(完整word版)2019-2020厦门市八年级上学期数学质检试题
厦门市2018-2019学年八年级数学上期末质量试题(含答案)

21.(本题满分 8 分) 解方程
x 1 ,并说明“去分母”这一步骤的作用. 2 x2 2 x
22.(本题满分 10 分) 某市为节约水资源,从 2016 年 1 月 1 日起调整居民用水价格,每立方米水费比 2015 年上涨
2 .小红 9
家 2015 年 8 月的水费是 18 元,而 2016 年 8 月的水费是 33 元.已知小红家 2016 年 8 月的用水量比 2015 年 8 月的用水量多 5 m3,求该市 2015 年居民用水的价格.
ቤተ መጻሕፍቲ ባይዱEC 30.
…………… 10 分
DCE 120,EGC 90,
2
…………… 2 分 …………… 4 分
= 2 x 3 x 1.
2
(2) 解:原式=
4x y A 3 y 2 x3
…………… 1 分
= A =
2 1 3 x2
…………… 3 分
2 3x 2
…………… 4 分
注: 1.写出正确答案,至少有一步过程,不扣分. 2.只有正确答案,没有过程,只扣 1 分. 3.没有写出正确答案的,若过程不完整,按步给分. (以下题目类似)
18.(本题满分 8 分) 解:在 ABE 与 ACD 中,
D
A E
B
C
.
.
AB AC , A A, AE AD,
∴ ABE ≌ ACD . ∴ B C .
……………4 分
……………6 分 ……………8 分
19.(本题满分 8 分) 解:由①得 x 2 …………… 2 分 ……………3 分 ……………4 分 ……………5 分 ……………6 分 ……………7 分
八年级上册厦门数学全册全套试卷(提升篇)(Word版 含解析)

八年级上册厦门数学全册全套试卷(提升篇)(Word 版 含解析) 一、八年级数学三角形填空题(难) 1.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.2.如图,△AEF 是直角三角形,∠AEF=900,B 为AE 上一点,BG⊥AE 于点B ,GF∥BE,且AD =BD =BF ,∠BFG=600,则∠AFG 的度数是___________。
【答案】20°【解析】根据平行线的性质,可知∠A=∠AFG ,∠EBF=∠BFG=600,然后根据等腰三角形的性质,可知∠BDF=2∠A,∠A+∠AFB=3∠A=∠EBF,因此可得∠AFG=20°.故答案为:20°.3.直角三角形中,两锐角的角平分线所夹的锐角是_____度.【答案】45【解析】【分析】根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可.【详解】如图所示△ACB为Rt△,AD,BE,分别是∠CAB和∠ABC的角平分线,AD,BE相交于一点F.∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE,分别是∠CAB和∠ABC的角平分线,∴∠FAB+∠FBA=12∠CAB+12∠ABC=45°.故答案为45.【点睛】此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解.4.如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为_____.【答案】30°【解析】【分析】延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC的平分线可得出△BDE≌△BDF,故DE=DF,过D点作DG⊥AC于G点,可得出△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=53°,再根据三角形内角和定理即可得出结论.【详解】解:延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,∵BD是∠ABC的平分线在△BDE与△BDF中,ABD CBDBD BDAED DFC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE≌△BDF(ASA),∴DE=DF,又∵∠BAD+∠CAD=180°∠BAD+∠EAD=180°∴∠CAD=∠EAD,∴AD为∠EAC的平分线,过D点作DG⊥AC于G点,在Rt△ADE与Rt△ADG中,AD ADDE DG=⎧⎨=⎩,∴△ADE≌△ADG(HL),∴DE=DG,∴DG=DF.在Rt△CDG与Rt△CDF中,CD CDDG DF=⎧⎨=⎩,∴Rt△CDG≌Rt△CDF(HL),∴CD为∠ACF的平分线,∠ACB=74°,∴∠DCA=53°,∴∠BDC=180°﹣∠CBD﹣∠DCA﹣∠ACB=180°﹣23°﹣53°﹣74°=30°.故答案为:30°【点睛】本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.5.已知三角形的两边的长分别为2cm和8cm,设第三边中线的长为x cm,则x的取值范围是_______【答案】3<x<5【解析】【分析】延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.【详解】解:如图:AB=8,AC=2,延长AD至M使DM=AD,连接CM在△ABD和△CDM中,AD MDADB MDCBD CD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△MCD(SAS),∴CM=AB=8.在△ACM中:8-2<2x<8+2,解得:3<x<5.故答案为:3<x<5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.6.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10【解析】【分析】【详解】解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.故答案为:10 .考点:多边形的内角和定理.二、八年级数学三角形选择题(难)7.若△ABC 内有一个点P 1,当P 1、A 、B 、C 没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC 内有两个点P 1、P 2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC 内有n 个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A .n·180°B .(n+2)·180°C .(2n-1)·180°D .(2n+1)·180°【答案】D【解析】【分析】 当△ABC 内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC 内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC 内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC 内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180° 【详解】】解:图1中,当△ABC 内只有1个点时,可分割成3个互不重叠的小三角形; 图2中,当△ABC 内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC 内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC 内有n 个点(P 1,P 2,…,P n )时,可以把△ABC 分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°. 【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.8.如图,CD 是ABC 的一条中线,E 为BC 边上一点且2,BE CE AE CD 、相交于,F 四边形BDFE 的面积为6,则ABC 的面积是( )A.14B.14.4C.13.6D.13.2【答案】B【解析】【分析】连结BF,设S△BDF=x,则S△BEF=6-x,由CD是中线可以得到S△ADF=S△BDF,S△BDC=S△ADC,由BE=2CE可以得到S△CEF=12S△BEF,S△ABE=23S△ABC,进而可用两种方法表示△ABC的面积,由此可得方程,进而得解.【详解】解:如图,连接BF,设S△BDF=x,则S△BEF=6-x,∵CD是中线,∴S△ADF=S△BDF=x,S△BDC= S△ADC=12△ABC,∵BE=2CE,∴S△CEF=12S△BEF=12(6-x),S△ABE=23S△ABC,∵S△BDC= S△ADC=12△ABC,∴S△ABC=2S△BDC=2[x+32(6-x)]=18-x,∵S △ABE =23S △ABC , ∴S △ABC =32S △ABE =32[2x + (6-x)] =1.5x +9,∴18-x =1.5x +9,解得:x =3.6,∴S △ABC =18-x ,=18-3.6=14.4,故选:B .【点睛】本题考查了三角形的中线能把三角形的面积平分,等高三角形的面积比等于底的比,熟练掌握这个结论记以及方程思想是解题的关键.9.如图P 为ABC ∆内一点,070,BAC ∠=0120,BPC ∠=BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,BD 与CE 交于F ,则BFC ∠=( )A .085B .090C .095D .0100【答案】C【解析】 ∵070,BAC ∠= 0120,BPC ∠=∴∠ABC+∠ACB=110°,∠PBC+∠PCB=60°,∴∠ABP+∠ACP=(∠ABC+∠ACB)-(∠PBC+∠PCB)=110°-60°=50°,∵BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,∴∠FBP+∠FCP=12 (∠ABP+∠ACP)=00150252⨯=; ∴∠FBC+∠FCB=∠FBP+∠FCP+∠PBC+∠PCB=25°+60°=85°,∴BFC ∠=180°-(∠FBC+∠FCB )=180°-85°=95°.故选C.点睛:本题主要考查了三角形的内角和定理和角平分线的定义,根据图形正确找出角与角之间的数量关系是解题的关键.10.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为()A.20°B.35°C.40°D.45°【答案】B【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-505°=35°,故选:B.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.11.在下列图形中,正确画出△ABC的AC边上的高的图形是()A.B.C.D.【答案】C【解析】【分析】△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段,根据定义即可作出判断.【详解】解:△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段.根据定义正确的只有C.故选:C.【点睛】本题考查了三角形的高线的定义,理解定义是关键.12.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.三、八年级数学全等三角形填空题(难)13.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.【答案】12.5【解析】【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=12×5×5=12.5,即可得出结论.【详解】如图,过A 作AE ⊥AC ,交CB 的延长线于E ,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC ,∴∠D=∠ABE ,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB ,又∵AD=AB ,∴△ACD ≌△AEB (ASA ),∴AC=AE ,即△ACE 是等腰直角三角形,∴四边形ABCD 的面积与△ACE 的面积相等,∵S △ACE =12×5×5=12.5, ∴四边形ABCD 的面积为12.5,故答案为12.5.【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题14.如图,ABC ∆中,90ACB ∠=︒,//AC BD ,BC BD =,在AB 上截取BE ,使BE BD =,过点B 作AB 的垂线,交CD 于点F ,连接DE ,交BC 于点H ,交BF 于点G ,7,4BC BG ==,则AB =____________.【答案】658【解析】【分析】 过点D 作DM ⊥BD ,与BF 延长线交于点M ,先证明△BHE ≌△BGD 得到∠EHB=∠DGB ,再由平行和对顶角相等得到∠MDG=∠MGD ,即MD=MG ,在△△BDM 中利用勾股定理算出MG 的长度,得到BM ,再证明△ABC ≌△MBD ,从而得出BM=AB 即可.【详解】解:∵AC ∥BD ,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF ⊥AB ,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD ,∴∠8=∠1,在△BHE 和△BGD 中,8143BE BD ∠=∠∠=∠⎧⎪=⎨⎪⎩,∴△BHE ≌△BGD (ASA ),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD ⊥BD∴∠BDM=90°,∴BC ∥MD ,∴∠5=∠MDG ,∴∠7=∠MDG∴MG=MD ,∵BC=7,BG=4,设MG=x ,在△BDM 中,BD 2+MD 2=BM 2,即()2227=4x x ++,解得x=338, 在△ABC 和△MBD 中=8=1BC B ACB MDB D∠∠∠∠⎧⎪=⎨⎪⎩, ∴△ABC ≌△MBD (ASA ) AB=BM=BG+MG=4+338=658. 故答案为:658.【点睛】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.15.已知:如图,△ABC 和△DEC 都是等边三角形,D 是BC 延长线上一点,AD 与BE 相交于点P ,AC 、BE 相交于点M ,AD ,CE 相交于点N ,则下列五个结论:①AD =BE ;②AP =BM ;③∠APM =60°;④△CMN 是等边三角形;⑤连接CP ,则CP 平分∠BPD ,其中,正确的是_____.(填写序号)【答案】①③④⑤.【解析】【分析】①根据△ACD ≌△BCE (SAS )即可证明AD =BE ;②根据△ACN ≌△BCM (ASA )即可证明AN =BM ,从而判断AP ≠BM ;③根据∠CBE +∠CDA =60°即可求出∠APM =60°;④根据△ACN ≌△BCM 及∠MCN =60°可知△CMN 为等边三角形;⑤根据角平分线的性质可知.【详解】①∵△ABC 和△CDE 都是等边三角形∴CA =CB ,CD =CE ,∠ACB =60°,∠DCE =60°∴∠ACE =60°∴∠ACD =∠BCE =120°在△ACD 和△BCE 中CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE (SAS )∴AD =BE ;②∵△ACD ≌△BCE∴∠CAD=∠CBE在△ACN和△BCM中ACN BCMCA CBCAN CBM∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACN≌△BCM(ASA)∴AN=BM;③∵∠CAD+∠CDA=60°而∠CAD=∠CBE∴∠CBE+∠CDA=60°∴∠BPD=120°∴∠APM=60°;④∵△ACN≌△BCM∴CN=BM而∠MCN=60°∴△CMN为等边三角形;⑤过C点作CH⊥BE于H,CQ⊥AD于Q,如图∵△ACD≌△BCE∴CQ=CH∴CP平分∠BPD.故答案为:①③④⑤.【点睛】本题主要考查了三角形全等的判定和性质的灵活运用,角的计算及角平分线的判定,熟练掌握三角形全等的证明方法,角平分线的判定及相关辅助线的作法是解决本题的关键.16.在ABC中给定下面几组条件:①BC=4cm,AC=5cm,∠ACB=30°;②BC=4cm,AC=3cm,∠ABC=30°;③BC=4cm,AC=5cm,∠ABC=90°;④BC=4cm,AC=5cm,∠ABC=120°.若根据每组条件画图,则ABC能够唯一确定的是___________(填序号).【答案】①③④【解析】【分析】根据全等三角形的判定方法进行分析,从而得到答案.【详解】解:①符合全等三角形的判定定理SAS,即能画出唯一三角形,正确;②根据BC=4cm,AC=3cm,∠ABC=30°不能画出唯一三角形,如图所示△ABC和△BCD,错误;③符合全等三角形的判定定理HL,即能画出唯一三角形,正确;④∵∠ABC为钝角,结合②可知,只能画出唯一三角形,正确.故答案为:①③④.【点睛】本题考查的是全等三角形的判定方法;解答此题的关键是要掌握三角形全等判定的几种方法即可,结合已知逐个验证,要找准对应关系.17.如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD于点F,点E在BF上,连接AE,∠EAF=45°,连接CE,AK⊥CE于点K,交DE于点H,∠DEC=30°,HF=32,则EC=______【答案】6【解析】【分析】延长AF交CE于P,证得△ABH≌△APC得出AH=CP,证得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得EC的长.【详解】如图,延长AF交CE于P,∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,∴∠ABH=∠PAC ,∵AK ⊥CE ,AF ⊥BD ,∠EHK=∠AHF ,∴∠HEK=∠FAH ,∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,∴∠AHF=∠EPF ,∴∠AHB=∠APC ,在△ABH 与△APC 中,ABE PAC AB ACAHB APC ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABH ≌△APC (ASA ),∴AH=CP ,在△AHF 与△EPF 中,90AHF EPF AFH EFP AF EF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHF ≌△EPF (AAS ),∴AH=EP ,∠CED=∠HAF ,∴EC=2AH ,∵∠DEC=30°,∴∠HAF=30°, ∴AH=2FH=2×32=3, ∴EC=2AH=6.【点睛】本题考查了三角形全等的判定和性质,等腰直角三角形的判定和性质,作出辅助线根据全等三角形是解题的关键.18.AD ,BE 是△ABC 的高,这两条高所在的直线相交于点O ,若BO=AC ,BC=a ,CD=b ,则AD 的长为______.【答案】AD的长为a-b或b-a或a+b或12a或b.【解析】【分析】分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据线段的和差关系即可得答案.【详解】①如图,当△ABC为锐角三角形时,∵AD、BE为△ABC的两条高,∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,∵∠BOD=∠AOE,∴∠CAD=∠OBD,又∵∠ODB=∠ADC=90°,OB=AC,∴△BOD≌△ACD,∴AD=BD,∵BC=a,CD=b,∴AD=BD=BC-CD=a-b.