厦门初三质检数学试卷+答案
厦门初三质检数学试卷+答案.doc

2017— 2018 学年 ( 上 ) 厦门市九年级质量检测数学参考答案明:解答只列出的一种或几种解法.如果考生的解法与所列解法不同,可参照分量表的要求相分 .一、(本大共10 小,每小 4 分,共 40 分)号12345678910C AD A A D B C B D二、填空(本大共 6 小,每 4 分,共 24 分)11. 1.12. 1.13.13.14. 向下 .15. m≤ OA.16. 252< x≤368( x 整数)或253≤ x≤368( x 整数)三、解答(本大有9 小,共86 分)17. (本分8 分)解: x2-4x+ 4= 5.⋯⋯⋯⋯⋯⋯ 4 分( x- 2)2= 5.由此可得x- 2=± 5.⋯⋯⋯⋯⋯⋯6分x1=5+ 2,x2=-5+ 2.⋯⋯⋯⋯⋯⋯8 分18.(本分 8 分)明 : 如 1,∵AB∥ DE ,∴∠ BAC=∠ EDF .⋯⋯⋯⋯⋯⋯ 2 分∵AD = CF,∴AD + DC= CF+ DC .即AC= DF .⋯⋯⋯⋯⋯⋯4分又∵AB= DE,∴△ ABC≌△ DEF .⋯⋯⋯⋯⋯⋯ 6 分∴∠ BCA=∠ EFD .∴BC∥ EF .⋯⋯⋯⋯⋯⋯8 分B EA D C F图119. (本分 8 分)解:( 1)如 2,点 B 即所求 . ⋯⋯⋯⋯⋯⋯ 3 分( 2)由二次函数象点P( 1, 3),可解析式· P y= a(x- 1)2+ 3. ⋯⋯⋯⋯⋯⋯ 6 分·B 把 A( 0, 2)代入,得A·a+ 3= 2.解得 a=- 1. ⋯⋯⋯⋯⋯⋯ 7 分图 2数学参考答案第 1 页共6页所以函数的解析式 y=-( x- 1)2+3. ⋯⋯⋯⋯⋯⋯ 8 分F20. (本分8 分) AD 3,接 AF. ⋯⋯⋯⋯⋯⋯ 3 分解:如将△ CBE 点 B 逆旋60°,可与△ ABF 重合 . ⋯⋯⋯⋯ 8 分 EB图 3C21. (本分 8 分)解:由表格可知,随着苗移植数量的增加,苗移植成活率越来越定. 当移植数10000 ,成活率 0.950,于是可以估苗移植成活率0.950. ⋯⋯⋯⋯⋯⋯ 3 分市需要的苗数量28.5÷ 0.950= 30 (万棵) .答:市需向家园林公司30 万棵苗合适 . ⋯⋯⋯⋯⋯⋯ 8 分22.(本分 10 分)(1)(本小分 5 分)解:把 A(-12, 0),B( 2, 5)分代入y= kx+ b,可得解析式y= 2x+ 1.⋯⋯⋯⋯⋯⋯ 3 分当 x=0 , y=1.所以直l1与 y 的交点坐(0,1) .⋯⋯⋯⋯⋯⋯ 5 分( 2)(本小分 5 分)解:如4,把 C( a, a+ 2)代入 y= 2x+ 1,可得 a= 1.⋯⋯⋯⋯⋯⋯点 C 的坐( 1, 3) .∵AC= CD= CE,又∵点 D 在直AC 上,∴点 E 在以段AD 直径的上 .∴∠ DEA = 90° . ⋯⋯⋯⋯⋯⋯ 8 分点 C 作 CF ⊥ x 于点 F ,CF = y C= 3. ⋯⋯⋯⋯⋯⋯ 9 分∵AC= CE,∴ AF =EF又∵AC= CD ,∴CF 是△ DEA 的中位 .∴DE = 2CF = 6.⋯⋯⋯⋯⋯⋯10 分23.(本分 11 分)( 1)(本小分 4 分)解:因当 x=- 2 , y> 0;当 x=- 1 , y< 0,所以方程2x2+ x- 2= 0 的另一个根x2所在的范是- 2< x2<- 1.(2)(本小分 7 分)解:取x=(-2)+(-1)=- 3,因当x=- 3,y>0,22 2又因当x=- 1 , y=- 1< 0,6分yxDCAO F E x图4C⋯⋯⋯⋯⋯⋯ 4 分数学参考答案第 2 页共6页所以- 3< x 2<- 1.⋯⋯⋯⋯⋯⋯7 分2(- 3)+(- 1)取 x =2=- 5,因 当 x =- 5, y < 0,2 44又因 当 x =- 3, y > 0,2所以- 3< x 2<- 5.⋯⋯⋯⋯⋯⋯10 分245 31又因 -4-(- 2)= 4,所以- 3< x 2<- 5即 所求 x 2 的范 .⋯⋯⋯⋯⋯⋯ 11 分2 424. (本 分 11 分)( 1)(本小 分 5 分)解:如 5,∵AB 是半 O 的直径,∴ ∠ M = 90°. ⋯⋯⋯⋯⋯⋯ 1 分在 Rt △ AMB 中, AB = MA 2+ MB 2⋯⋯⋯⋯⋯⋯2 分∴AB =10.A∴ OB = 5.⋯⋯⋯⋯⋯⋯ 3 分∵ OB = ON , 又∵∠ NOB = 60°,∴ △ NOB 是等 三角形. ⋯⋯⋯⋯⋯⋯ 4 分 ∴ NB = OB = 5. ⋯⋯⋯⋯⋯⋯ 5 分( 2)(本小 分 6 分) 明: 方法一:如 6,画⊙ O ,延 MC 交⊙ O 于点 Q , 接 NQ , NB. ∵ MC ⊥ AB ,又∵OM =OQ ,∴ MC = CQ. ⋯⋯⋯⋯⋯⋯ 6 分即 C 是 MN 的中点 M又∵P 是 MQ 的中点,∴ CP 是△ MQN 的中位 . ⋯⋯⋯⋯⋯⋯ 8 分A∴ CP ∥ QN.C∴ ∠ MCP =∠ MQN .11Q∵ ∠ MQN = 2∠MON ,∠ MBN = 2∠ MON , ∴ ∠ MQN =∠ MBN .∴ ∠ MCP =∠ MBN .⋯⋯⋯⋯⋯⋯ 10 分∵ AB 是直径, ∴ ∠ ANB = 90°.∴ 在△ ANB 中,∠ NBA +∠ NAB = 90° .MNO B图 5NPDOB图 6数学参考答案第 3 页共 6 页∴∠ MBN +∠ MBA+∠ NAB=90° .即∠ MCP +∠ MBA+∠ NAB=90° .⋯⋯⋯⋯⋯⋯11 分方法二:如7,接 MO , OP,NO, BN.∵P 是 MN 中点,又∵ OM =ON,∴OP⊥ MN ,⋯⋯⋯⋯⋯⋯ 6 分NPM1且∠ MOP =∠ MON .∵MC ⊥ AB,∴∠ MCO =∠ MPO = 90° . ∴OM 的中点 Q,QM = QO= QC= QP.∴点 C,P 在以 OM 直径的上 .·QAC O B图 7⋯⋯⋯⋯⋯⋯8 分1在中,∠ MCP =∠ MOP =∠ MQP .又∵∠ MOP =12∠MON ,1∴∠ MCP =∠ MON .在半 O 中,∠ NBM =12∠ MON .∴∠ MCP =∠ NBM .⋯⋯⋯⋯⋯⋯10分∵AB 是直径,∴∠ ANB= 90°.∴在△ ANB 中,∠ NBA +∠ NAB= 90° .∴∠ NBM +∠ MBA+∠ NAB=90° .即∠ MCP +∠ MBA+∠ NAB=90° .⋯⋯⋯⋯⋯⋯11分25. (本分14 分)( 1)(本小分 3 分)解:把( 1,- 1)代入 y= x2+ bx+ c,可得 b+ c=- 2,⋯⋯⋯⋯⋯⋯ 1 分又因 b- c= 4,可得 b= 1, c=- 3.