u0
)
u x
u] x
f
(u0
)
lim
x 0
u x
lim
x 0
lim
x 0
u x
f (u0 ) ( x0 ).
注 1.链式法则——“由外向里,逐层求导”
2.注意中间变量
推广 设 y f (u), u (v), v ( x), 则复合函数 y f {[ ( x)]}的导数为