②如图,当∠B为钝角时,∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,又∵∠ADC=∠ODB=90°,OB=AC,∴△BOD≌△ACD,∴BD=AD,∴AD=CD-BC=b-a.③如图,当∠A为钝角时,同理可证:△BOD≌△ACD,∴AD=BC-CD=a-b.④如图,当∠C为钝角时,同理可证:△BOD≌△ACD,∴AD=BD=BC+CD=a+b.⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,如图,当∠A为直角时,点A、E、O重合,∵OB=AC,∠CAB=90°,∴△ABC是等腰直角三角形,∵AD⊥BC,∴AD是Rt△ABC斜边中线,∴AD=AD=12BC=12a=b.综上所述:AD的长为a-b或b-a或a+b或12a或b.故答案为:a-b 或b-a 或a+b 或12a 或b 【点睛】 本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS 、AAS 、ASA 、SAS 、HL 等,注意:SAS 时,角必须是两边的夹角,SSA 和AAA 不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.四、八年级数学全等三角形选择题(难)19.在ABC ∆中,已知AB BC =,90ABC ∠=︒,点E 是BC 边延长线上一点,如图所示,将线段AE 绕点A 逆时针旋转90︒得到AF ,连接CF 交直线AB 于点G ,若53BC CE =,则AG BG=( )A .73B .83C .113D .133【答案】D【解析】【分析】过点F 作FD ⊥AG ,交AG 的延长线于点D, 设BC=5x ,利用AAS 证出△FAD ≌△AEB ,从而用x 表示出AD ,BD ,然后利用AAS 证出△FDG ≌△CBG ,即可用x 表示出BG,AG 从而求出结论.【详解】解:过点F 作FD ⊥AG ,交AG 的延长线于点D∵53 BC CE=设BC=5x,则CE=3x∴BE=BC+CE=8x∵5AB BC x==,90ABC∠=︒,∴∠BAC=∠BCA=45°∴∠BCA=∠CAE+∠E=45°由旋转可知∠EAF=90°,AF=EA∴∠CAE+∠FAD=∠EAF-∠BAC=45°∴∠FAD=∠E在△FAD和△AEB中90FAD ED ABEAF EA∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△FAD≌△AEB∴AD=EB=8x,FD=AB∴BD=AD-AB=3x,FD=CB在△FDG和△CBG中90FDG CBGFGD CGBFD CB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△FDG≌△CBG∴DG=BG=12BD=32x∴AG=AB+BG=132x∴13132332xAGxBG==故选D.【点睛】此题考查的是全等三角形的判定及性质,掌握构造全等三角形的方法和全等三角形的判定及性质是解决此题的关键.20.如图,在四边形ABCD中,//AB CD.不能判定ABD CDB∆≅∆的条件是()A .AB CD =B .AD BC = C .//AD BC D .A C ∠=∠【答案】B【解析】【分析】 根据已知条件,分别添加选项进行排查,即可完成解答;注意BD 是公用边这个条件.【详解】解:A.若添加AB=CD,根据AB ∥CD ,则∠ABD=∠CDB ,依据SAS 可得△ABD ≌△CDB ,故A 选项正确;B.若添加AD=BC,根据AB ∥CD ,则∠ADB=∠CBD ,不能判定△ABD ≌△CDB ,故B 选项错误;C.若添加//AD BC ,则四边形ABCD 是平行四边形,能判定△ABD ≌△CDB ,故C 选项正确;D.若添加∠A=∠C ,根据AB ∥CD ,则∠ABD=∠CDB ,且BD 公用,能判定△ABD ≌△CDB ,故D 选项正确;故选:B.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.21.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143其中正确的结论个数是A .1个B .2个C .3个D .4个【答案】A【解析】【分析】 连接CF ,证明△ADF ≌△CEF ,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.【详解】连接CF,∵△ABC是等腰直角三角形,∴∠FCB=∠A=45,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90∘,∴∠CFE+∠CFD=∠EFD=90∘,又∵EF=DF∴△EDF是等腰直角三角形(故(1)正确).当D. E分别为AC、BC中点时,四边形CDFE是正方形(故(2)错误).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时142DF BC== .∴242DE DF=故(3)错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CDFE=S△AFC,∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1当S△ADF:S△CDF=1:2时,S△ADF=13S△ACF=111684323⨯⨯⨯=又∵S△ADF=1422AD AD ⨯⨯=∴2AD=16 3∴AD=83(故(4)错误).故选:A.【点睛】本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.22.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=12,即可得到∠BAD≠30°;连接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.【详解】∵点D是等腰直角△ABC腰BC上的中点,∴BD=12BC=12AB,∴tan∠BAD=12,∴∠BAD≠30°,故①错误;如图,连接B'D,∵B、B′关于AD对称,∴AD垂直平分BB',∴∠AFB=90°,BD=B'D=CD,∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,∴∠BB'C=∠BB'D+∠DB'C=90°,∴∠AFB=∠BB'C,又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF,∴∠BAF=∠CBB',∴△ABF≌△BCB',∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,∴S△AFE≠S△FCE,故④错误;故选B.【点睛】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.23.如图,等腰直角△ABC中,∠BAC=90 ,AD⊥BC于D,∠ABC的平分线分别交AC、AD 于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①AE=AF;②AM⊥EF;③AF=DF;④DF=DN,其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】试题解析:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC=22.5°,∴∠BFD=∠AEB=90°-22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,故①正确;∵M为EF的中点,∴AM⊥EF,故②正确;过点F作FH⊥AB于点H,∵BE平分∠ABC,且AD⊥BC,∴FD=FH<FA,故③错误;∵AM⊥EF,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN,在△FBD和△NAD中{FBD DANBD ADBDF ADN∠∠∠∠===∴△FBD≌△NAD,∴DF=DN,故④正确;故选C.24.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是()A.①②③B.①②④C.①③④D.②③④【答案】C【解析】已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△AB D和△EB C 中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误;已知BD为△ABC的角平分线,BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA,再由∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,可得∠DCE=∠DAE,所以AE=EC;再由△ABD≌△EBC,可得AD=EC,所以AD=AE=EC,即③正确;由△ABD≌△EBC,可得∠BCE=∠BDA,所以∠BCE+∠BCD=∠BDA+∠BDC=180°,④正确.故选C.点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.五、八年级数学轴对称三角形填空题(难)25.如图,线段AB,DE的垂直平分线交于点C,且72ABC EDC∠=∠=︒,92AEB∠=︒,则EBD∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE,由线段AB,DE的垂直平分线交于点C,得CA=CB,CE=CD,ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CE=CD,∵72ABC EDC∠=∠=︒=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BC D(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.26.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.27.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm ,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm 2).故答案是:4.28.如图,在ABC 中, 90,ACB ABD ︒∠=是ABC 的轴对称图形,点E 在AD 上,点F 在AC 的延长线上.若点B 恰好在EF 的垂直平分线上,并且5AE =,13AF =,则DE =______.【答案】4.【解析】【分析】连接BE ,BF ,根据轴对称的性质可得△ABD ≌△ACB ,进而可得DB=CB ,AD=AC ,∠D=∠BCA=90°,再利用线段垂直平分线的性质可得BE=BF ,然后证明Rt △DBE ≌Rt △CBF 可得DE=CF ,然后可得ED 长.【详解】解:连接BE ,BF ,∵△ABD 是△ABC 的轴对称图形,∴△ABD ≌△ACB ,∴DB=CB ,AD=AC ,∠D=∠BCA=90°,∴∠BCF=90°,∵点B 恰好在EF 的垂直平分线上,∴BE=BF ,在Rt △DBE 和Rt △CBF 中BD BC EB FB =⎧⎨=⎩,∴Rt △DBE ≌Rt △CBF (HL ),∴DE=CF ,设DE=x ,则CF=x ,∵AE=5,AF=13,∴AC=AD=5+x ,∴AF=5+2x ,∴5+2x=13,∴x=4,∴DE=4,故答案为:4.【点睛】此题主要考查了轴对称和线段垂直平分线的性质,关键是掌握成轴对称的两个图形全等.29.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM223AB BM如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM=22MO OB-=43,∴Rt△ABM中,AM=22AB BM+=47.综上所述,当△ABM为直角三角形时,AM的长为43或47或4.故答案为43或47或4.30.如图,△ABC中,AC=DC=3,BD垂直∠BAC的角平分线于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为________.【答案】9 2【解析】【分析】首先证明两个阴影部分面积之差=S△ADC,当CD⊥AC时,△ACD的面积最大.【详解】延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=14S△ABH,S△CDH=14S△ABH,∵S△OBD−S△AOE=S△ADB−S△ABE=S△ADH−S△CDH=S△ACD,∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为12×3×3=92.故填:92.【点睛】本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题.六、八年级数学轴对称三角形选择题(难)31.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5 B.6 C.7 D.8【答案】D【解析】【分析】要使△ABC 是等腰三角形,可分三种情况(①若AC =AB ,②若BC =BA ,③若CA =CB )讨论,通过画图就可解决问题.【详解】①若AC =AB ,则以点A 为圆心,AB 为半径画圆,与坐标轴有4个交点;②若BC =BA ,则以点B 为圆心,BA 为半径画圆,与坐标轴有2个交点(A 点除外); ③若CA =CB ,则点C 在AB 的垂直平分线上.∵A (0,0),B (2,2),∴AB 的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C 的个数有8个.故选D .【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.32.如图,ABC ∆中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=,其中正确的是( )A .①②B .①②③C .①②④D .①②③④【答案】C【解析】【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12 AD.同理:DF=12 AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠EDF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC是否等于90°不知道,∴不能判定MD平分∠EDF,故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中DE DFBD DC⎧⎨⎩==,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE-BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.综上所述,①②④正确,故选:C.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.33.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25, 解得BE=5, ∵AD 是∠BAC 的平分线,B′与B 关于AD 对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN 的最小值是5.故选C .34.如图,在等腰△ABC 中,AB=AC=6,∠BAC=120°,点P 、Q 分别是线段BC 、射线BA 上一点,则CQ+PQ 的最小值为( )A .6B .7.5C .9D .12【答案】C【解析】【分析】 通过作点C 关于直线AB 的对称点,利用点到直线的距离垂线段最短,即可求解.【详解】解:如图,作点C 关于直线AB 的对称点1C ,1CC 交射线BA 于H ,过点1C 作BC 的垂线,垂足为P ,与AB 交于点Q ,CQ+PQ 的长即为1PC 的长.∵AB=AC=6,∠BAC=120°,∴∠ABC=30°,易得BC=3在Rt △BHC 中,∠ABC=30°,∴HC=33,∠BCH=60°,∴163CC =,在1Rt △PCC 中,1PCC ∠=60°,∴19PC =∴CQ+PQ 的最小值为9,故选:C.【点睛】本题考查了等腰三角形的性质以及利用对称点求最小值的问题,认真审题作出辅助线是解题的关键.35.如图, 在△DAE 中, ∠DAE =40°, B 、C 两点在直线DE 上,且∠BAE =∠BEA ,∠CAD =∠CDA ,则∠BAC 的大小是( )A .100°B .90°C .80°D .120°【答案】A【解析】【分析】 由已知条件,利用了中垂线的性质得到线段相等及角相等,再结合三角形内角和定理求解.【详解】解:如图,∵BG 是AE 的中垂线,CF 是AD 的中垂线,∴AB=BE ,ACECD∴∠AED=∠BAE=∠BAD+∠DAE ,∠CDA=∠CAD=∠DAE+∠CAE ,∵∠DAE+∠ADE+∠AED=180°∴∠BAD+∠DAE+∠DAE+∠CAE+∠DAE=3∠DAE+∠BAD+∠EAC=120°+∠BAD+ ∠EAC=180°∴∠BAD+∠EAC=60°∴. ∠BAC=∠BAD+∠EAC+∠DAE=60°+40°=100°;故选:A。
2019-2020厦门市八上数学质检参考答案