⋯⋯⋯⋯⋯⋯3分( 2)(本小分 4 分)解:由 b+ c=- 2,得 c=- 2- b.于 y= x2+ bx+ c,当 x=0 , y=c=- 2- b.抛物的称直x=-b . 2所以 B( 0,- 2- b), C(-b2, 0) .因 b> 0,数学参考答案第 4 页共6页所以 OC = b, OB = 2+ b.⋯⋯⋯⋯⋯⋯ 5 分2当 k =3,由 OC = 3OB 得 b = 3( 2+ b ),此 b =- 6< 0 不合 意 .4 4 2 4所以 于任意的 0< k < 1,不一定存在 b ,使得 OC =k · OB . ⋯⋯⋯⋯⋯⋯ 7 分( 3)(本小 分 7 分)解:方法一:由平移前的抛物 y = x 2+ bx + c ,可得 b b 2 b b 2y =( x + 2) 2-4 + c ,即 y =( x +2) 2- 4 - 2- b.因 平移后 A ( 1,- 1)的 点 A 1( 1- m , 2b - 1)可知,抛物 向左平移m 个 位 度,向上平移2b 个 位 度 .bb 2平移后的抛物 解析式y =( x + 2+ m ) 2- 4 - 2-b + 2b. ⋯⋯⋯⋯⋯⋯ 9 分即 y =( x + b+m ) 2-b 2-2+ b.24把( 1,- 1)代入,得( 1+b+ m ) 2- b 2- 2+ b =- 1.2 42( 1+b 2+ m )2= b4 - b + 1.( 1+b+ m ) 2=( b -1) 2. 2 2所以 1+ b+ m =±( b- 1) .2 2当 1+b2+ m = b2- 1 , m =- 2(不合 意,舍去) ;当 1+ b + m =-( b- 1) , m =- b. ⋯⋯⋯⋯⋯⋯ 10 分2 2因 m ≥- 32,所以 b ≤ 32.所以 0< b ≤3.⋯⋯⋯⋯⋯⋯ 11 分2所以平移后的抛物 解析式y =( x - b) 2-b 2-2+ b.24即 点 (b b 2⋯⋯⋯⋯⋯⋯ 12 分,-- 2+ b ).24p =-b 2- 2+ b ,即 p =- 1( b -2) 2- 1.4 4因 -14< 0,所以当b <2 , p 随 b 的增大而增大 .3因 0< b ≤ ,数学参考答案 第 5 页共 6 页所以当 b = 3 , p 取最大 -17. ⋯⋯⋯⋯⋯⋯ 13 分216此 ,平移后抛物 的 点所能达到的最高点坐 (3,- 17) .⋯⋯⋯⋯⋯⋯ 14 分416方法二: 因 平移后A ( 1,- 1)的 点A 1( 1- m , 2b - 1)可知,抛物 向左平移 m 个 位 度,向上平移 2b 个 位 度 .由平移前的抛物y = x 2+ bx + c ,可得y =( x + b) 2- b 2+ c ,即 2 4平移后的抛物 解析式 2y =( x +b 2) 2- b4 - 2- b. y =( x + b+ m ) 2- b 2- 2-b + 2b.⋯⋯⋯⋯⋯⋯ 9 分2 4即 y =( x + b+m ) 2-b 2-2+ b.24把( 1,- 1)代入,得bb 2( 1+ + m ) 2-- 2+ b =- 1.2 4可得( m + 2)( m + b )= 0.所以 m =- 2(不合 意,舍去)或m =- b.⋯⋯⋯⋯⋯⋯ 10 分33 因 m ≥- 2,所以 b ≤ 2.所以 0< b ≤3.⋯⋯⋯⋯⋯⋯ 11 分2所以平移后的抛物 解析式y =( x - b) 2-b 2-2+ b.2 4即 点 (b b 2⋯⋯⋯⋯⋯⋯ 12 分,-- 2+ b ).24p =-b 2- 2+ b ,即 p =- 1( b -2) 2- 1.4 4因 -14< 0,所以当 b <2 , p 随 b 的增大而增大 .因 0< b ≤3,2所以当 b = 3, p 取最大 -17. ⋯⋯⋯⋯⋯⋯ 13 分216此 ,平移后抛物 的 点所能达到的最高点坐 (3,- 17) .⋯⋯⋯⋯⋯⋯ 14 分416数学参考答案 第 6 页共 6 页。
厦门市初三质检数学

2021年福建省厦门市初三下数学第一次质检诊断卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)﹣的倒数为()A.B.2C.﹣2D.﹣12.(4分)二元一次方程组的解是()A.B.C.D.3.(4分)下列各式计算正确的是()A.﹣=B.(a3b)2=a6b2C.﹣=D.a9÷a3=a34.(4分)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A.1B.C.D.5.(4分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆6.(4分)如图,过直线l1外一点P作它的平行线l2,其作图依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行7.(4分)已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是()A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c8.(4分)某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,共有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:,则方案③中被墨水污染的部分应该是()A.甲乙合作了4天B.甲先做了4天C.甲先做了工程的D.甲乙合作了工程的9.(4分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.210.(4分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1二.填空题(共6小题,满分20分)11.(4分)如图,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是.12.(4分)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为.13.(4分)已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为.14.(4分)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则的值为.15.(4分)观察分析下列方程:①x+=3;②x+=5;③x+=7.请利用它们所蕴含的规律,求关于x的方程x+=2n+5(n为正整数)的根,你的答案是.16.