2019—2020学年(上)厦门市初二年质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.(1)8a 3;(2)15a 3+6ab 2. 12. 4x . 13. 40°. (未写单位不扣分)14.36. 15.∠MPN =2∠BCP . 16. 2a +b .三、解答题(本大题有9小题,共86分)17.(本题满分12分) (1)(本小题满分6分)解:(y +2)(y —2)+(2y —4)(y +3)=y 2—4+2y 2+6y —4y —12 ………………………4分 =3y 2+2y —16. ……………………6分 (2)(本小题满分6分) 解:2a 2x 2+4a 2xy +2a 2y 2=2a 2(x 2+2xy +y 2) ………………………4分 =2a 2(x +y ) 2. ………………………6分18.(本题满分7分)证明:∵ AB ∥DE ,∴ ∠B =∠DEF . ………………2分 ∵ AB =DE ,∠A =∠D ,∴ △ABC ≌△DEF . ………………5分∴ BC =EF . ………………6分 ∴ BC -CE =EF -CE .∴ BE =CF . ………………7分19. (本题满分7分)解:1m 2-49÷1m 2-7m+1=1 (m +7)(m —7) ÷1m (m -7)+1 ……………………………2分=1(m +7)(m —7)·m (m -7)+1 ……………………………3分AB DCE F=mm +7 +1 ……………………………5分=m +m +7 m +7=2m +7 m +7 . ……………………………6分当m =2时,原式=2×2+7 2+7 =119. ……………………………7分20. (本题满分8分) 解:(1)(本小题满分6分)如图即为所求. …………………6分 (2)(本小题满分2分)对称点P ′在△ABC 外. …………………8分21. (本题满分8分)(1)(本小题满分5分) 证明:解法一∵ BD ⊥AC ,D 是边AC 的中点, ∴ BD 是边AC 的垂直平分线.∴ BA= BC . ………………………3分 ∵ AB =AC , ∴ AB =AC= BC .∴ △ABC 是等边三角形. ………………………5分解法二∵ BD ⊥AC ,D 是边AC 的中点, ∴ ∠BDA =∠BDC =90°,AD =CD . 又∵ BD =BD , ∴ △BAD ≌△BCD .∴ BA= BC . ………………………3分 ∵ AB =AC ,∴ AB =AC= BC .∴ △ABC 是等边三角形. ……………………5分 (2)(本小题满分3分)如图点E 即为所求. ………………………8分AB CDEAB CDAB C · · ·22.(本题满分9分) 解:(1)(本小题满分4分)设甲厂2017年日均生产该产品x 件(x >0),则甲厂2018年日均生产该产品(2x +2)件,由题意得99x =2002x +2.………………2分 解得x =99. ………………3分经检验,x =99是原方程的解,且符合题意.答:甲厂2017年日均生产该产品99件. ………………4分 (2)(本小题满分5分)设甲厂2017年日均生产该产品x 件(x >0),则甲厂2018年日均生产该产品(2x +2)件, 乙厂日均生产该产品(3x +4)件.由m :n =14:25可设m =14k ,n =25k (k >0).所以甲厂生产m 件产品所用时间t 甲=14k 2x +2,t 乙=25k3x +4. (5)t 甲-t 乙=14k 2x +2-25k3x +4………………7分=(3-4x )k ( x +1)(3x +4). 因为2017年的年产量过万件, 所以x >10000365.所以3-4x <0. 所以t 甲-t 乙<0.即t 甲<t 乙.答:甲厂先完成任务. ………………9分23.(本题满分10分)解:(1)(本小题满分1分) 算式:62×11,34×11,54×11.共同特征:三个算式均是一个两位数与11相乘. ………………1分 (2)(本小题满分4分)62×11=682,34×11=374,54×11=594.规律:一个两位数与11相乘,将这个两位数的十位和个位分别作为积的百位和个位,将这个两位数的数位上数字之和作为积的十位. ……………5分 (3)(本小题满分3分)规律:(10a +b )×11=100a +10(a +b )+b . (其中1≤a ≤9,0≤b ≤9,且a +b ≤9,a ,b 为整数)证明:(10a +b )×11=(10a +b )×10+(10a +b ) =100a +10b +10a +b=100a +10(a +b )+b . ………………8分 (4)(本小题满分2分)18×22,15×55. ………………10分24.(本题满分11分)解:(1)(本小题满分5分) ∵ △ABC 是等边三角形,∴ ∠A =∠B =∠C =60°. ……………1分设∠A =12∠B +α.可得α=30°,不符合定义. ……………2分 所以∠A 不是∠B 的差角.同理可知,△ABC 中任意一个角都不是其他角的差角. ……………3分 所以△ABC 不是“差角三角形”. ……………4分 (2)(本小题满分6分) ∵ 在△ABC 中,∠C =90°, ∴ ∠A =90°-∠B . ①设∠C =12∠A +α.即90°=12(90°-∠B )+α,所以α=12∠B +45°.因为50°≤∠B ≤70°,可得α>25°.不符合定义,所以∠C 不是∠A 的差角. ②设∠C =12∠B +α.即90°=12∠B +α,所以α=90°-12∠B .因为50°≤∠B ≤70°,可得α>25°.不符合定义,所以∠C 不是∠B 的差角. ③设∠A =12∠B +α.即90°-∠B =12∠B +α,所以α=90°-32∠B .因为50°≤∠B ≤70°,可得-15°≤α≤15°.由0°<α≤15°,可得50°≤∠B <60°. 即当50°≤∠B <60°时,△ABC 是差角三角形,且∠A 是∠B 的差角. ④设∠A =12∠C +α.即90°-∠B =45°+α,所以α=45°-∠B . 因为50°≤∠B ≤70°,可得α<0°.不符合定义,所以∠A 不是∠C 的差角. ⑤设∠B =12∠A +α.即∠B =12(90°-∠B )+α,所以α=32∠B -45°.因为50°≤∠B ≤70°,可得α>30°.不符合定义,所以∠B 不是∠A 的差角.⑥设∠B =12∠C +α.即∠B =45°+α,所以α=∠B -45°. 因为50°≤∠B ≤70°,可得5°≤α≤25°.符合定义,所以△ABC 是差角三角形,且∠B 是∠C 的差角. 综上,△ABC 是差角三角形.∠B 是∠C 的差角;当50°≤∠B <60°时,∠A 是∠B 的差角.(本小题的评分要求见评分量表)25. (本题满分14分)(1)(本小题满分3分)证明:∵ ∠ABC =∠CDA =90°, ∵ BC =CD ,AC=AC ,∴ Rt △ABC ≌Rt △ADC . ………………………2分 ∴ AB =AD . ………………………3分(2)(本小题满分4分) 证明:∵ AE =BE +DE , 又∵ AE =AD +DE ,∴ AD =BE . ……………………………4分 ∵ AB =AD ,∴ AB =BE . ……………………………5分 ∴ ∠BAD =∠BEA . ∵ ∠ABC =90°,∴ ∠BAD =180°—∠BAC2 =45°. ……………………………6分∵ 由(1)得△ABC ≌△ADC , ∴ ∠BAC =∠DAC .∴ ∠BAC =45°2 =22.5°. ……………………………7分(3)(本小题满分7分)解法一:解:当MO +PO 的值最小时,点O 与点E 可以重合,理由如下: ∵ ME ∥AB ,∴ ∠ABC =∠MEC =90°,∠2=∠3. ∵ MP ⊥DC , ∴ ∠MPC =90°.∴ ∠MPC =∠ADC =90°. ∴ PM ∥AD . ∴ ∠1=∠4.由(1)得,Rt △ABC ≌Rt △ADC , ∴ ∠1=∠2 ,∴ ∠3=∠4.即MC 平分∠PME .BE D CA654321QPACDEBM又∵MP⊥CP,ME⊥CE,∴PC=EC.连接PB,连接PE,延长ME交PD的延长线于点Q.设∠1=α,则∠2=α.在Rt△ABE中,∠5=90°—2α.在Rt△CDE中,∠ECD=90°—∠5=2α.∵PC=EC,……………………8分∴∠6=∠EPC=12 ∠ECD=α.∴∠PED=∠5+∠6=90°—α.∵ME∥AB,∴∠QED=∠BAD=2α.当∠PED=∠QED时,∵∠PDE=∠QDE,DE=DE,∴△PDE≌△QDE.∴PD=DQ.即点P与点Q关于直线AE成轴对称,也即点M、点E、点P关于直线AE的对称点Q,这三点共线,也即MO+PO的值最小时,点O与点E重合.因为当∠PED=∠QED时,90°—α=2α,也即α=30°.所以,当∠ABD=60°时,MO+PO取最小值时的点O与点E重合. ……………11分此时MO+PO的最小值即为ME+PE.∵PC=EC,∠PCB=∠ECD,CB=CD,∴△PCB≌△ECD.∴∠CBP=∠CDE=90°.∴∠CBP+∠ABC=180°.∴A,B,P三点共线. ……………………13分当∠ABD=60°时,在△PEA中,∠P AE=∠PEA=60°.∴∠EP A=60°.∴△PEA为等边三角形.∵EB⊥AP,∴AP=2AB=2a.∴EP=AE=2a.∵∠1=∠3=30°,∴EM=AE=2a.∴MO+PO的最小值为4a.……………………14分。
福建省厦门市2019-2020学年数学八上期末模拟试卷(3)

福建省厦门市2019-2020学年数学八上期末模拟试卷(3)一、选择题1.下列各式中:①2π3-;②1a ;③21x x =;④5x y 2-;⑤23x y x-;⑥x 3分式有( ) A .1个B .2个C .3个D .4个 2.若分式在实数范围内有意义,则x 的取值范围是( )A. B. C. D.3.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .4848944x x +=+-; B . 4848944x x +=+-; C .48x+4=9; D .9696944x x +=+-; 4.下列式子变形是因式分解的是( ) A .()25656x x x x -+=-+B .()()25623x x x x -+=++C .()()22356x x x x --=-+D .()()25623x x x x -+=-- 5.如果的乘积不含和项,那么和值分别是( )A.B.C.D. 6.下列计算中,正确的是( ) A.﹣a (3a 2﹣1)=﹣3a 3﹣aB.(a ﹣b )2=a 2﹣b 2C.(﹣2a ﹣3)(2a ﹣3)=9﹣4a 2D.(2a ﹣b )2=4a 2﹣2ab+b 27.如图,有一底角为 35°的等腰三角形纸片,现过底边上一点, 沿与腰垂直的方向将其剪开,分成三角形和四边形两部分, 则四边形中,最大角的度数是( )A.110°B.125°C.140°D.160°8.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE ,下列说法:①△ABD 和△ACD 面积相等;②∠BAD =∠CAD ;③△BDF ≌△CDE ;④BF ∥CE ;⑤CE =AE .其中正确的是( )A .①②B .③⑤C .①③④D .①④⑤ 9.如图,在△ABC 中,AB=8,∠C=90°,∠A=30°,D 、E 分别为AB 、AC 边上的中点,则DE 的长为( )A.2B.3 D.410.下列图形中,不是轴对称图形的是 ( )A .①⑤B .②⑤C .④⑤D .①③ 11.如图,△ABC 和△DEF 中,AB=DE ,∠B=∠DEF ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF的是( )A .AC=DFB .AC ∥DF C .∠A=∠D D .∠ACB=∠F 12.如图,在中,=55°,,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,作直线,交于点,连接,则的度数为( )A. B. C. D.13.如果一个多边形的每个内角都相等,且内角和为1440°,则这个多边形的外角是( )A.30B.36C.40D.4514.有两根木棒长分别为10cm 和18cm ,要钉成一个三角形木架,则下列四根木棒应选取( )A .8cmB .12cmC .30cmD .40cm15.已知:如图,直线BO ⊥AO 于点O ,OB 平分∠COD ,∠BOD =22°.则∠AOC 的度数是( )A.22°B.46°C.68°D.78° 二、填空题16.关于的x 方程5m x =1的解是正数,则m 的取值范围是_____. 17.因式分解: 9x 2-81=______________18.如图,AB 的垂直平分线分别交AB ,AC 于点D ,E ,AC=9,AE :EC=2:1,则点B 到点E 的距离是_____.19.如图,AD 是△ABC 的中线,CE 是△CAD 的中线,若△CAE 的面积为1,则△ABC 的面积为_____.20.已知△ABO 关于x 轴对称,点A 的坐标为(1,2-),若在坐标轴...上有一个点P ,满足△BOP 的面积等于2,则点P 的坐标为________________.三、解答题21.观察下列等式:(1)222=211⨯+ (2)333=322⨯+ (3)444=433⨯+ …… (1)探索这些等式中的规律,直接写出第n 个等式(用含n 的等式表示);(2)试说明你的结论的正确性。
数学八年级上册 全册全套试卷同步检测(Word版 含答案)

数学八年级上册 全册全套试卷同步检测(Word 版 含答案) 一、八年级数学三角形填空题(难) 1.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.2.如图,BE 平分∠ABC,CE 平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E =∠ECD −∠EBC =12∠ACD −12∠ABC =12∠A =21°.故答案为21°.3.等腰三角形一边长是10cm,一边长是6cm,则它的周长是_____cm或_____cm.【答案】22cm,26cm【解析】【分析】题目给出等腰三角形有两条边长为10cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当腰是6cm时,周长=6+6+10=22cm;(2)当腰长为10cm时,周长=10+10+6=26cm,所以其周长是22cm或26cm.故答案为:22,26.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.【答案】2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=25.三角形的三个内角度数比为1:2:3,则三个外角的度数比为_____.【答案】5:4:3【解析】试题解析:设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,∴三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:3,故答案为5:4:3.6.三角形三边长分别为 3,1﹣2a,8,则 a 的取值范围是 _______.【答案】﹣5<a<﹣2.【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.【详解】由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.即a的取值范围是-5<a<-2.【点睛】本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.二、八年级数学三角形选择题(难)7.如图,小明从A点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地A点时,一共走了()A.80米B.160米C.300米D.640米【答案】A【解析】【分析】利用多边形的外角和得出小明回到出发地A点时左转的次数,即可求出多边形的边数,即可解决问题.【详解】解:由题意可知,小明第一次回到出发地A点时,他一共转了360 ,由题意得10°+20° +30°+40°+50°+60°+70°+80°=360°,所以共转了8次,每次沿直线前进10米,所以一共走了80米.故选:A.【点睛】本题考查根据多边形的外角和解决实际问题,注意多边形的外角和是360︒,要注意第一次转了10°,第二次转了20°,第三次转了30°……,利用好规律解题.8.已知,如图,AB∥CD,则图中α、β、γ三个角之间的数量关系为()A.α-β+γ=180°B.α+β-γ=180° C.α+β+γ=360° D.α-β-γ=90°【答案】B【解析】【分析】延长CD交AE于点F,利用平行证得β=∠AFD;再利用三角形外角定理及平角定义即可得到答案.【详解】如图,延长CD交AE于点F∵AB∥CD∴β=∠AFD∵∠FDE+α=180°∴∠FDE=180°-α∵γ+∠FDE=∠ADF∴γ+180°-α=β∴α+β-γ=180°故选B【点睛】本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.∆三条内角平分线交于点D,CE⊥BD交BD的延长线于E,则9.已知:如图,ABC∠DCE=( )A .12BAC ∠ B .12CBA ∠ C .12ACB ∠ D .CDE ∠ 【答案】A【解析】【分析】 根据角平分线的性质以及三角形的外角性质可推导出DCE ∠与BAC ∠的关系.【详解】 由题意知,ECD BDC 90∠∠=-︒由三角形内角和定理得,BAC 180ABC ACB ∠∠∠=︒-+DBC DCB 180BDC ∠∠∠+=︒-∵点D 是ΔABC 三条内角平分线的交点∴ABC 2DBC ∠∠= ACB 2DCB ∠∠=()BAC 180ABC ACB ∠∠∠=︒-+()1802DBC DCB ∠∠=︒-+()1802180BDC ∠=︒-︒-2BDC 180∠=-︒1BAC BDC 902∠∠=-︒ ∴1ECD BAC 2∠∠=故答案选A.【点睛】本题考查角平分线的性质以及三角形的外角性质.10.一正多边形的内角和与外角和的和是1440°,则该正多边形是( )A .正六边形B .正七边形C .正八边形D .正九边形【答案】C【解析】【分析】依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.【详解】解:设多边形的边数为n ,根据题意列方程得,(n ﹣2)•180°+360°=1440°,n ﹣2=6,n =8.故这个多边形的边数为8.故选:C .【点睛】考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.11.小明把一副直角三角板如图摆放,其中90,45,30C F A D ∠=∠=︒∠=︒∠=︒,则a β∠+∠等于( )A .180︒B .210︒C .360︒D .270︒【答案】B【解析】【分析】 根据三角形外角性质分别表示出∠α与∠β,然后进一步计算即可.【详解】如图所示,利用三角形外角性质可知:∠α=∠1+∠D ,∠β=∠4+∠F ,∴∠α+∠β=∠1+∠D+∠4+∠F ,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠2+∠D+∠3+∠F=90°+30°+90°=210°,故选:B .【点睛】本题主要考查了三角形外角性质的运用,熟练掌握相关概念是解题关键.12.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7 B.8 C.6 D.5【答案】B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.三、八年级数学全等三角形填空题(难)13.如图,已知△ABC和△ADE均为等边三角形,点O是AC的中点,点D在射线BO上,连结OE,EC,则∠ACE=_____°;若AB=1,则OE的最小值=_____.【答案】301 4【解析】【分析】根据等边三角形的性质可得OC=12AC,∠ABD=30°,根据"SAS"可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE 的最小值.【详解】解:∵△ABC的等边三角形,点O是AC的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△ABD ≌△ACE (SAS )∴∠ACE =30°=∠ABD当OE ⊥EC 时,OE 的长度最小,∵∠OEC =90°,∠ACE =30°∴OE 最小值=12OC =14AB =14 故答案为:30,14【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键.14.如图,ABC ∆中,90ACB ∠=︒,8cm AC ,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.【答案】235或7或8 【解析】【分析】易证∠MEC =∠CFN ,∠MCE =∠CNF .只需MC =NC ,就可得到△MEC 与△CFN 全等,然后只需根据点M 和点N 不同位置进行分类讨论即可解决问题.【详解】①当0≤t <4时,点M 在AC 上,点N 在BC 上,如图①,此时有AM=2t,BN=3t,AC=8,BC=15.当MC=NC即8−2t=15−3t时全等,解得t=7,不合题意舍去;②当4≤t<5时,点M在BC上,点N也在BC上,如图②,若MC=NC,则点M与点N重合,即2t−8=15−3t,解得t=235;当5≤t<233时,点M在BC上,点N在AC上,如图③,当MC=NC即2t−8=3t−15时全等,解得t=7;④当233≤t<232时,点N停在点A处,点M在BC上,如图④,当MC=NC即2t−8=8,解得t=8;综上所述:当t等于235或7或8秒时,以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等.故答案为:235或7或8.【点睛】本题主要考查了全等三角形的判定以及分类讨论的思想,可能会因考虑不全面而出错,是一道易错题.15.