计算:(15y2﹣5y)÷5y=.三.解答题(共9小题,满分86分)17.(12分)(1)计算:(π﹣2020)0﹣+4sin45°﹣()﹣1.(2)解不等式组:,并把不等式组的解集表示在如图的数轴上.18.(8分)先化简,再求值:(﹣)÷,其中a=2sin60°+1.19.(8分)如图,四边形ABCD中,点E在边AD上,∠BCE=∠ACD,∠BAC=∠D,BC =CE,求证:∠CAD=∠D.20.(8分)如图,已知四边形ABCD是矩形.(1)请用直尺和圆规在边AD上作点E,使得EB=EC.(保留作图痕迹)(2)在(1)的条件下,若AB=4,AD=6,求EB的长.21.(8分)已知在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,关于x的方程a(1﹣x2)+2bx+c(1+x2)=0有两个相等实根,且3c=a+3b(1)试判断△ABC的形状;(2)求sin A+sin B的值.22.(8分)对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m 为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.23.(11分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A 、B 两种型号车的进货和销售价格如表:A 型车B 型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240024.(11分)如图,在正方形ABCD 中,AB =4,点E 在对角线BD 上,△ABE 的外接圆交BC 于点F .连接AF 交BD 于点G .(1)求证:AF =AE ;(2)若FH 是该圆的切线,交线段CD 于点H ,且FH =FG ,求BF 的长.25.(12分)已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,顶点为C ,且△ABC 为等腰直角三角形.(1)当A (﹣1,0),B (3,0)时,求a 的值;(2)当b =﹣2a ,a <0时.①求该二次函数的解析式(用只含a 的式子表示);②在﹣1≤x ≤3范围内任取三个自变量x 1,x 2,x 3,所对应的三个函数值分别为y 1,y 2,y 3,若以为y 1,y 2,y 3为长度的三条线段能围成三角形,求a 的取值范围.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)﹣的倒数为()A.B.2C.﹣2D.﹣1【解答】解:∵(﹣)×(﹣2)=1,∴﹣的倒数是﹣2.故选:C.2.(4分)二元一次方程组的解是()A.B.C.D.【解答】解:,①+②得,3x=3,解得x=1,把x=1代入①得,1+y=2,解得y=1,所以,方程组的解是.故选:B.3.(4分)下列各式计算正确的是()A.﹣=B.(a3b)2=a6b2C.﹣=D.a9÷a3=a3【解答】解:A、﹣,无法计算,故此选项错误;B、(a3b)2=a6b2,故此选项正确;C、﹣=,故此选项错误;D、a9÷a3=a6,故此选项错误.故选:B.4.(4分)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A.1B.C.D.【解答】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝下的概率是.故选:D.5.(4分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆【解答】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.∵四边形ABEF向右平移可以与四边形EFDC重合,∴平行四边形ABCD是平移重合图形,故选:A.6.(4分)如图,过直线l1外一点P作它的平行线l2,其作图依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行【解答】解:由图可知,直线l1和直线l2之间的内错角相等,则可以判定这两条直线平行,故选:D.7.(4分)已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是()A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c【解答】解:A、例如a=5,b=1,c=2,满足条件a>b+c,但是不满足结论c<0,故本选项错误;B、例如a=5,b=8,c=﹣6,满足条件a>b+c,c<0,但是不满足结论a>b,故本选项错误;C、例如a=5,b=1,c=2,满足条件a>b,a>b+c,但是不满足结论c<0,故本选项错误;D、∵c<0,∴a+c<a,即a>a+c,∵a>b,∴a+c>b+c,∴a>b+c,故本选项正确.故选:D.8.(4分)某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,共有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:,则方案③中被墨水污染的部分应该是()A.甲乙合作了4天B.甲先做了4天C.甲先做了工程的D.甲乙合作了工程的【解答】解:∵某同学设规定的工期为x天,根据题意列出了方程:,∴甲工作了4天,乙工作了x天,即甲乙合作了4天,剩下的工程由乙队单独做,也正好如期完工,∴可知在③应填入的内容为:甲乙合作了4天,故选:A.9.(4分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2【解答】解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S扇形BAC==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D.10.(4分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1【解答】解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,此不等式无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故选:B.二.填空题(共6小题,满分20分)11.(4分)如图,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是.