在ABC 中给定下面几组条件:①BC=4cm ,AC=5cm ,∠ACB=30°;②BC=4cm ,AC=3cm ,∠ABC=30°;③BC=4cm ,AC=5cm ,∠ABC=90°;④BC=4cm ,AC=5cm ,∠ABC=120°.若根据每组条件画图,则ABC 能够唯一确定的是___________(填序号).【答案】①③④【解析】【分析】根据全等三角形的判定方法进行分析,从而得到答案.【详解】解:①符合全等三角形的判定定理SAS ,即能画出唯一三角形,正确;②根据BC=4cm ,AC=3cm ,∠ABC=30°不能画出唯一三角形,如图所示△ABC 和△BCD ,错误;③符合全等三角形的判定定理HL ,即能画出唯一三角形,正确;④∵∠ABC 为钝角,结合②可知,只能画出唯一三角形,正确.故答案为:①③④.【点睛】本题考查的是全等三角形的判定方法;解答此题的关键是要掌握三角形全等判定的几种方法即可,结合已知逐个验证,要找准对应关系.16.如图,52A ∠=︒,O 是ABC ∠、ACB ∠的角平分线交点,P 是ABC ∠、ACB ∠外角平分线交点,则BOC ∠=______︒,BPC ∠=_____︒,联结AP ,则PAB ∠=______︒,点O ____(选填“在”、“不在”或“不一定在”)直线AP 上.【答案】116 64 26 在【解析】【分析】∠ABC+∠ACB=180°-∠A,∠OBC+∠OCB= 12(∠ABC+∠ACB), ∠BOC=180°-(∠OBC+∠OCB),据此可求∠BOC的度数;∠BCP= 12∠BCE=12(∠A+∠ABC),∠PBC=12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC,据此可求∠BPC的度数;作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,利用角平分线的性质定理可证明PG=PH,于是可证得AP平分∠BAC,据此可求∠PAB的度数;同理可证OA平分∠BAC,故点O在直线AP上.【详解】解:∵O点是∠ABC和∠ACB的角平分线的交点,∴∠OBC+∠OCB= 12(∠ABC+∠ACB)= 12(180°-∠A)=90°- 12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=180°-90°+ 12∠A=90°+ 12∠A=90°+26°=116°;如图,∵BP、CP为△ABC两外角的平分线,∴∠BCP= 12∠BCE=12(∠A+∠ABC),∠PBC= 12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC=180°- 12[∠A+(∠A+∠ABC+∠ACB)]=180°- 12(∠A+180°)=90°- 12∠A=90°-26°=64°.如图,作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,连接AP,∵BP、CP为△ABC两外角的平分线,PG⊥AB,PH⊥AC,PK⊥BC,∴PG=PK,PK=PH,∴PG=PH,∴AP平分∠BAC,∴PAB∠=26°同理可证OA平分∠BAC,点O在直线AP上.故答案是:(1) 116 ;(2) 64;(3) 26;(4) 在.【点睛】此题主要考查了角平分线的性质定理和判定定理及三角形内角和定理,熟知定理并正确作出辅助线是解题关键.17.在△ABC中,∠ABC=60°,∠ACB=70°,若点O到三边的距离相等,则∠BOC=_____°.【答案】115或65或22.5【解析】【分析】先画出符合的图形,再根据角平分线的性质和三角形的内角和定理逐个求出即可.【详解】解:①如图,∵点O到三边的距离相等,∴点O是△ABC的三角的平分线的交点,∵∠ABC=60°,∠ACB=70°,∴∠OBC=12∠ABC=30°,1OCB2∠=∠ACB=35°,∴∠BOC=180°﹣∠OBC﹣∠OCB=115°;②如图,∵∠ABC=60°,∠ACB=70°,∴∠EBC=180°﹣∠ABC=120°,∠FCB=180°﹣∠ACB=110°,∵点O到三边的距离相等,∴O是∠EBC和∠FCB的角平分线的交点,∴∠OBC=12∠EBC=60°,1OCB2∠=∠FCB=55°,∴∠BOC=180°﹣∠OBC﹣∠OCB=65°;③如图,∵∠ABC=60°,∠ACB=75°,∴∠A=180°﹣∠ABC﹣∠ACB=45°,∵点O到三边的距离相等,∴O是∠EBA和∠ACB的角平分线的交点,∴∠OBA=12∠EBA=12×(180°﹣60°)=60°,1OCB2∠=∠ACB=37.5°,∴∠BOC=180°﹣(∠OBA+∠ABC+∠OCB)=180°﹣(60°﹣60°﹣37.5°)=22.5°;如图,此时∠BOC=22.5°,故答案为:115或65或22.5.【点睛】此题主要考查三角形的内角和,解题的关键是根据题意分情况讨论.18.如图,在△ABC中,AB=AC,点D是BC的中点,点E是△ABC内一点,若∠AEB=∠CED=90°,AE=BE,CE=DE=2,则图中阴影部分的面积等于__________.【答案】4【解析】【分析】作DG⊥BE于G,CF⊥AE于F,可证△DEG≌△CEF,可得DG=CF,则是S△BDE=S△AEC,由D 是BC中点可得S△BED=2,即可求得阴影部分面积.【详解】作DG⊥BE于G,CF⊥AE于F,∴∠DGE=∠CFE=90°,∵∠AEB=∠DEC=90°,∴∠GED+∠DEF=90°,∠DEF+∠CEF=90°,∴∠GED=∠CEF,又∵DE=EC,∴△GDE≌△FCE,∴DG=CF,∵S△BED=12BE•DG,S△BED=12AE•CF,AE=BE,∴S△BED=S△BED,∵D是BC的中点,∴S△BDE=S△EDC=1222⨯⨯=2,∴S阴影=2+2=4,故答案为4.【点睛】本题考查了全等三角形的判定与性质,正确添加辅助线构造全等三角形是解题的关键.四、八年级数学全等三角形选择题(难)19.如图,在△ABC中,AB=BC,90ABC∠=︒,点D是BC的中点,BF⊥AD,垂足为E,BF交AC于点F,连接DF.下列结论正确的是()A.∠1=∠3 B.∠2=∠3 C.∠3=∠4 D.∠4=∠5【答案】A【解析】【分析】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,先根据直角三角形两锐角互余可得BAD CBG∠=∠,再根据三角形全等的判定定理与性质推出1G∠=∠,又根据三角形全等的判定定理与性质推出3G∠=∠,由此即可得出答案.【详解】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,即90BCG∠=︒,90AB BC ABC=∠=︒45BAC ACB∠∴∠==︒904545GCF BCG ACB∴∠=∠-∠=︒-︒=︒BF AD⊥1190BAD CBG∴∠+∠=∠+∠=︒BAD CBG∴∠=∠在BAD∆和CBG∆中,90BAD CBGAB BCABD BCG∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BAD CBG ASA∴∆≅∆,1BD CG G∴=∠=∠点D是BC的中点CD BD CG∴==在CDF∆和CGF∆中,45CD CGDCF GCFCF CF=⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS∴∆≅∆3G∴∠=∠13∠∠∴=故选:A.【点睛】本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.20.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,∠EAF=12∠BAD,若DF=1,BE=5,则线段EF的长为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】在BE上截取BG=DF,先证△ADF≌△ABG,再证△AEG≌△AEF即可解答.【详解】在BE上截取BG=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,在△ADF与△ABG中AB ADB ADFBG DF=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△ABG(SAS),∴AG=AF,∠FAD=∠GAB,∵∠EAF=12∠BAD,∴∠FAE=∠GAE,在△AEG与△AEF中AG AFFAE GAEAE AE=⎧⎪∠=∠⎨⎪=⎩,∴△AEG≌△AEF(SAS)∴EF=EG=BE﹣BG=BE﹣DF=4.故选:B.【点睛】考查了全等三角形的判定与性质,证明三角形全等是解决问题的关键.21.在△ABC与△DEF中,下列各组条件,不能判定这两个三角形全等的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DE,∠B=∠E,∠A=∠FC.AC=DF,BC=DE,∠C=∠D D.AB=EF,∠A=∠E,∠B=∠F【答案】B【解析】利用全等三角形的判定定理,分析可得:A、AB=DE,∠B=∠E,∠C=∠F可利用AAS证明△ABC与△DEF全等;B、∠A=∠F,∠B=∠E,AC=DE,对应边不对应,不能证明△ABC与△DEF全等;C、AC=DF,BC=DE,∠C=∠D可利用ASA证明△ABC与△DEF全等;D、AB=EF,∠A=∠E∠B=∠F可利用SAS证明△ABC与△DEF全等;故选:D.点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.如图,AC⊥BE于点C,DF⊥BE于点F,且BC=EF,如果添上一个条件后,可以直接利用“HL”来证明△ABC≌△DEF,则这个条件应该是()A.AC=DE B.AB=DE C.∠B=∠E D.∠D=∠A【答案】B【解析】在Rt△ABC与Rt△DEF中,直角边BC=EF,要利用“HL”判定全等,只需添加条件斜边AB=DE.故选:B.23.如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB外角的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;②AF-CG=CA;③DE=DC;④FH=CD+GH;⑤CF=2CD+EG;其中正确的有()A.①②④B.①②③C.①②④⑤D.①②③⑤【答案】D【解析】试题解析:①利用公式:∠CDA=12∠ABC=45°,①正确;②如图:延长GD与AC交于点P',由三线合一可知CG=CP',∵∠ADC=45°,DG⊥CF,∴∠EDA=∠CDA=45°,∴∠ADP=∠ADF,∴△ADP'≌△ADF(ASA),∴AF=AP'=AC+CP'=AC+CG,故②正确;③如图:∵∠EDA=∠CDA ,∠CAD=∠EAD ,从而△CAD ≌△EAD ,故DC=DE ,③正确;④∵BF ⊥CG ,GD ⊥CF ,∴E 为△CGF 垂心,∴CH ⊥GF ,且△CDE 、△CHF 、△GHE 均为等腰直角三角形,∴2CD ,故④错误;⑤如图:作ME ⊥CE 交CF 于点M ,则△CEM 为等腰直角三角形,从而CD=DM ,CM=2CD ,EM=EC ,∵∠MFE=∠CGE ,∠CEG=∠EMF=135°,∴△EMF ≌△CEG (AAS ),∴GE=MF ,∴CF=CM+MF=2CD+GE ,故⑤正确;故选D点睛:本题考查了角平分线的性质、等腰三角形的判定与性质、三角形垂心的定义和性质、全等三角形的判定与性质等多个知识点,技巧性很强,难度较大,要求学生具有较高的几何素养.对于这一类多个结论的判断型问题,熟悉常见的结论及重要定理是解决问题的关键,比如对第一个结论的判定,若熟悉该模型则可以秒杀.24.如图,A ABC CB =∠∠,AD 、BD 、CD 分别平分ABC 的EAC ∠、ABC ∠、ACF ∠,以下结论:①AD BC ∥;②2ACB ADB ∠=∠;③90ADC ABD ∠=︒-∠;④BD 分ADC ∠;⑤3BDC BAC ∠=∠。
学年上厦门市八年级质量检测数学试卷及答案

2018-2019学年(上)厦门市八年级质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)(2019厦门八上质检1)计算12-的结果是( )A .2-B .12-C .12D .1(2019厦门八上质检2)1x =是方程22x a +=-的解,则a 的值是( ) A .4- B .3- C .0 D .4 (2019厦门八上质检3)四边形内角和是( )A .90 B . 180 C .360 D .540(2019厦门八上质检4)在平面直角坐标系xoy 中,若ABC ∆在第一象限,则ABC ∆关于x 轴对称的图形所在的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限(2019厦门八上质检5)若AD 是ABC ∆的中线,则下列结论正确的是( )A .BD CD =B .AD BC ⊥ C .BAD CAD ∠=∠ D . BD CD =且AD BC ⊥ (2019厦门八上质检6)运用完全平方公式222()2a b a ab b +=++计算21()2x +,则公式中的2ab 是( )A.12x B . x C . 2x D . 4x (2019厦门八上质检7)甲完成一项工作需要n 天,乙完成该项工作需要的时间比甲多3天,则乙一天能完成的工作量是该项工作的( ) A .3nB .13n C . 113n + D . 13n + (2019厦门八上质检8)如图1,点,F C 在BE 上,ABC DEF ≌,AB 和DE ,AC 与DF 是对应边,,AC DF 交于点M ,则AMF ∠等于( ).2A B ∠ .2B ACB ∠ .C A D +∠∠ D.B ACB +∠∠(2019厦门八上质检9)在半径为R 的圆形钢板上,挖去四个半径都为r 的小圆.若16.8R =,剩余部分的面积为272π,则r 的值( ).A 3.2 .B 2.4 .C 1.6 .D 0.8(2019厦门八上质检10)在平面直角坐标系xOy 中,点()0,A a ,(),12B b b -,()23,0C a -,012a b <<<,若OB 平分AOC ∠,且AB BC =,则a b +的值为( ).A 9或12 .B 9或11 .C 10或11 .D 10或12 二、填空题(本大题有6小题,每小题每题4分,共24分) (2019厦门八上质检11)计算下列各题:()421xx x ÷=()()22=ab(2019厦门八上质检12)要使分式13x -有意义,x 应满足的条件是 (2019厦门八上质检13)如图2,在ABC 中,°90C =∠,°=30A ∠,4AB =,则BC 的长为(2019厦门八上质检14)如图3,在ABC 中,=60B AD ∠︒,平分BAC ∠,点E 在AD 延长线上,且EC AC ⊥.若=50E ∠︒,则ADC ∠的度数是(2019厦门八上质检15)如图4,已知,,,E F P Q 分别是长方形纸片()ABCD AD AB >各边的中点,将该纸片对着,使顶点,B D 重合,则折痕所在的直线可能是 .(2019厦门八上质检16)已知,a b 满足22(2)()442a b a b ab b b a a -+-++=-,且2a b ≠,则a 与b 的数量关系是 .三、解答题(本大题有9小题,共86分)(2019厦门八上质检17)(本题满分12分)计算: (1)23105;mn mn m n ÷⋅ (2)(32)(5)x x +-.(2019厦门八上质检18)(本题满分7分)如图5,在ABC 中,=60B ∠︒,过点C 作//,CD AB 若60ACD ∠=︒,求证:ABC 是等边三角形.(2019厦门八上质检19)(14分)化简并求值: (1),)42()12(22+--a a 其中;234=+a (2),4331232-+÷⎪⎭⎫ ⎝⎛+-m m m 其中4=m(2019厦门八上质检20)(7分)如图6,已知D CF AB ,//是AB 上一点,DF 交AC 于点E ,若CF BD AB +=,求证:CFE ADE ∆≅∆(2019厦门八上质检21)(7分)在平面直角坐标系xOy 中,点A 在第一象限,点B A 、关于y 轴对称。
人教版数学八年级上册 全册全套试卷同步检测(Word版 含答案)
人教版数学八年级上册全册全套试卷同步检测(Word版含答案)一、八年级数学全等三角形解答题压轴题(难)1.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDB DCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2).EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.2.在四边形ABCD 中,E 为BC 边中点.(Ⅰ)已知:如图,若AE 平分∠BAD,∠AED=90°,点F 为AD 上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD(Ⅱ)已知:如图,若AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,点F,G 均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF 为等边三角形;(2)AD=AB+12BC+CD.【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS 证明△ABE ≌AFE 即可;(2)由(1)得出∠AEB=∠AEF ,BE=EF ,再证明△DEF ≌△DEC (SAS ),得出DF=DC ,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE ≌△AFE (SAS ),△DGE ≌△DCE (SAS ),由全等三角形的性质得出BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,进而证明△EFG 是等边三角形;(2)由△EFG 是等边三角形得出GF=EE=BE=12BC ,即可得出结论. 【详解】(Ⅰ)(1)∵AE 平分∠BAD ,∴∠BAE=∠FAE ,在△ABE 和△AFE 中, AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF 和△DEC 中,FE CE DEF DEC DE DE ⎪∠⎪⎩∠⎧⎨===,∴△DEF ≌△DEC (SAS ),∴DF=DC ,∵AD=AF+DF ,∴AD=AB+CD ;(Ⅱ)(1)∵E 为BC 的中点,∴BE=CE=12BC , 同(Ⅰ)(1)得:△ABE ≌△AFE (SAS ),△DEG ≌△DEC (SAS ),∴BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,∵BE=CE ,∴FE=GE ,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG 是等边三角形,(2)∵△EFG 是等边三角形,∴GF=EF=BE=12BC , ∵AD=AF+FG+GD , ∴AD=AB+CD+12BC . 【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得△ABC ≌△ADE ;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,BF FAFB AFGAF AFG=⎧⎪∠=∠⎨⎪=⎩,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,在△CGA和△CDA中,GCA DCACGA CDAAG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.4.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明5.已知点P是线段MN上一动点,分别以PM,PN为一边,在MN的同侧作△APM,△BPN,并连接BM,AN.(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交∠=︒,因此有BM⊥AN;AN于点C,得出MCN90(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.【详解】解:(Ⅰ)结论:BM=AN,BM⊥AN.理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴2PC=2PA=2PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.二、八年级数学轴对称解答题压轴题(难)6.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解: (1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y xy xααβ=+⎧⎨=-+⎩①②-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴+y xy xααβ=+⎧⎨=+⎩①②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y xy xαβα-++=⎧⎨++=⎩①②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.7.已知:等边ABC∆中.(1)如图1,点M是BC的中点,点N在AB边上,满足60AMN∠=︒,求ANBN的值.(2)如图2,点M在AB边上(M为非中点,不与A、B重合),点N在CB的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32. 【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得.【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒∴30BAM ∠=︒,90AMB ∠=︒∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN∴90ANM ∠=︒∴18090BNM ANM =︒-=︒∠∠∴在Rt BNM ∆中,2BM BN =在Rt ABM ∆中,2AB BM =∴24AB AN BN BM BN =+==∴3AN BN =即3AN BN=. (2)如下图:过点M 作ME ∥BC 交AC 于E∴∠CME=∠MCB ,∠AEM=∠ACB∵ABC ∆是等边三角形∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB∠=∠=︒,120MBN=︒∠∴120CEM MBN∠==︒∠,60AEM A∠=∠=︒∴AM=ME∵MNB MCB∠=∠∴∠CME=∠MNB,MN=MC∴在MEC∆与NBM∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MEC NBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P作PM∥BC交AB于M∴AMP ABC=∠∠∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC==∴60AMP A==︒∠∠∴AP MP=,180120EMP AMP=︒-=︒∠∠,180120FCP ACB=︒-=︒∠∠∴AMP∆是等边三角形,120EMP FCP==︒∠∠∴AP MP AM==∵P点是AC的中点∴111222AP PC MP AM AC AB BC======∴12AM MB AB==在EMP∆与FCP∆中EMP FCPAEP PFCMP PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS∆∆≌∴ME FC=∴1322BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+=∴3322BCBF BEBC BC-==.【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.8.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE+AE=BE.【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC=AD,∠PAC=∠PAD=20°,根据等边三角形的性质可得AC=AB,∠BAC=60°,即可得AB=AD,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D的度数,再由三角形外角的性质即可求得∠AEB的度数;(3)CE +AE=BE,如图,在BE上取点M使ME=AE,连接AM,设∠EAC=∠DAE=x,类比(2)的方法求得∠AEB=60°,从而得到△AME为等边三角形,根据等边三角形的性质和SAS即可判定△AEC≌△AMB,根据全等三角形的性质可得CE=BM,由此即可证得CE +AE=BE.【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠EAC =∠EAD ,设∠EAC =∠DAE =x .∵AD =AC =AB ,∴()11802602D BAC x x ︒︒∠=-∠-=- ∴∠AEB =60-x +x =60°. ∴△AME 为等边三角形.∴AM=AE ,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB 和△AEC 中,AB ACBAM CAEAM AE=⎧⎪∠=∠⎨⎪=⎩,∴△AMB≌△AEC.∴CE=BM.∴CE+AE=BE.【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE转化到BE 上,再证明CE=BM即可得结论.9.八年级的小明同学通到这样一道数学题目:△ABC为边长为4的等边三角形,E是边AB 边上任意一动点,点D在CB的延长线上,且满足AE=BD.(1)如图①,当点E为AB的中点时,DE=;(2)如图②,点E在运动过程中,DE与EC满足什么数量关系?请说明理由;(3)如图③,F是AC的中点,连接EF.在AB边上是否存在点E,使得DE+EF值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)【答案】(1)32)DE=CE,理由见解析;(3)这个最小值为7;【解析】【分析】(1)如图①,过点E作EH⊥BC于H,由等边三角形的性质可得BE=DB=AE=2,由直角三角形的性质可求BH=1,EH3=(2)如图②,过E作EF∥BC交AC于F,可证△AEF是等边三角形,AE=EF=AF=BD,由“SAS”可证△DBE≌△EFC,可得DE=CE;(3)如图③,将△ABC沿AB翻折得到△ABC',连接C'F交AB于点E',连接CE',DE',过点F作FH⊥AC'于点H,由“SAS”可证△ACE'≌△AC'E',可得C'E'=CE',可得当点C',点E',点F三点共线时,DE+EF的值最小,由勾股定理可求最小值.【详解】(1)如图①,过点E作EH⊥BC于H,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,∴∠BEH =30°,∴BH =1,EH 3=BH 3=,∴DH =DB +BH =2+1=3,∴DE 2293DH EH =+=+=23.故答案为:23;(2)DE =CE.理由如下:如图②,过E 作EF ∥BC 交AC 于F .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.∵EF ∥BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,∴∠AEF =∠AFE =∠A =60°,∴△AEF 是等边三角形,∴AE =EF =AF ,∴AB ﹣AE =AC ﹣AF ,∴BE =CF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF ,∴△DBE ≌△EFC (SAS),∴DE =CE ,(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.∵将△ABC 沿AB 翻折得到△ABC ',∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ',∴△ACE '≌△AC 'E '(SAS),∴C 'E '=CE ',由(2)可知:DE '=CE ',∴C 'E '=CE '=DE '.∵DE +EF =C 'E +EF =C 'E '+EF ,∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=3=∴C 'H =4+1=5,∴C 'F 22'253C H HF +=+=27∴DE +EF 的最小值为27【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.10.如图,在等边△ABC 中,线段AM 为BC 边上的高,D 是AM 上的点,以CD 为一边,在CD 的下方作等边△CDE ,连结BE .(1)填空:∠ACB =____;∠CAM =____;(2)求证:△AOC ≌△BEC ;(3)延长BE 交射线AM 于点F ,请把图形补充完整,并求∠BFM 的度数;(4)当动点D 在射线AM 上,且在BC 下方时,设直线BE 与直线AM 的交点为F .∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM 的度数;若变化,请写出变化规律.【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.【解析】【分析】(1)根据等边三角形的性质即可进行解答;(2)根据等边三角形的性质就可以得出AC=AC ,DC=EC ,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD ,根据SAS 就可以得出△ADC ≌△BEC ;(3)补全图形,由△ADC ≌△BEC 得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM 的度数;(4)画出相应图形,可知当点D 在线段AM 的延长线上且在BC 下方时,如图,可以得出△ACD ≌△BCE ,进而得到∠CBE=∠CAD=30°,据此得出结论.【详解】(1)∵△ABC 是等边三角形,∴∠ACB=60°;∴线段AM 为BC 边上的高, ∴∠CAM=12∠BAC=30°, 故答案为60,30°; (2)∵△ABC 与△DEC 都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE ,∴∠ACD=∠BCE.在△ADC 和△BEC 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE(SAS);(3)补全图形如下:由(1)(2)得∠CAM=30°,△ADC ≌△BEC ,∴∠CBE=∠CAM=30°,∵∠BMF=90°,∴∠BFM=60°;(4)当动点D 在射线AM 上,且在BC 下方时,画出图形如下:∵△ABC 与△DEC 都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE(SAS),∴∠CBE=∠CAD=30°,又∵∠AMC=∠BMO ,∴∠AOB=∠ACB=60°.即动点D 在射线AM 上时,∠AOB 为定值60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到()()22322a ab b a b a b ++=++.请回答下列问题:(1)写出图2中所表示的数学等式是 ;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x ,y 的式子表示) ; (3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”).【答案】(1)22(2)(2)225a b a b a b ab ++=++;(2)22()()4x y x y xy +=-+;(3)大 小 【解析】 【分析】(1)图2面积有两种求法,可以由长为2a+b ,宽为a+2b 的矩形面积求出,也可以由两个边长为a 与边长为b 的两正方形,及4个长为a ,宽为b 的矩形面积之和求出,表示即可; (2)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式224()()xy x y x y =+--,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小; 【详解】(1)看图可知,22(2)(2)225a b a b a b ab ++=++ (2)22()()4x y x y xy +=-+(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小. 【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.12.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子232x x ++和223x x +-分解因式,如图:()()23212x x x x ++=++;()()223123x x x x +-=-+.请你仿照以上方法,探索解决下列问题:(1)分解因式:2712yy ;(2)分解因式:2321x x --.【答案】(1)(x ﹣3)(x ﹣4);(2)(x ﹣1)(3x+1). 【解析】 【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案; (2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果. 【详解】(1)y 2﹣7y+12=(x ﹣3)(x ﹣4); (2)3x 2﹣2x ﹣1=(x ﹣1)(3x+1). 【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.13.观察下列各式:()()2111,x x x -+=-()()23 111,x x x x -++=- ()()324 111,x x x x x -+++=- ()()4325 1 11,x x x x x x -++++=-······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++【答案】(1)1n x -;(2)311-5;(3)2020213--【解析】 【分析】(1)归纳总结得到一般性规律,即可得到结果; (2)根据一般性结果,将n=31,x=5代入(1)中即可;(3)将代数式适当变形为(1)的形式,根据前面总结的规律即可计算出结果. 【详解】(1)根据上述规律可得()()122 1 ...1n n x xx x x ---+++++=1n x -,故填:1n x -;(2)由(1)可知()3029282(51)555551-+++++=311-5()3 201920182017321(2)(2)(2)(2)(2)(2)1-+-+-+⋅+-+-+-+=201920182011732[(2)1](2)(2)(2)(2)(2)(2)13⎡⎤---+-+-+⋯+-+--+⎣⎦-+=2020(2)13---=2020213--【点睛】本题考查整式的乘法,能根据题例归纳总结出一般性规律是解题关键,(3)中能对整式适当变形是解题关键,但需注意变形时要为等量变形.14.请你观察下列式子:2(1)(1)1x x x -+=-()()23111x x x x -++=-()()324111x x x x x -+++=-()()4325111x x x x x x -++++=-……根据上面的规律,解答下列问题: (1)当3x =时, 计算201720162015(31)(333-+++…323331)++++=_________;(2)设201720162015222a =+++…322221++++,则a 的个位数字为 ; (3)求式子201720162015555+++…32555+++的和.【答案】(1)201831-;(2)3;(3)2018554- 【解析】 【分析】(1)根据已知的等式发现规律即可求解;(2)先根据x=2,求出a=20182-1,再发现2的幂个位数字的规律,即可求出a 的个位数字;(3)利用已知的等式运算规律构造(5-1)×(2016201520142555...551++++++)即可求解. 【详解】(1)∵2(1)(1)1x x x -+=-()()23111x x x x -++=- ()()324111x x x x x -+++=-()()4325111x x x x x x -++++=-……∴()()1122.1..11nn n n x x xx x x x --+-+++++=-+故x=3时,201720162015(31)(333-+++…323331)++++=201831-故填:201831-;(2)201720162015222a =+++…322221++++ =(2-1)201720162015(222+++…322221)++++=201821- ∵21=2,22=4,23=8,24=16,25=32,26=64 ∴2n 的个位数按2,4,8,6,依次循环排列, ∵2018÷4=504…2, ∴20182的个位数为4, ∴201821-的个位数为3, 故填:3;(3)201720162015555+++…32555+++ =1(51)54-⨯⨯(201620152014555+++…2551+++) =54×(5-1)(201620152014555+++…2551+++) =54×(201751-) =2018554-【点睛】此题主要考查等式的规律探索及应用,解题的关键是根据已知等式找到规律.15.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方,如=()2,善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为正整数)则有:=m2+2n2,所以a=m2+2n2,b=2mn.这样小明就找到了一种把的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若()2,用含m、n的式子分别表示a、b,得a=,b=(2)若(2(其中a、b、m、n均为正整数),求a的值.【答案】(1)m2+3n2,2mn;(2)13.【解析】试题分析:(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.试题解析:(1)∵)2,∴2+3n2∴a=m2+3n2,b=2mn.故a=m2+3n2,b=2mn;(2)由题意,得223 {42a m nmn=+=∵4=2mn,且m、n为正整数,∴m=2,n=1或m=1,n=2,∴a=22+3×12=7或a=12+3×22=13四、八年级数学分式解答题压轴题(难)16.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】规定期限20天;方案(3)最节省【解析】【分析】设这项工程的工期是x 天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求. 【详解】解:设规定期限x 天完成,则有:415x x x +=+, 解得x=20.经检验得出x=20是原方程的解; 答:规定期限20天.方案(1):20×1.5=30(万元) 方案(2):25×1.1=27.5(万元 ), 方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款. 所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.17.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式: (2)验证一下你写出的等式是否成立; (3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++.【答案】(1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x +.【解析】 【分析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算. 【详解】 解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…,知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x =+. 【点睛】解答此题关键是找出规律,再根据规律进行逆向运算.18.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍. (注:=垃圾处理量垃圾处理率垃圾排放量)(1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求? 【答案】(1)100;(2)98. 【解析】 【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可; (2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案. 【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.5401.25100x x ⨯=⨯+,解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨. (2)由(1)得2019年垃圾的排放量为200万吨, 设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m⨯+⨯+≥90%,m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求. 【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.19.阅读下面的解题过程:已知2112x x =+,求241x x +的值。