【解答】解:∵在△ABC中,∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==.故答案为.12.(4分)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为70°.【解答】解:∵∠B=40°,∠C=30°,∴∠CAD=∠B+∠C=70°,故答案为:70°.13.(4分)已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为25.【解答】解:∵一次函数y=x+5的图象经过点P(a,b)和Q(c,d),∴点P(a,b)和Q(c,d)满足一次函数解析式y=x+5,∴b=a+5,d=c+5,∴a﹣b=﹣5,c﹣d=﹣5,∴a(c﹣d)﹣b(c﹣d)=(a﹣b)(c﹣d)=(﹣5)×(﹣5)=25.故答案是:25.14.(4分)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则的值为2.【解答】解:∵BC∥DE,∴△ADE∽△ABC,∴=,即=,∴AB•DE=16,∵AB+DE=10,∴AB=2,DE=8,∴,故答案为:2.15.(4分)观察分析下列方程:①x+=3;②x+=5;③x+=7.请利用它们所蕴含的规律,求关于x的方程x+=2n+5(n为正整数)的根,你的答案是x=n+4或x=n+5.【解答】解:x+=3,解得:x=2或x=1;x+=5,解得:x=2或x=3;x+=7,解得:x=3或x=4,得到规律x+=m+n的解为:x=m或x=n,所求方程整理得:x﹣4+=2n+1,根据规律得:x﹣4=n或x﹣4=n+1,解得:x=n+4或x=n+5.故答案为:x=n+4或x=n+516.计算:(15y2﹣5y)÷5y=3y﹣1.【解答】解:原式=15y2÷5y﹣5y÷5y=3y﹣1,故答案为:3y﹣1.三.解答题(共9小题,满分86分)17.(12分)(1)计算:(π﹣2020)0﹣+4sin45°﹣()﹣1.(2)解不等式组:,并把不等式组的解集表示在如图的数轴上.【解答】解:(1)原式=1﹣2+4×﹣2=1﹣2+2﹣2=﹣1;(2),解不等式①,得x≤2.解不等式②,得x>﹣3.所以该不等式组的解集是﹣3<x≤2.表示在数轴上为:.18.(8分)先化简,再求值:(﹣)÷,其中a=2sin60°+1.【解答】解:原式=•=,∵a=2sin60°+1,∴a=+1,∴原式==﹣.19.(8分)如图,四边形ABCD中,点E在边AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE,求证:∠CAD=∠D.【解答】证明:∵∠BCE=∠ACD,∴∠BCE﹣∠ACE=∠ACD﹣∠ACE,即∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS),∴AC=DC,∴∠CAD=∠D.20.(8分)如图,已知四边形ABCD是矩形.(1)请用直尺和圆规在边AD上作点E,使得EB=EC.(保留作图痕迹)(2)在(1)的条件下,若AB=4,AD=6,求EB的长.【解答】解:(1)如图所示,点E即为所求;(2)连接EB,EC,由(1)知EB=EC,∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC=4,∴Rt△ABE≌Rt△DCE(HL),∴AE=DE=AD=3,在Rt△ABE中,EB===5.21.(8分)已知在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,关于x的方程a(1﹣x2)+2bx+c(1+x2)=0有两个相等实根,且3c=a+3b(1)试判断△ABC的形状;(2)求sin A+sin B的值.【解答】解:(1)方程整理为(c﹣a)x2+2bx+a+c=0,根据题意得△=4b2﹣4(c﹣a)(a+c)=0,∴a2+b2=c2,∴△ABC为直角三角形;(2)∵a2+b2=c2,3c=a+3b∴(3c﹣3b)2+b2=c2,∴(4c﹣5b)(c﹣b)=0,∴4c=5b,即b=c,∴a=3c﹣3b=c∵sin A=,sin B=,∴sin A+sin B===.22.(8分)对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m 为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.【解答】解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.23.(11分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400【解答】解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵50﹣m≥0,∴m≤50,∴16≤m≤50∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.24.(11分)如图,在正方形ABCD中,AB=4,点E在对角线BD上,△ABE的外接圆交BC于点F.连接AF交BD于点G.(1)求证:AF=AE;(2)若FH是该圆的切线,交线段CD于点H,且FH=FG,求BF的长.【解答】(1)证明:∵四边形ABCD为正方形,∴∠1=∠2=45°,∠ABC=90°,∴=,AF为直径,∴AE=FE,∠AEF=90°,∴△AEF为等腰直角三角形,∴AF=AE;(2)解:∵FH是该圆的切线,∴AF⊥FH,∴∠3+∠4=90°,∵∠3+∠5=90°,∴∠5=∠4,∴Rt△ABF∽Rt△FCH,∴=,∵FH=GF,∴=,∵AD∥BF,∴△ADG∽△FGB,∴=,即=+1,∴=+1,而FC=4﹣BF,∴=+1,整理得BF2+4BF﹣16=0,解得BF=﹣2+2或BF=﹣2﹣2(舍去),即BF的长为2﹣2.25.(12分)已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,顶点为C,且△ABC为等腰直角三角形.(1)当A(﹣1,0),B(3,0)时,求a的值;(2)当b=﹣2a,a<0时.①求该二次函数的解析式(用只含a的式子表示);②在﹣1≤x≤3范围内任取三个自变量x1,x2,x3,所对应的三个函数值分别为y1,y2,y3,若以为y1,y2,y3为长度的三条线段能围成三角形,求a的取值范围.【解答】解:(1)∵A(﹣1,0),B(3,0),∴抛物线对称轴为直线x=1,AB=4,设对称轴交AC于点H,∵△ABC为等腰直角三角形,∴CH=2,∴当抛物线开口向上时,点C坐标为(1,﹣2),设y=a(x﹣1)2﹣2,把B(3,0)代入,可得a=,∴当抛物线开口向下时,点C坐标为(1,2),设y=a(x﹣1)2+2,把B(3,0)代入,可得a=﹣∴a的值为或﹣;(2)①当b=﹣2a时,y=ax2﹣2ax+c=a(x﹣1)2+c﹣a ∴点C(1,c﹣a),∴点B(1+c﹣a,0),∴a(c﹣a)2+c﹣a=0,∴(c﹣a)(ac﹣a2+1)=0,∵c﹣a≠0,∴ac﹣a2+1=0,∴c=a﹣,∴y=a(x﹣1)2﹣,②∵﹣1≤x≤3,a<0,∴当x=﹣1或3时,y有最小值为4a﹣,当x=1时,y有最大值﹣,若以y1,y2,y3为长度的三条线段能围成三角形,则2(4a﹣)>﹣,整理的8a2﹣1<0,∴﹣<a<0.。