八年级2018-2019学年度上学期期中考试 数学试题(word版,含答案)
2018-2019学年度八年级上学期期中考试 数学试题第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试卷上。
3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)1.若一个正多边形一个外角是60°,则该正多边形的内角和是 A .360° B . 540° C . 720° D .900° 2. 若点A (1,1)m n +-与点B (-3,2)关于y 轴对称,则m n +的值是A .-5B .-3C .3D . 13. 已知三角形三个内角∠A 、∠B 、∠C ,满足关系式∠B+∠C=2∠A ,则此三角形 A. 一定有一个内角为45° B. 一定有一个内角为60° C. 一定是直角三角形 D. 一定是钝角三角形4. 如图,已知∠ABC=∠DCB,添加以下条件不能判定∆ABC ≌∆DCB 的是A .∠A=∠DB .∠ACB=∠DBC C .AC=DBD .AB=DC第4题 第5题第6题5.观察图中尺规作图痕迹,下列说法错误的是A.OE是∠AOB的平分线 B.OC=ODC.点C、D到OE的距离不相等 D、∠AOE=∠BOE6.如图,在Rt∆ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S∆ABD=15,则CD的长为A.3 B.4 C.5 D.67. 将一副直角三角板按如图所示位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45° B.60° C.75° D.85°第7题第8题第9题8.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC②△ACE≌△BDE③点E在∠O的平分线上其中正确的结论是A. 只有①B. 只有②C. 只有①②D. 有①②③9.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则等于∠ACE=A.15° B.30° C.45 D.60°10.将一个n边形变成n+1边形,内角和将A.减少180∘B.增加90∘C.增加180∘D.增加360∘11.如图,△ABC中,∠A=36∘,AB=AC,BD平分∠ABC,下列结论错误的是A. ∠C=2∠AB. BD=BCC. △ABD是等腰三角形D. 点D为线段AC的中点第11题第12题第13题12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A. AB=ADB. AC平分∠BCDC. AB=BDD. △BEC≌△DEC13.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确结论有()A.1个B.2个C.3个D.4个14.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A. 30°B. 35°C. 45°D. 60°第14题第17题第18题二、填空题(本题共4小题,每小题5分,共20分)15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是___17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是______.18. 在△ABC 中,AB=AC,CD=CB,若∠ACD=42∘,则∠BAC=______∘.19. 含角30°的直角三角板与直线1l ,2l 的位置关系如图所示,已知12l l ,∠1=60°,以下三个结论中正确的是____(只填序号)。
人教版数学八年级上册 全册全套试卷练习(Word版 含答案)
人教版数学八年级上册全册全套试卷练习(Word版含答案)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图1,在Rt△ABC 中,AB AC=,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF.(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD≌,ED FD∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒, 45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x = 故 5.DE =()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,14.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65. 22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.2.如图,AB=12cm ,AC ⊥AB ,BD ⊥AB ,AC=BD=9cm ,点P 在线段AB 上以3 cm/s 的速度,由A 向B 运动,同时点Q 在线段BD 上由B 向D 运动.(1)若点Q 的运动速度与点P 的运动速度相等,当运动时间t=1(s ),△ACP 与△BPQ 是否全等?说明理由,并直接判断此时线段PC 和线段PQ 的位置关系;(2)将 “AC ⊥AB ,BD ⊥AB ”改为“∠CAB=∠DBA ”,其他条件不变.若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能使△ACP 与△BPQ 全等. (3)在图2的基础上延长AC ,BD 交于点E ,使C ,D 分别是AE ,BE 中点,若点Q 以(2)中的运动速度从点B 出发,点P 以原来速度从点A 同时出发,都逆时针沿△ABE 三边运动,求出经过多长时间点P 与点Q 第一次相遇.【答案】(1)△ACP ≌△BPQ ,理由见解析;线段PC 与线段PQ 垂直(2)1或32(3)9s 【解析】 【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,据此列出方程,解这个方程即可求得. 【详解】(1)当t=1时,AP=BQ=3,BP=AC=9, 又∵∠A=∠B=90°,在△ACP 与△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ), ∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°, ∠CPQ=90°,则线段PC 与线段PQ 垂直. (2)设点Q 的运动速度x,①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,912tt xt=-⎧⎨=⎩, 解得31t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,912xtt t =⎧⎨=-⎩解得632t x =⎧⎪⎨=⎪⎩,综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等.(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程, 设经过x 秒后P 与Q 第一次相遇,∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点; ∴EB=EA=18cm. 当V Q =1时, 依题意得3x=x+2×9, 解得x=9; 当V Q =32时, 依题意得3x=32x+2×9, 解得x=12.故经过9秒或12秒时P 与Q 第一次相遇. 【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.3.如图,在△ABC 中,∠ABC 为锐角,点D 为直线BC 上一动点,以AD 为直角边且在AD 的右侧作等腰直角三角形ADE ,∠DAE =90°,AD =AE .(1)如果AB =AC ,∠BAC =90°.①当点D 在线段BC 上时,如图1,线段CE 、BD 的位置关系为___________,数量关系为___________②当点D 在线段BC 的延长线上时,如图2,①中的结论是否仍然成立,请说明理由. (2)如图3,如果AB ≠AC ,∠BAC ≠90°,点D 在线段BC 上运动.探究:当∠ACB 多少度时,CE ⊥BC ?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】 【分析】(1)①根据∠BAD=∠CAE ,BA=CA ,AD=AE ,运用“SAS ”证明△ABD ≌△ACE ,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE 、BD 之间的关系; ②先根据“SAS ”证明△ABD ≌△ACE ,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A 作AG ⊥AC 交BC 于点G ,画出符合要求的图形,再结合图形判定△GAD ≌△CAE ,得出对应角相等,即可得出结论. 【详解】(1):(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE=BD . 理由:如图1,∵∠BAD=90°-∠DAC ,∠CAE=90°-∠DAC , ∴∠BAD=∠CAE . 又 BA=CA ,AD=AE , ∴△ABD ≌△ACE (SAS ) ∴∠ACE=∠B=45°且 CE=BD . ∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE ⊥BD . 故答案为垂直,相等; ②都成立,理由如下: ∵∠BAC =∠DAE =90°, ∴∠BAC +∠DAC =∠DAE +∠DAC , ∴∠BAD =∠CAE , 在△DAB 与△EAC 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩=== ∴△DAB ≌△EAC , ∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD ; (2)当∠ACB =45°时,CE ⊥BD (如图).理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB =45°,∠AGC =90°﹣∠ACB , ∴∠AGC =90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.4.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数.【答案】(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【解析】【分析】(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠BAC+∠B+∠C;(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=∠A+∠ADC+∠AEC,求出∠DCE的度数即可.【详解】(1)如图,∠BDC =∠BAC+∠B+∠C ,理由是: 过点A 、D 作射线AF ,∵∠FDC =∠DAC+∠C ,∠BDF =∠B+∠BAD , ∴∠FDC+∠BDF =∠DAC+∠BAD+∠C+∠B , 即∠BDC =∠BAC+∠B+∠C ; (2)①如图(2),∵∠X =90°, 由(1)知:∠A+∠ABX+∠ACX =∠X =90°, ∵∠A =40°, ∴∠ABX+∠ACX =50°, 故答案为:50;②如图(3),∵∠A =40°,∠DBE =130°, ∴∠ADE+∠AEB =130°﹣40°=90°, ∵DC 平分∠ADB ,EC 平分∠AEB ,∴∠ADC =12∠ADB ,∠AEC =12∠AEB , ∴∠ADC+∠AEC =1(ADB AEB)2∠+∠=45°,∴∠DCE =∠A+∠ADC+∠AEC =40°+45°=85°. 【点睛】本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.5.综合与实践:我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等. (1)请你用所学知识判断乐乐说法的正确性.如图,已知ABC ∆、111A B C ∆均为锐角三角形,且11AB A B =,11BC B C =,1C C ∠=∠. 求证:111ABC A B C ∆∆≌.(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等. 【答案】(1)见解析;(2)钝角三角形或直角三角形. 【解析】 【分析】(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出△ABC ≌△A 1B 1C 1即可.(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证. 【详解】(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,则11111190BDA B D A BDC B D C ∠=∠=∠=∠=︒. 在BDC ∆和111B D C ∆中,1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,∴111BDC B D C ∆∆≌, ∴11BD B D =.在Rt BDA ∆和111Rt B D A ∆中,11AB A B =,11BD B D =,∴111Rt Rt (HL)BDA B D A ∆∆≌, ∴1A A ∠=∠.在ABC ∆和111A B C ∆中,1C C ∠=∠,1A A ∠=∠,11AB A B =,∴111(AAS)ABC A B C ∆∆≌.(2)如图,当这两个三角形都是直角三角形时,∵11AB A B =,11BC B C =,190C C ∠==∠︒. ∴Rt ABC ∆≌111Rt A B C ∆(HL );∴当这两个三角形都是直角三角形时,它们也会全等;如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,与(1)同理,利用AAS 先证明111BDC B D C ∆∆≌,得到11BD B D =, 再利用HL 证明111Rt Rt BDA B D A ∆∆≌,得到1A A ∠=∠, 再利用AAS 证明111ABC A B C ∆∆≌;∴当这两个三角形都是钝角三角形时,它们也会全等; 故答案为:钝角三角形或直角三角形. 【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.二、八年级数学 轴对称解答题压轴题(难)6.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).(1)∠A=______度;(2)当0<t <10,且△APQ 为直角三角形时,求t 的值; (3)当△APQ 为等边三角形时,直接写出t 的值.【答案】(1)60;(2)103或203;(3)5或20 【解析】 【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形. 【详解】 解:(1)60°. (2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°. ∴QA=2PA . 即2022 2.t t -=⨯ 解得 10.3t =当∠AQP=90°时,∠APQ=90°-60°=30°. ∴PA=2QA . 即2(202)2.t t -= 解得 20.3t =∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t ∵∠A=60°∴当AQ=AP 时,△APQ 为等边三角形 ∴2t=20-2t ,解得t=5②当P 于B 重合,Q 与C 重合,则所用时间为:4÷2=20 综上,当△APQ 为等边三角形时,t=5或20. 【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.7.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC 边上的中线AD 的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD 到E ,使DE=AD ,连接BE.根据SAS 可证得到△ADC ≌△EDB ,从而根据“三角形的三边关系”可求得AD 的取值范围是 .解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF∴BE= 2AF.(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG2=AE2+AG2,∵EF=EG, BF=AG∴EF2=AE2+BF2,则以线段AE、BF、EF为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.8.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案. 【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.9.如图,在等边△ABC中,线段AM为BC边上的高,D是AM上的点,以CD为一边,在CD的下方作等边△CDE,连结BE.(1)填空:∠ACB=____;∠CAM=____;(2)求证:△AOC≌△BEC;(3)延长BE交射线AM于点F,请把图形补充完整,并求∠BFM的度数;(4)当动点D在射线AM上,且在BC下方时,设直线BE与直线AM的交点为F.∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM的度数;若变化,请写出变化规律.【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.【解析】【分析】(1)根据等边三角形的性质即可进行解答;(2)根据等边三角形的性质就可以得出AC=AC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)补全图形,由△ADC≌△BEC得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM的度数;(4)画出相应图形,可知当点D在线段AM的延长线上且在BC下方时,如图,可以得出△ACD≌△BCE,进而得到∠CBE=∠CAD=30°,据此得出结论.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60°;∴线段AM为BC边上的高,∴∠CAM=12∠BAC=30°,故答案为60,30°;(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE.在△ADC和△BEC中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS);(3)补全图形如下:由(1)(2)得∠CAM=30°,△ADC≌△BEC,∴∠CBE=∠CAM=30°,∵∠BMF=90°,∴∠BFM=60°;(4)当动点D在射线AM上,且在BC下方时,画出图形如下:∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=30°,又∵∠AMC=∠BMO,∴∠AOB=∠ACB=60°.即动点D在射线AM上时,∠AOB为定值60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.10.如图,在等边三角形ABC右侧作射线CP,∠ACP=α(0°<α<60°),点A关于射线CP 的对称点为点D,BD交CP于点E,连接AD,AE.(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.=︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)【答案】(1)∠DBC60αBD=2AE+CE,证明见解析.【解析】【分析】(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边︒+,BC=DC,然后利用三角形的三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α内角和定理即可求出结果;(2)设AC、BD相交于点H,如图2,由轴对称的性质可证明△ACE≌△DCE,可得∠CAE=∠CDE,进而得∠DBC=∠CAE,然后根据三角形的内角和可得∠AEB=∠BCA,即可作出判断;(3)如图3,在BD上取一点M,使得CM=CE,先利用三角形的外角性质得出=︒,进而得△CME是等边三角形,可得∠MCE=60°,ME=CE,然后利用角的和差∠BEC60关系可得∠BCM=∠DCE,再根据SAS证明△BCM≌△DCE,于是BM=DE,进一步即可得出线段AE,BD,CE之间的数量关系.【详解】解:(1)如图1,连接CD,∵点A关于射线CP的对称点为点D,∴AC=DC,∠DCP=∠ACP=α,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,︒+,BC=DC,∴∠BCD=602α∴∠DBC =∠BDC ()1806021806022BCD αα︒-︒+︒-∠===︒-;(2)∠AEB 的大小不会发生变化,且∠AEB =60°.理由:设AC 、BD 相交于点H ,如图2,∵点A 关于射线CP 的对称点为点D ,∴AC=DC ,AE=DE ,又∵CE=CE ,∴△ACE ≌△DCE (SSS ),∴∠CAE =∠CDE ,∵∠DBC =∠BDC ,∴∠DBC =∠CAE ,又∵∠BHC =∠AHE ,∴∠AEB =∠BCA =60°, 即∠AEB 的大小不会发生变化,且∠AEB =60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.观察下列各式:()()2111,x x x -+=-()()23 111,x x x x -++=-()()324 111,x x x x x -+++=-()()4325 1 11,x x x x x x -++++=-······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++ 【答案】(1)1n x -;(2)311-5;(3)2020213-- 【解析】【分析】(1)归纳总结得到一般性规律,即可得到结果;(2)根据一般性结果,将n=31,x=5代入(1)中即可;(3)将代数式适当变形为(1)的形式,根据前面总结的规律即可计算出结果.【详解】(1)根据上述规律可得()()122 1 ...1n n x x x x x ---+++++=1n x -,故填:1n x -;(2)由(1)可知()3029282(51)555551-+++++=311-5()3 201920182017321(2)(2)(2)(2)(2)(2)1-+-+-+⋅+-+-+-+=201920182011732[(2)1](2)(2)(2)(2)(2)(2)13⎡⎤---+-+-+⋯+-+--+⎣⎦-+ =2020(2)13--- =2020213-- 【点睛】本题考查整式的乘法,能根据题例归纳总结出一般性规律是解题关键,(3)中能对整式适当变形是解题关键,但需注意变形时要为等量变形.12.阅读下列解题过程,再解答后面的题目.例题:已知224250x y y x ++-+=,求x y +的值. 解:由已知得22(21)(44)0x x y y -++++=即22(1)(2)0x y -++=∵2(1)0x -≥,2(2)0y +≥ ∴有1020x y -=⎧⎨+=⎩,解得12x y =⎧⎨=-⎩∴1x y +=-.题目:已知22464100x y x y +-++=,求xy 的值. 【答案】-32【解析】【分析】 先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x 、y 的值,再代入求出xy 的值.【详解】解:将22464100x y x y +-++=,化简得22694410x x y y -++++=,即()()223210x y -++=.∵()230x -≥,()2210y +≥,且它们的和为0,∴3x = ,12y, ∴12233xy ⎛⎫=⨯-=- ⎪⎝⎭. 【点睛】本题考查的是完全平方公式的应用,解题的关键是将左边的式子写成两个完全平方的和的形式.13.阅读理解:把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,3939…等,都是连接数,其中,234234称为六位连接数,3939称为四位连接数.(1)请写出一个六位连接数 ,它 (填“能”或“不能”)被13整除.(2)是否任意六位连接数,都能被13整除,请说明理由.(3)若一个四位连接数记为M ,它的各位数字之和的3倍记为N ,M ﹣N 的结果能被13整除,这样的四位连接数有几个?【答案】(1)证明见解析(2)abcabc 能被13整除(3)这样的四位连接数有1919,2525,3131,一共3个【解析】分析:(1)根据六位连接数的定义可知123123为六位连接数,再将123123进行因数分解,判断得出它能被13整除;(2)设abcabc 为六位连接数,将abcabc 进行因数分解,判断得出它能被13整除; (3)设xyxy 为四位连接数,用含x 、y 的代数式表示M 与N ,再计算M ﹣N ,然后将13M N -表示为77x +7y +3413x y +,根据M ﹣N 的结果能被13整除以及M 与N 都是1~9之间的整数,求得x 与y 的值,即可求解.详解:(1)123123为六位连接数;∵123123=123×1001=123×13×77,∴123123能被13整除;(2)任意六位连接数都能被13整除,理由如下:设abcabc 为六位连接数.∵abcabc =abc ×1001=abc ×13×77,∴abcabc 能被13整除;(3)设xyxy 为四位连接数,则M =1000x +100y +10x +y =1010x +101y ,N =3(x +y +x +y )=6x +6y ,∴M ﹣N =(1010x +101y )﹣(6x +6y )=1004x +95y ,∴13M N -=10049513x y +=77x +7y +3413x y +.∵M ﹣N 的结果能被13整除,∴3413x y +是整数.∵3x +4y 取值范围大于3小于63,所以能被13整除的数有13,26,39,52,∴x =1,y =9;x =2,y =5;x =3,y =1;x =8,y =7;x =9,y =3;x =5,y =6;x =6,y =2;满足条件的四位连接数的3131,2525,6262,9393,8787,5656,1919共7个. 点睛:本题考查了因式分解的应用,整式的运算,理解“连接数”的定义是解题的关键.14.对于任意两个数a 、b 的大小比较,有下面的方法:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.请根据以上材料完成下面的题目:(1)已知:228A x y y =+,8B xy =,且A B >,试判断y 的符号;(2)已知:a 、b 、c 为三角形的三边,比较222a c b +-和2ac 的大小.【答案】(1)y >0;(2)222a c b +-<2ac【解析】【分析】(1)根据题意得到22880x y y xy +->,因式分解得到22(2)0y x ->,进而得到y 的符号即可;(2)将222a c b +-和2ac 作差,结合已知及三角形的两边之和大于第三边可求.【详解】解:(1)因为A >B ,所以A-B >0,即22880x y y xy +->,∴222(44)2(2)0y x x y x +-=->,因为2(2)0x -≥,∴y >0(2)因为a 2−b 2+c 2−2ac =a 2+c 2−2ac−b 2=(a−c )2−b 2=(a−c−b )(a−c +b ), ∵a +b >c ,a <b +c ,所以(a−c−b )(a−c +b )<0,所以a 2−b 2+c 2−2ac 的符号为负.∴222a c b +-<2ac【点睛】本题考查了作差法比较两个式子的大小以及因式分解,解题的关键是理解题中的“求差法”比较两个数的大小,并熟练掌握因式分解的方法.15.(观察)1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,48×2=96,49×1=49.(发现)根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为 ;(2)设参与上述运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是 .(类比)观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n ,…,56×4,57×3,58×2,59×1.猜想mn 的最大值为 ,并用你学过的知识加以证明.【答案】(1)625;(2)a+b=50; 900;证明见解析.【解析】【分析】发现:(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;类比:由于m+n=60,将n=60−m代入mn,得mn=−m2+60m=−(m−30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【详解】解:发现:(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;类比:由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点睛】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.四、八年级数学分式解答题压轴题(难)16.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍.(注: 垃圾处理量垃圾处理率垃圾排放量)(1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x万吨,根据题意列方程求出x的值即可;(2)设设2020年垃圾的排放量还需要増加m万吨,根据题意列出不等式,解得m的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%, m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.17.阅读下面的解题过程:已知2113x x =+,求241x x +的值。
福建省厦门市2020-2021学年八年级上学期期末质量检测数学试题(含答案)
2020—2021 学年(上)厦门市初二年质量检测数 学注意事项∶1.全卷三大题,25 小题,试卷共5 页,另有答题卡.2.答案必须写在答题卡上,否则不能得分.3.可以直接使用 2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40 分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算 20的结果是 A.0 B.21C.1D.2 2.计算6m ÷3m 的结果是A.2B.2mC.3mD.2m 23.在平面直角坐标系xOy 中,点(2,1)关于y 轴对称的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若AD 是△ABC 的中线,则下列结论正确的是A.AD ⊥BCB.BD=CDC.∠BAD=∠CADD.AD=21BC 5.如图1,点B ,C 分别在∠EAF 的边AE ,AF 上,点D 在线段AC 上,则下列是△ABD 的外角的是 A.∠BCF B.∠CBE C.∠DBC D.∠BDF 6.整式n 2−1与n 2+n 的公因式是A.nB.n 2C.n +1D. n-17.运用公式a 2+2ab +6=(a +b)2直接对整式4x 2+4x+1进行因式分解,公式中的a 可以是 A.2x 2 B.4x 2 C.2x D.4x8.如图2,已知△ABC 与△BDE 全等,其中点D 在边 AB 上,AB>BC ,BD=CA ,DE/AC ,BC 与DE 交于点F ,下列与AD+AC 相等的是 B.BE A.DE C.BF D.DF9.如图3,直线AB ,CD 交于点0,若AB ,CD 是等边△MNP 的两条对称轴,且点 P 在直线 CD 上(不与点 O 重合),则点M ,N 中必有一个在A.∠AOD 的内部B. ∠BOD 的内部C. ∠BOC 的内部D.直线 AB 上10.在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n ),其中m >a , a <1,n >0,若△ABC 是等腰直角三角形,且 AB=BC ,则 m 的取值范围是 A.0<m<2 B.2<m<3 C.m<3 D.m>3二、填空题(本大题有6 小题,每小题4 分,共 24 分) 11.计算∶(1)52x x = ;(2)23)(x = .12.五边形的外角和为 度. 13.计算∶111−−−x x x = . 14.如图4,CE 是△ABC 外角的平分线,且AB//CE ,若∠ACB=36°,则∠A 等于 度.15.如图5,△ABC 与△BED 全等,点A ,C 分别与点B ,D 对应,点C 在BD 上,AC 与BE 交于点 F.若∠ABC=90°,∠D=60°,则AF:BD 的值为 . 16.如图6,在一个大正方形纸板中剪下边长为a cm 和边长为b cm 的两个正方形,剩余长方形①和长方形②的面积和为8 cm².若将剩余的长方形①和②平移进边长为acm 的正方形中(如图7),此时该正方形未被覆盖的面积为6cm²,则原大正方形的面积为 .三、解答题(本大题有9 小题,共 86 分) 17.(本题满分12分)计算∶(1)2a²·(3a²−5b ); (2)(2a +b)·(2a −b).18.(本题满分7分)如图8,点B ,F ,C ,E 在一条直线上,AB=DE , FB=CE ,AB//ED.求证∶AC//FD.19.(本题满分7分)先化简,再求值∶mm m m m m 4)223(2−⋅++−,其中m=1.20. (本题满分8分)甲、乙两人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等. 求甲、乙每小时各做零件多少个.21.(本题满分8分)如图9,已知锐角∠APB ,M 是边 PB 上一点,设∠APB=α,(1)尺规作图∶在边 PA 上作点N ,使得∠ANM=2α;(不写作法,保留作图痕迹) (2)在(1)的条件下,若边 PA 上存在点Q ,使得∠QMB=3α, ①证明△MNQ 是等腰三角形; ② 直接写出α 的取值范围.22. (本题满分10分)将一个三角形沿着其中一个顶点及其对边上的一点所在的直线折叠,若折叠后原三角形的一边垂直于这条对边,则称这条直线是该三角形的“对垂线”.(1)如图10,AD 是等边△ABC 的对垂线,把△ABC 沿直线AD 折叠后,点B 落在点B'处,求 ∠BAD 的度数;(2)如图11,在△ABC 中,∠BAC=90°,点D 在边BC 上,且AB=AD ,若∠B=2∠DAC , 判断直线 AD 是否是△ABC 的对垂线,并说明理由.23.(本题满分10 分)观察下列等式∶第1个等式∶111)211(34+=+⨯; 第2个等式∶211)311(89+=+⨯;第3个等式∶311)311(1516+=+⨯第4个等式∶411)511(2425+=+⨯;.....根据你观察到的规律,解决下列问题∶ (1)写出第5 个等式;(2)写出第n 个等式,并证明;(3)计算∶.1-20202020 (2425151689342)2⨯⨯⨯⨯⨯24.(本题满分10 分)某国家5A 级景区开展一年一度的旅游主题活动,活动将持续两周.景区内某餐厅今年活动期间推出“精品套餐”,在午餐和晚餐时间只出售该套餐,且定价相同.活动开始后,该套餐的销售情况如下∶ 第一天,午餐、晚餐时间均按定价出售,当天销售总收入为30 000 元;第二天,午餐时间按定价共售出100份;晚餐时间按定价打九五折出售(即按定价的 95%出售),当天销售总收入为37650元,且全天销售量比第一天多30%(销售量指售出的套 餐的份数).(1)若第一天的全天销售量为m ,请用含m 的代数式表示第二天晚餐时间该套餐的销售量; (2)该套餐的定价为多少元?(3)第三天,餐厅在午餐时间按定价打九二折出售该套餐,晚餐按定价出售,全天销售量比第一天多32%; 第四天,午餐和晚餐时间均按定价打九折出售,全天销售量比第一天多1倍.根据该餐厅往年活动期间的销售数据,午餐时间套餐的销售量和晚餐时间套餐的销售量有如下规律∶ ①若套餐价格不变,则二者分别保持基本稳定;②若套餐按定价打折,折扣相同,则二者的增长率也会大致相同.参考前四天该套餐按定价所打折扣与销售量增长率之间的关系,若第五天午餐与晚餐时间均按定价打八八折出售该套餐,你认为全天销售量会是多少?请说明理由.25.(本题满分14分)在四边形ABCD中,∠ABC=90°,AC⊥BD,垂足为E.