2024年福建省厦门一中中考数学质检试卷及答案解析

2024年福建省厦门一中中考数学质检试卷一.选择题(本大题有10小题,每小题4分,共40分)1.(4分)目前代表华为手机最强芯片的麒麟990处理器采用0.0000007cm工艺制程,数0.0000007用科学记数法表示为()A.7×10﹣6B.7×10﹣7C.0.7×10﹣6D.0.7×10﹣72.(4分)如图是由长方体和圆柱体组成的几何体,则它的左视图是()A.B.C.D.3.(4分)下列算式,能按照“底数不变,指数相乘”计算的是()A.a2+a B.a2•a C.(a3)2D.a3÷a4.(4分)如图,在Rt△ABC中,AB=8,∠A=30°,D、E分别为AB、AC的中点,则DE的长为()A.2B.3C.4D.5.(4分)下表是某社团20名成员的年龄分布统计表,数据不小心被撕掉一块,仍能够分析得出关于这20名成员年龄的统计量是()A.平均数B.方差C.中位数D.众数6.(4分)如图,△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转90°得对应△DEC,连接BE,则∠BED的大小为()A.45°B.30°C.22.5°D.15°7.(4分)如图,四边形ABCD内接于⊙O,⊙O的半径为4,∠D=120°,则的长是()A.πB.C.D.4π8.(4分)已知点M(6,a﹣3),N(﹣2,a),P(2,a)在同一个函数图象上,则这个函数图象可能是()A.B.C.D.一.选择题(本大题有10小题,每小题4分,共40分)9.(4分)小明按照以下步骤画线段AB的三等分点:画法图形(1)以A为端点画一条射线;(2)用圆规在射线上依次截取3条等长线段AC、CD、DE,连接BE;(3)过点C、D分别画BE的平行线,交线段AB于点M、N.M、N就是线段AB的三等分点.这一画图过程体现的数学依据是()A.两直线平行,同位角相等B.两条平行线之间的距离处处相等C.垂直于同一条直线的两条直线平行D.两条直线被一组平行线所截,所得的对应线段成比例10.(4分)抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(m﹣1,y1),N(m+1,y2)为图形G 上两点,若y1<y2,则m的取值范围是()A.m<﹣1或m>0B.<m<C.0≤m<D.﹣1<m<1二.填空题(本大题有6小题,每小题4分,共24分)11.(4分)因式分解:x2﹣2x+1=.12.(4分)二次函数y=2(x﹣1)2+3的图象的对称轴是直线.13.(4分)某校为了解该校1200名学生参加家务劳动的情况,随机抽取40名学生,调查了他们的周家务劳动时间并制作成频数分布直方图(如图),那么估计该校周家务劳动时间不少于2小时的学生大约有名.14.(4分)某手表厂抽查了10只手表的日走时误差,数据如表所示(单位:s):日走时误差0123只数3421则这10只手表的平均日走时误差是s.15.(4分)如图,在△ABC中,∠ACB=90°,AC=3,AB=5,AB的垂直平分线DE交AB于点D,交BC于点E,则CE的长等于.16.(4分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为.三.解答题(本大题有9小题,共86分)17.(8分)解不等式组:,并将解集在数轴上表示出来.18.(10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,连接DE、BF.求证:△ADE≌△CBF.19.(8分)先化简,再求值:,其中.20.(10分)如图,AB是⊙O的直径,AD平分∠BAC,交⊙O于点D,过点D作直线DE⊥AC,交AC 的延长线于点E,交AB的延长线于点F,(1)求证:EF是⊙O的切线;(2)过点O作OH⊥AD,交AD于点H,连接BD,若BD=6,AH=3,求⊙O的半径长.21.(10分)如图,已知∠MON=90°,A,B为射线ON上两点,且OB<BA.(1)求作菱形ABCD,使得点C在射线OM上(尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接AC,OD,当△OAC∽△OCB时,求tan∠ODC的值.22.(10分)一副扑克牌(大、小王除外)有四种花色,且每种花色皆有13种点数,分别为2、3、4、5、6、7、8、9、10、J、Q、K、A,共52张.某扑克牌游戏中,玩家可以利用“牌值”来评估尚未发出的牌值点数大小.“牌值”的计算方式为:未发牌时先设“牌值”为0;若发出的牌点数为2至10时,表示发出点数小的牌,则“牌值”加2;若发出的牌点数为J、Q、K、A时,表示发出点数大的牌,则“牌值”减2.例如:从该副扑克牌发出了6张牌,点数依序为3、A、8、9、Q、5,则此时的“牌值”为0+2﹣2+2+2﹣2+2=4.请根据上述信息回答下列问题:(1)若该副扑克牌发出了1张牌,求此时的“牌值”为﹣2的概率;(2)已知该副扑克牌已发出32张牌,且此时的“牌值”为24.若剩下的牌中每一张牌被发出的机会皆相等,求下一张发出的牌是点数大的牌的概率.23.(10分)小明发现用吸管吹气,能发出不同的音调.通过查阅资料,他得知:用吸管吹气时,吸管内部的空气振动导致声音产生,而吸管的长度影响了空气振动的频率,并最终决定了音调的不同,所以发出不同的音调.小明和同学动手试验,并按以下步骤操作:①将若干根同规格的吸管剪成不同的长度;②用同样的力气通过吸管吹气,借助仪器记录下吸管中空气振动的频率;③将吸管的长度和相应吸管中空气振动的频率分别记为x(mm)和y(kHz),对收集到的数据检查、整理;④将整理所得的数据对应的点在平面直角坐标系中描出,绘制成如图所示的y与x对应关系的散点图.(1)表1记录了收集到的四组(A、B、C、D)数据,同学们在仔细检查、整理数据时,发现这四组数据中的一组有错,请直接写出有出错的这组数据(填写组别代号),不必说明理由;(表1)数据组别A B C D吸管的长度x(mm)6080100100空气振动的频率y(kHz) 1.43 1.080.860.42(2)根据散点图,同学们猜想y与x的对应关系符合初中阶段已学过的一种函数关系,并将由每组数据计算所得的系数(精确到个位)作为y与x的对应关系中的系数.小明根据表2的数据剪出合适长度的吸管,成功地吹奏出la的音.(表2)音调do re mi fa sol la si 频率y(kHz)0.260.290.330.350.390.440.49你知道小明剪出的吸管长度是多少(精确到个位)?并说明你的理由.24.(10分)抛物线y=﹣ax2+3ax+4a(a>0)与y轴交于点C,与x轴交于点A、B,CD平行于x轴交抛物线于另一点D,点M是x轴上一动点,连接MD,过点M作MK⊥MD交y于点K(点K在线段OC 上,不与点O重合),(1)求A、B、D三点的坐标(D点坐标用含a的式子表示).(2)若点K的坐标为,则线段OB存在唯一一点M,①求抛物线的解析式②如图2,连接BC,点P为直线BC上方抛物线上的动点,过点P作PQ⊥BC于点Q,连接CP,是否存在点P使△PCQ中某个角恰好等于∠ABC的2倍?若存在,请求出点P的横坐标,若不存在,请说明理由.25.(10分)在Rt△EBC中,∠EBC=90°,点A在EB边上.以AC为斜边作Rt△DAC,使得B、D两点在直线AC的异侧,且∠DAC=∠BEC,AD与EC交于点F.(1)求证:∠DCF=∠ACB;(2)连接DE,若∠BEC=45°,判断DE与AC的数量关系;(3)若CA=BE,过点A作AH⊥EC,垂足为H.求证:EH=AF.2024年福建省厦门一中中考数学质检试卷(3月份)参考答案与试题解析一.选择题(本大题有10小题,每小题4分,共40分)1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000007=7×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【分析】根据左视图是从左面看到的图形求解即可.【解答】解:从左边看,看到的图形分为上下两部分,下面一部分是一个长方形,上面一部分左上角有一个小长方形,即看到的图形如下:故选:B.【点评】本题主要考查了简单组合体的三视图,解题的关键是具有一定的空间概念.3.【分析】直接利用同底数幂的乘除运算、幂的乘方运算法则判断得出答案.【解答】解:能按照“底数不变,指数相乘”计算的是(a3)2.故选:C.【点评】此题主要考查了幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.4.【分析】根据含30度角的直角三角形的性质得到,再由三角形中位线定理可得.【解答】解:在Rt△ABC中,AB=8,∠A=30°,∠C=90°,∴,∵D、E分别为AB、AC的中点,∴DE是△ABC的中位线,∴,故选:A.【点评】本题主要考查了三角形中位线定理,含30度角的直角三角形的性质,解题的关键是掌握三角形中位线定理.5.【分析】根据平均数、方差、中位数和众数的定义即可得出答案.【解答】解:由于13岁和14岁的人数不确定,所以平均数、方差和众数就不确定,因为该组数据有20个,中位数为第10个和11个的平均数:=12,所以仍能够分析得出关于这20名成员年龄的统计量是中位数.故选:C.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6.【分析】由旋转得CE=CB,∠BCE=90°,∠DEC=∠ABC=30°,所以∠CEB=∠CBE=45°,则∠BED=∠CEB﹣∠DEC=15°,于是得到问题的答案.【解答】解:∵将△ABC绕点C顺时针旋转90°得对应△DEC,∴CE=CB,∠BCE=90°,∠DEC=∠ABC=30°,∴∠CEB=∠CBE=45°,∴∠BED=∠CEB﹣∠DEC=45°﹣30°=15°,故选:D.【点评】此题重点考查旋转的性质、等腰三角形的性质、三角形内角和定理等知识,证明CE=CB,∠BCE=90°是解题的关键.7.【分析】根据∠D=120°得到∠B=60°,从而得到∠O=2∠B=120°,结合求解即可得到答案.【解答】解:∵四边形ABCD内接于⊙O,∠D=120°,∴∠B=60°,∵,∴∠O=2∠B=120°,∴,故选:C.【点评】本题考查弧长的计算,关键是掌握圆内接四边形对角互补及扇形弧长公式.8.【分析】由点N(﹣2,a),P(2,a)关于y轴对称,可排除选项B、C,再根据M(6,a﹣3),N(2,a),可知在y轴的右侧,y随x的减小而减小,从而排除选项D.【解答】解:由N(﹣2,a),P(2,a)在同一个函数图象上,可知图象关于y轴对称,故选项B、C 不符合题意;由M(6,a﹣3),N(2,a),可知在y轴的右侧,y随x的减小而减小,故选项D不符合题意,选项A 符合题意;故选:A.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.一.选择题(本大题有10小题,每小题4分,共40分)9.【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵CM∥DN∥BE,∴AC:CD:DE=AM:MN:NB,∵AC=CD=DE,∴AM=MN=NB,∴这一画图过程体现的数学依据是两条直线被一组平行线所截,所得的对应线段成比例,故选:D.【点评】本题考查的是平行线分线段成比例定理,尺规作图,掌握平行线分线段成比例定理是解题的关键.10.【分析】通过计算可知,(m﹣1,1),(m+1,1)为抛物线y=﹣x2+2mx﹣m2+2上关于对称轴对称的两点,根据y轴与(m﹣1,1),(m+1,1)的相对位置分三种情形:①若m﹣1≥0,即(m﹣1,1)和(m+1,1)在y轴右侧(包括(m﹣1,1)在y轴上),②当m+1≤0,即(m﹣1,1)和(m+1,1)在y轴左侧(包括(m+1,1)在y轴上),③当m﹣1<0<m+1,即(m﹣1,1)在y轴左侧,(m+1,1)在y 轴右侧时,分别讨论求解即可.【解答】解:在y=﹣x2+2mx﹣m2+2中,令x=m﹣1,得y=﹣(m﹣1)2+2m(m﹣1)﹣m2+2=1,令x=m+1,得y=﹣(m+1)2+2m(m+1)﹣m2+2=1,∴(m﹣1,1)和(m+1,1)是关于抛物线y=﹣x2+2mx﹣m2+2对称轴对称的两点,①若m﹣1≥0,即(m﹣1,1)和(m+1,1)在y轴右侧(包括(m﹣1,1)在y轴上),则点(m﹣1,1)经过翻折得M(m﹣1,y1),点(m+1,1)经过翻折得N(m+1,y2),如图:由对称性可知,y1=y2,∴此时不满足y1<y2;②当m+1≤0,即(m﹣1,1)和(m+1,1)在y轴左侧(包括(m+1,1)在y轴上),则点(m﹣1,1)即为M(m﹣1,y1),点(m+1,1)即为N(m+1,y2),∴y1=y2,∴此时不满足y1<y2;③当m﹣1<0<m+1,即(m﹣1,1)在y轴左侧,(m+1,1)在y轴右侧时,如图:此时M(m﹣1,1),(m+1,1)翻折后得N,满足y1<y2;由m﹣1<0<m+1得:﹣1<m<1,故选:D.