(1)如图12,若BC=DC,求证∶ZADC=90°;(2)如图13,过点C作CG∥AB,分别与BD,AD交于点F,G,点M在边AB上,连接MC并延长,交BD于点N,过D作DH⊥MC于H,∠BCG=2∠DCG,且∠BMC=∠BDC+45°.①证明NM = NB;②若BD=AE+CH,探究AB 与BC的数量关系.2020—2021学年(上)厦门市初二年质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.(1)x 7;(2)x 6. 12.360. 13.1.14.72. 15. 34. 16. 22cm 2.三、解答题(本大题有9小题,共86分)17.(本题满分12分) (1)(本小题满分6分) 解:2a 2·(3a 2-5b ) ;=2a 2·3a 2-2a 2·5b ……………………2分 =6a 4-10a 2b . ……………………6分(2)(本小题满分6分) 解法一:(2a +b )·(2a -b )=(2a )2-b 2 ………………………5分 =4a 2-b 2. ………………………6分解法二:(2a +b )·(2a -b )=(2a )2-2a ·b +b ·2a -b 2 ………………………4分 =(2a )2-b 2 ………………………5分 =4a 2-b 2. ………………………6分18.(本题满分7分) 证明:∵ AB ∥ED , ∴ ∠B =∠E . ……………………2分 ∵ FB =CE ,∴ FB +FC =CE +FC .∴ BC =EF . ……………………4分 又∵ AB =DE ,∴ △ABC ≌△DEF . ……………………6分 ∴ ∠ACB =∠DFE . ∴ AC ∥FD . ……………………7分ABCFDE19.(本小题满分7分) 解法一:解:(3m m -2+mm +2)·m 2-4m=3m(m +2) +m (m -2)(m +2)( m -2)·m 2-4m ……………………………1分=4m 2+4m (m +2)( m -2)·m 2-4m ……………………………2分=4m(m +1)(m +2)( m -2)·(m -2)(m +2)m ……………………………4分=4m +4 ……………………………6分当m =1时,原式=4+4 = 8 ……………………………7分解法二:解:(3m m -2+mm +2)·m 2-4m=3m m -2·m 2-4m +mm +2·m 2-4m ……………………………2分=3m m -2(m -2)(m +2)m +mm +2·(m -2)(m +2)m ……………………………3分=3(m +6) +m -2 ……………………………5分=4m +4 ……………………………6分当m =1时,原式=4+4= 8 ……………………………7分20.(本题满分8分)解:设乙每小时做x 个零件, ………………1分 则甲每小时做(x +6)个零件, 依题意,得90x +6=60x. ……………………5分解得x =12. ……………………6分 检验:当x =12时,x (x +6)≠0.所以原分式方程的解为x =12. ……………………7分 甲每小时做12+6=18个零件.答:甲每小时做18个零件,乙每小时做12个零件. ……………………8分21.(本题满分8分)解:(1)(本小题满分3分)点N 为所求. …………………………3分(2)①(本小题满分4分)证明:点Q 在边P A 上,且存在以M ,N ,Q 为顶点的三角形时, 有如下情况:当点Q 在射线NA 上(不含端点N )时,如图1, ∵ ∠PQM =∠QMB -∠APB=3α-α=2α.∵ 由(1)得∠ANM =2α, ∴ ∠ANM =∠PQM .∴ NM =QM ,即△MNQ 是等腰三角形. …………………………6分当点Q 在线段PN 上(不含端点P )时,如图2,同理可得∠PQM =2α.∵由(1)得∠ANM =2α,∴ 180°-∠ANM =180°-∠PQM . ∴ ∠MNQ =∠MQN . ∴ NM =QM , 即△MNQ 是等腰三角形.当点Q 在点P 处,3α=180°,即α=60°,此时△MNQ 是等边三角形.…………………………7分②(本小题满分1分)0°<α≤60°. …………………………8分22.(本题满分10分) (1)(本小题满分5分) 证明:∵ AD 是等边△ABC 的对垂线,又∵ 把△ABC 沿直线AD 折叠后,点B 落在点B ′处, ∴ AB ′⊥BC ,△ABD ≌△AB'D . …………………2分 ∴ ∠BAD =∠B ′AD . …………………3分 ∵ △ABC 是等边三角形 , ∴ AB =AC ,∠BAC =60°. 又∵ AB ′⊥BC ,∴ ∠BA B ′=12×∠BAC =30°. …………………4分∴ ∠BAD =12×∠BA B ′=15°. …………………5分B'A B CDQ ABP M N 图1 MP BANQ 图2(2)(本小题满分5分)解:AD 是△ABC 的对垂线. 理由如下:∵ AB =AD ,∴ ∠B =∠BDA . …………………6分∵ ∠B =2∠DAC ,∠BDA =∠DAC +∠C . ∴ ∠DAC =∠C =12∠B . …………………7分∵ 在△BAC 中,∠BAC =90°, ∴ ∠B +∠C =90°. ∴ ∠B +12∠B =90°.∴ ∠B =60°=∠BDA ,∠DAC =∠C =30°. …………………8分把△ADC 沿直线AD 折叠,设点C 落在点C ′处,交BC 边于点F ,折可得△ACD ≌△AC'D . ∴ ∠DA C ′=∠DAC =30°. …………………9分 ∴ 在△AFD 中,∠AFD =180︒-30°-60°=90°. 即AC ′⊥BC .∴ AD 是△ABC 的对垂线. …………………10分23.(本题满分10分) 解:(1)(本小题满分第5个等式是3635×(1=1 ……………………3分(2)(本小题满分4分)第n 个等式是(n+1)2(n +1)2-1×(1=1 ……………………5分证明如下:因为左边=(n +1)2n 2+2n ×(1 ……………………6分=(n +1)2n (n +2)×=n +1n=1.所以等式成立. ……………………7分 (3)(本小题满分3分) 解法一:因为 (n+1)2(n +1)2-1×(1=1 ABCDC ′所以 (n +1)22=n +1×…×…× …………………9分…………………10分m .…………………9分所以m = 2÷(1. ……………………10分24.(本题满分10分) 解: (1)(本小题满分3分)第二天晚餐销售量为:1.3m -100. ……………………3分 (2)(本小题满分4分) 设定价为x 元,依题意,得30000x (1+30%)=100+37650-100x 0.95x . ……………………6分 解方程,得 x =120. 检验,当x =120时,0.95 x ≠0. 所以原分式方程的解为x =120.答:该套餐的定价为120元. ……………………7分 (3)(本小题满分3分)根据题意,对前四天的午餐与晚餐时间套餐的销售量进行计算: 第一天:由(2)得,第一天的全天销售量为250.由“①若套餐价格不变,则二者分别..保持基本稳定”可知:因为第一天午餐时间和第二天午餐时间套餐的销售价格不变,所以这两天午餐时间的销售量均为100,所以第一天晚餐销售量为250-100=150.第二天:晚餐时间按定价打九五折出售,午餐价格不变.因此午餐套餐的销售量仍为100,则晚餐套餐销售量为(100+150)×(1+30%)-100=225.可得套餐打九五折销售量增长率为:(225-150)÷150=50%. ……………………8分第三天:午餐时间按定价打九二折出售,晚餐价格不变.因此晚餐套餐的销售量仍为150.则午餐套餐销售量为(100+150)×(1+32%)-150=180.可得套餐打九二折销售量增长率为(180-100)÷100=80%.第四天:午餐和晚餐时间均按定价打九折出售,因为全天销售量比第一天多1倍,晚餐套餐销售量增长率均为100%.参考前四天该套餐所打折扣与销售量增长率之间的关系可以发现如下规律:销售价格每多打1折,销量增长100%.所以若第五天午餐与晚餐时间均按定价打八八折出售该套餐,销量增长120%;即第五天的全天销售量为250×(1+120%)=550. ……………10分25.(本题满分14分)(1)(本小题满分3分)解法一:证明:∵ BC=DC,AC⊥BD,∴ ∠DCA=∠BCA.………………………1分又∵ AC=AC,∴ △ADC≌△ABC.………………………2分∴ ∠ADC=∠ABC=90°. ………………………3分解法二:证明:∵ BC=DC,AC⊥BD,∴ DE=BE ,………………………1分∠CDB=∠CBD.∴ AE为BD的垂直平分线.∴ AD=AB,∴ ∠ADB=∠ABD.………………………2分∴ ∠ADC=∠ADB+∠CDB=∠ABD+∠CBDEA BCD=∠ABC=90°. ………………………3分解法三:证明:∵ BC=DC,AC⊥BD,∴ DE=BE.………………………1分∴ AE为BD的垂直平分线.∴ AD=AB.又∵ AC=AC,∴ △ADC≌△ABC.………………………2分∴ ∠ADC=∠ABC=90°. ………………………3分(2)①(本小题满分4分)证明:∵ CG∥AB,∴ ∠BCG=180°-∠ABC=180°-90°=90°. ………………………4分∵ ∠BCG=2∠1,∴ ∠1=45°.∴ ∠DFG=∠2+∠1=∠2+45°.………………………5分∵ CG∥AB,∴ ∠NBM=∠DFG ………………………6分=∠2+45°.∵ ∠3=∠2+45°,∴ ∠NBM=∠3.∴ NM=NB. ………………………7分②(本小题满分7分)解法一:证明:过点D作DP⊥BC,垂足为P,BP交于DH点T.∵ DH⊥CH,∴ ∠H=90°=∠ABC.又∵ ∠TCH=∠4,∴ 在△TCH和∠BCM中,∠CTH=∠3.由①得,∠1=∠5=45°∴ ∠CTH=∠6+45°. ………………………10分又∵ ∠3=∠2+45°,∴ ∠6=∠2.又∵ DH⊥CH,AC⊥BD,∴ CH=CE.………………………11分∵ BD=AE+CH,∴ BD=AE+CE=AC.在Rt△BEC和Rt∠ABC中,∠DBC+∠ACB=90°,∠7+∠ACB=90°.∴ ∠DBC=∠7.又∵ ∠P=∠ABC=90°,BD=AC.∴ △DBP≌△CAB.………………………13分∴ DP=BC,BP=AB.∵ ∠5=45°,∴ 在Rt△DCP中,∠CDP=45°.∴ DP=CP.∴ BC=CP.∴ AB=BP=BC+CP=2BC.………………………14分解法二:证明:设∠2=x Array∵ CG∥AB,∴ ∠GCM=∠3=x+45°.又∵ 由①得,∠1=45°,∴ ∠DCH=180°-∠1-∠GCM=180°-45°-(x+45°)=90°-x.………………………10分∵ DH⊥CH,∴ ∠H=90°.在Rt△DHC中,∠6=90°-∠DCH=90°-(90°-x)=x.即∠6=∠2.又∵ DH⊥CH,AC⊥BD,∴ CH=CE.………………………11分∵ BD=AE+CH,∴ BD=AE+CE=AC.在AB上取一点Q,使得BQ=BC.∵ ∠ABC=90°,BQ=BC,∴ ∠BQC=45°.∴ ∠AQC=135°.∵ ∠DCB=∠1+∠BCG=135°,∴ ∠DCB=∠AQC.∵ ∠DCE=90°-x,∠1=45°,∴ ∠ACG=∠DCE-∠1=45°-x.∵ CG∥AB,∴ ∠7=∠ACG=45°-x.∵ ∠ABC=90°,∠DBM=x+45°,∴ ∠DBC=∠ABC-∠DBM=45°-x.∴ ∠7=∠DBC.又∵ ∠DCB=∠AQC,BD=AC,∴ △CAQ≌△DBC. ………………………13分∴ AQ=BC.∵ BQ=BC,∴ AB=2BC. ………………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019—2020学年(上)厦门市八年级质量检测
数 学
(试卷满分:150分 考试时间:120分钟)
准考证号 姓名 座位号
注意事项:
1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.
一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只
有一个选项正确) 1.计算2-1的结果是
A . 0
B . 1
2
C . 1
D .2
2.下列长度的三条线段能组成三角形的是
A . 3,4,7
B . 3,4,8
C . 3,3,5
D . 3,3,7
3.分式x
x -2
有意义,则x 满足的条件是
A . x ≠2
B . x =0
C . x =2
D . x >2 4. 如图1,在△ABC 中,AD 交边BC 于点D .设△ABC 的重心为M , 若点M 在线段AD 上,则下列结论正确的是
A . ∠BAD =∠CAD
B .AM =DM
C . △AB
D 的周长等于△ACD 的周长 D .△ABD 的面积等于△ACD 的面积 5.已知正方形ABCD 边长为x ,长方形EFGH 的一边长为2,另一边的长为x ,则正方形ABCD 与长方形EFGH 的面积之和等于
A .边长为x +1的正方形的面积
B . 一边长为2,另一边的长为x +1的长方形面积
C . 一边长为x ,另一边的长为x +1的长方形面积
D . 一边长为x ,另一边的长为x +2的长方形面积
6.从甲地到乙地有两条路:一条是全长750km 的普通公路,另一条是全长600km 高速公路.某客车从甲地出发去乙地,若走高速公路,则平均速度是走普通公路的平均速度的2倍,所需时间比走普通公路所需时间少5小时.设客车在普通公路上行驶的平均速度是x km /h ,则下列等式正确的是 A . 600x +5=7502x B . 600x -5=7502x C .
6002x +5=750x D . 6002x -5=750x
7.在△ABC 中,D ,E 分别是边AB ,AC 上的点,且AD =CE ,∠DEC =∠C =70°, ∠ ADE =30°,则下列结论正确的是
A .DE =CE
B .B
C =CE C .DB =DE
D .A
E =DB
图1
8.在平面直角坐标系中,O 是坐标原点,点A (3,2),点P (m ,0)(m <6),若△POA 是等腰三角形,则m 可取的值最多有
A . 2个
B .3个
C .4个
D . 5个
9. 下列四个多项式,可能是2x 2+mx -3 (m 是整数)的因式的是
A . x -2
B . 2x +3
C . x +4
D . 2x 2-1 10. 如图2,点D 在线段BC 上,若BC =D
E ,AC =DC ,AB =EC ,
且∠ACE =180°—∠ABC —2x °,则下列角中,大小为x °的角是
A . ∠EFC
B . ∠AB
C C . ∠FDC
D . ∠DFC
二、填空题(本大题有6小题,每小题4分,共24分)
11.计算:(1)(2a )3= ;(2)3a (5a 2+2b 2) = . 12.计算:4x 23y ·3y
x
3= .
13. 如图3,在△ABC 中,∠ACB =90°,AD 平分∠CAB ,交边BC 于点D , 过点D 作DE ⊥AB ,垂足为E .若∠CAD =20°,则∠EDB 的度数是 . 14. 如图4,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个 边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH ⊥DC ,垂 足为H .将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若 拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是 . 15. 已知锐角∠MPN ,依照下列步骤进行尺规作图: (1)在射线PN 上截取线段P A ;
(2)分别以P ,A 为圆心,大于1
2
P A 的长为半径作弧,两弧相交于E ,F
两点; (3)作直线EF ,交射线PM 于点B ; (4)在射线AN 上截取AC =PB ; (5)连接BC .
则∠BCP 与∠MPN 之间的数量关系是 .
16.在△ABC 中,∠C =90°,D 是边BC 上一点,连接AD ,若∠BAD +3∠CAD =90°,DC =a ,BD =b ,则AB = . (用含a ,b 的式子表示)
三、解答题(本大题有9小题,共86分)
17.(本题满分12分)
(1)计算:(y +2)(y —2) +(2y —4)(y +3); (2)分解因式:2a 2x 2+4a 2xy +2a 2y 2.
18. (本题满分7分)
如图5,点B ,E ,C ,F 在一条直线上,AB =DE ,∠A =∠D ,AB ∥DE. 求证:BE =CF .
F A B C
D E
图2 A
B
C
D
E
图3
A
B D
C
E F
图5
F
A B C
D E
H
G
图4
先化简,再求值:1m 2-49÷1
m 2-7m
+1,其中m =2.
20. (本题满分8分) 已知点A (1,1),B (-1,1),C (0,4). (1)在平面直角坐标系中描出A ,B ,C 三点;
(2)在同一平面内,点与三角形的位置关系有三种:点在三角形内、点在三角形边上、 点在三角形外.若点P 在△ABC 外,请判断点P 关于y 轴的对称点P ′与△ABC 的 位置关系,直接写出判断结果.
21. (本题满分8分)
如图6,在△ABC 中,AB =AC ,过点B 作BD ⊥AC ,垂足为D ,若D 是边AC 的中点, (1)求证:△ABC 是等边三角形;
(2)在线段BD 上求作点E ,使得CE =2DE . (要求:尺规作图,不写画法,保留作图痕迹)
22. (本题满分9分)
某企业在甲地有一工厂(简称甲厂)生产某产品,2017年的年产量过万件,2018年甲 厂经过技术改造,日均生产的该产品数是该厂2017年的2倍还多2件. (1)若甲厂2018年生产200件该产品所需的时间与2017年生产99件该产品所需的时
间相同,则2017年甲厂日均生产该产品多少件?
(2)由于该产品深受顾客欢迎,2019年该企业在乙地建立新厂(简称乙厂)生产该产
品.乙厂的日均生产的该产品数是甲厂2017年的3倍还多4件.同年该企业要求甲、乙两厂分别生产m ,n 件产品(甲厂的日均产量与2018年相同),m :n =14:25,若甲、乙两厂同时开始生产,谁先完成任务?请说明理由.
图6
A
B C
D
已知一些两位数相乘的算式:
62×11,78×69,34×11,63×67,18×22,15×55,12×34,54×11. 利用这些算式探究两位数乘法中可以简化运算的特殊情形:
(1)观察已知算式,选出具有共同特征的3个算式,并用文字描述它们的共同特征; (2)分别计算你选出的算式.观察计算的结果,你能发现不经过乘法运算就可以快速、 直接地写出积的规律吗?请用文字描述这个规律; (3)证明你发现的规律;
(4)在已知算式中,找出所有可以应用(或经过转化可以应用)上述规律的算式,并将 它们写在横线上: .
24. (本题满分11分)
在△PQN 中,若∠P =1
2∠Q +α(0°<α≤25°),则称△PQN 为“差角三角形”,且∠P 是
∠Q 的“差角”.
(1)已知△ABC 是等边三角形,判断△ABC 是否为“差角三角形”,并说明理由; (2)在△ABC 中,∠C =90°,50°≤∠B ≤70°,判断△ABC 是否为“差角三角形”,若
是,请写出所有的“差角”并说明理由;若不是,请说明理由.
25. (本题满分14分)
如图7,在四边形ABCD 中,AC 是对角线,∠ABC =∠CDA =90°,BC =CD ,延长 BC 交AD 的延长线于点E . (1)求证:AB =AD ;
(2)若AE =BE +DE ,求∠BAC 的值;
(3)过点E 作ME ∥AB ,交 AC 的延长线于点M ,过点M 作MP ⊥DC ,交DC 的延长 线于点P ,连接PB .设PB =a ,点O 是直线AE 上的动点,当MO +PO 的值最小 时,点O 与点E 是否可能重合?若可能,请说明理由并求此时MO +PO 的值(用 含a 的式子表示);若不可能,请说明理由.
图7
B E D
C A。