【点评】本题属于二次函数综合题,考查了二次函数的性质,轴对称翻折变换等知识,解题的关键是学会用分类讨论的思想思考问题,正确作出图形是解决问题的关键.二.填空题(本大题有6小题,每小题4分,共24分)11.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣1)2.故答案为:(x﹣1)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.12.【分析】由抛物线解析式可求得其对称轴.【解答】解:∵y=2(x﹣1)2+3,∴抛物线对称轴为x=1,故答案为:x=1.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k 中,对称轴为x=h,顶点坐标为(h,k).13.【分析】用总人数乘以样本中劳动时间不少于2小时的学生人数所占比例即可.【解答】解:估计该校周家务劳动时间不少于2小时的学生大约有1200×=780(名),故答案为:780.【点评】本题主要考查频数分布直方图和用样本估计总体,从统计图中得到必要的信息是解决问题的关键.14.【分析】利用加权平均数的计算方法进行计算即可.【解答】解:这10只手表的平均日走时误差是:=1.1(s);故答案为:1.1.【点评】本题考查加权平均数的意义和计算方法,掌握计算方法是正确计算的前提.15.【分析】连接AE,由垂直平分线的性质可得AE=BE,利用勾股定理可得BC=4,设CE的长为x,则BE=4﹣x,在△ACE中利用勾股定理可得x的长,即得CE的长.【解答】解:连接AE,∵DE为AB的垂直平分线,∴AE=BE,∵在△ABC中,∠ACB=90°,AC=3,AB=5,由勾股定理得BC=4,设CE的长为x,则BE=AE=4﹣x,在Rt△ACE中,由勾股定理得:x2+32=(4﹣x)2,解得:x=,故答案为:.【点评】本题主要考查了垂直平分线的性质和勾股定理,利用方程思想是解答此题的关键.16.【分析】由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=3,根据OA=OB可得答案.【解答】解:如图,∵双曲线y=(x>0)经过点D,=k=,∴S△ODF=2S△ODF=,即OA•BE=,则S△AOB∴OA•BE=3,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=3,故答案为:3.【点评】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.三.解答题(本大题有9小题,共86分)17.【分析】先求出不等式的解集,再根据不等式的解集求出不等式组的解集即可.【解答】解:∵∴解不等式①得:x≥﹣2解不等式②得:x<3,∴不等式组的解集为﹣2≤x<3,在数轴上表示解集,如图所示:【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集得出不等式组的解集是解此题的关键.18.【分析】根据平行四边形的性质可得∠A=∠C,AD=BC,CD=AB,进而可得CF=AE,然后利用SAS 定理判定△ADE≌△CBF.【解答】证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,CD=AB,∵E、F分别为边AB、CD的中点,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).【点评】此题主要考查了平行四边形的性质,全等三角形的判定与性质;熟练掌握平行四边形的性质,熟记全等三角形的判定方法是解决问题的关键.19.【分析】先把小括号内的式子通分,再把除法变成乘法后约分化简,最后代值计算即可.【解答】解:===,当时,原式=.【点评】本题主要考查了分式的化简求值,分母有理化,熟练掌握分式的运算法则是关键.20.【分析】(1)连接OD,根据垂直定义可得∠E=90°,再根据角平分线的定义和等腰三角形的性质可得EA∥DO,然后利用平行线的性质可得∠E=∠ODF=90°,即可解答;(2)根据垂径定理可得AD=6,然后根据直径所对的圆周角是直角可得∠ADB=90°,从而在Rt △ABD中,利用勾股定理求出AB的长,即可解答.【解答】(1)证明:连接OD,∵DE⊥AC,∴∠E=90°,∵AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴EA∥DO,∴∠E=∠ODF=90°,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:∵OH⊥AD,AH=3,∴AD=2AH=6,∵AB是⊙O的直径,∴∠ADB=90°,∵BD=6,∴AB===12,∴⊙O的半径长为6.【点评】本题考查了切线的判定与性质,圆周角定理,勾股定理,垂径定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.21.【分析】(1)根据题目的要求作出图形即可;(2)根据相似三角形的性质得到∠OCB=∠OAC,根据菱形的性质得到BC=AB,根据三角函数的定义即可得到结论.【解答】解:(1)如图所示,菱形ABCD即为所求;(2)∵△OAC∽△OCB,∴∠OCB=∠OAC,∵四边形ABCD是菱形,∴BC=AB,∴∠BAC=∠ACB,∠DCA=∠CAB,∴∠BCO=∠ACB=∠ACD,∵CD∥OA,∴∠DCO=90°,∴∠BCO=30°,设BC=CD=a.则OC=a,∴tan∠ODC===.【点评】本题考查了相似三角形的判定,菱形的判定和性质,三角函数的定义,正确地作出图形是解题的关键.22.【分析】(1)利用「牌值」的计算方式解答即可;(2)利用方程组的思想求得已发出的28张牌中的点数大的张数与点数小的张数,从而得到剩余的牌中点数大的张数与点数小的张数,再利用计算概率的方法解答即可.【解答】解:(1)因为该副扑克牌中,点数大的牌共有16张,且,所以“牌值”为﹣2的概率是;(2)设该副扑克牌已发出的32张牌中点数大的张数为x张,依题意,得2(32﹣x)﹣2x=24,解得x=10,∴已发出的32张牌中点数大的张数为10张,∴剩余的20张牌中点数大的张数为6张,∵剩下的牌中每一张牌被发出的机会皆相等,∴下一张发出的牌是点数大的牌的概率是.【点评】本题主要考查了概率公式,用样本估计总体的思想方法,事件概率的计算方法,本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.23.【分析】(1)根据表中数据,可发现x与y的乘积为定值约等于86,从而可得答案;(2)根据x与y都是正数,并观察图象可知,可得这条曲线是反比例函数的一支,根据xy≈86,可得x与y的函数解析式;再将表2中la的音频率y代入即可解答.【解答】解:(1)A:x1•y1=60×1.43≈86,B:x2⋅y2=80×1.08≈86,C:x3⋅y3=100×0.86=86,D:x4•y4=100×0.42=42,所以,可能出错的为D组.故答案为:D.(2)根据给定图象可知,y与x的对应关系可以用反比例函数来确定,所以可设,依据表1中A、B、C三组数据求得:k1=x1•y1=60×1.43≈86,k2=x2⋅y2=80×1.08≈86,k3=x3⋅y3=100×0.86=86,∴k=86,∴,当y=0.44时,.答:小明剪出的吸管长度是195mm.【点评】本题考查了反比例函数的应用,解答本题的关键是仔细观察表格,得出x与y的积为定值,从而得出函数关系式.24.【分析】(1)分别令x=0和y=0可得A,B,C三点的坐标,将抛物线的解析式配方成顶点式可知对称轴是:,根据对称性可得点D的坐标;(2)①先作辅助线,构建相似三角形,证明△KOM∽△MED,则,列方程,根据Δ=0,可得a的值,求出抛物线的解析式,②当△PCQ中某个角恰好等于∠ABC的2倍时,存在两种情况:(i)当∠PCB=2∠ABC时,延长PC交x轴于F,确定点F的坐标,设FC的解析式为:y=kx+b,联立方程组可得P的横坐标;(ii)当∠CPQ=2∠ABC时,作CF=FB,证明△COF∽△CQP和△CGQ∽△QHP,表示P的坐标,代入抛物线的解析式中可得结论.【解答】解:(1)当x=0时,y=4a,∴C(0,4a),当y=0时,﹣ax2+3ax+4a=0,解得:x1=4,x2=﹣1,∴A(﹣1,0),B(4,0),又∵CD∥y轴,∴,解得,x1=3,x2=0,∴D(3,4a);(2)①∵点是线段OB存在唯一一点M,如图2,过D作DE⊥x轴于E,设OM=m,则EM=3﹣m,∵∠OKM=∠DME,∠KOM=∠MED=90°,∴△KOM∽△MED,∴,∴,∴2m2﹣6m+9a=0,∵只有一个K点,所以方程只有一个解,∴Δ=36﹣4×2×9a=0,∴,∴,②(i)当∠PCB=2∠ABC时,延长PC交x轴于F,如图3,∵CD∥AB,∴∠PCD=∠PFB,∠DCB=∠CBF,∵∠PCB=2∠ABC,∠PCD=∠DCB,∴∠PFB=∠CBA,∴CB=CF,∴F(﹣4,0),∵C(0,2),设FC的解析式为:y=kx+b,则,解得:,∴FC的解析式为:,联立,解得:x1=0(舍),x2=2,∴点P的横坐标为2;(ii)当∠CPQ=2∠ABC时,如图4,作CF=FB,设OF=n,∴n2+22=(4﹣n)2,解得,,∵CF=FB,∴∠CBF=∠BCF,∴∠CFO=2∠CBO,∴∠CFO=∠CPQ,∵∠COF=∠CQP=90°,∴△COF∽△CQP,∴,即,过Q作x轴的平行线交y轴于G,同时过P作PH⊥GH于H,∵∠CGQ=∠QHP=90°,∠GCQ=∠PQH,∴△CGQ∽△QHP,∴,设,则,,∴,∴,代入抛物线的解析式中得:,解得:x1=0(舍),,∴P的横坐标为,综上,存在两个点P,点P的横坐标是2或.【点评】本题主要考查了抛物线的对称性,一次函数,根的判别式,相似三角形的判定和性质,解题的关键是添加辅助线,利用抛物线的性质来求解.25.【分析】(1)根据∠E B C=90°,∠A D C=90°得∠,由于∠DAC=∠E,则∠DCA=∠ECB,由此可得出结论;(2)取AC的中点M,连接DM,BM,证明△EDC∽△BMC,得出即可.(3)作△ABC的外接圆⊙O,交CE于H,连接AH,BH,则AC为⊙O的直径,由此得AH⊥EC,∠EBH=∠ACH,由此判定△EBH和△ACF全等,由全等三角形的性质可得出结论.【解答】(1)证明:∵Rt△DAC是以AC为斜边的直角三角形,∴∠ADC=∠EBC=90°,∴∠DAC+∠DCA=90°,∠E+∠ECB=90°,∵∠DAC=∠E,∴∠DCA=∠ECB,即∠DCF+∠ECA=∠ACB+∠ECA,∴∠DCF=∠ACB;(2)解:取AC的中点M,连接DM,BM,∵∠CBE=∠CDA=90°,∠BEC=45°,∴∠DAC=∠DCA=∠BCE=∠BEC=45°,∴△ACD,△BCE,△CDM是等腰直角三角形,∴,∴,∴,由(1)知∠DCF=∠ACB,∴△EDC∽△BMC,∴,∴.(3)证明:作△ABC的外接圆⊙O,交CE于H,连接AH,BH,如图所示:∵∠EBC=90°,∴AC为⊙O的直径,∴∠AHC=90°,即AH⊥EC,∵点B,H都在⊙O上,∵∠EBH=∠ACH,在△EBH和△ACF中,∠EBH=∠ACH,CA=BE,∠DAC=∠E,∴△EBH≌△ACF(ASA),∴EH=AF.【点评】此题主要考查了相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,解直角三角形,直角三角形的性质等知识点,熟练掌握相似三角形的判定和性质,全等三角形的判定和性质是解决问题的关键。
福建省厦门市2020-2021学年九年级上学期质量检测期末数学试题及参考答案

准考证号:_______姓名:_______2020-2021学年(上)厦门市初三年质量检测数学试题友情提示:按答题要求在答题卡规定的位置上作答,在本试卷上答题一律无效. 一、选择题(本大题有10小题,每小题4分,共40分.) 1.有一组数据:1,2,3,3,4.这组数据的众数是( )A .1B .2C .3D .42.下列方程中有两个相等实数根的是( )A .(x -1)(x +1)=0B .(x -1)(x -1)=0C .(x -1)2=4D .x (x -1)=03.不等式组⎩⎨⎧->-≥112x x 的解集是( )A .x >-1B .x >-21C .x ≥-21 D .-1<x ≤-21 4.在图1所示的正方形ABCD 中,点E 在边CD 上,把△ADE 绕点A 顺时针旋转得到△ABF ,∠FAB =20°.旋转角的度数是( ) A .110°B .90°C .70°D .20°5.一个扇形的圆心角是120°,半径为3,则这个扇形的面积为( )A .πB .2πC .3πD .6π6.为解决“在甲、乙两个不透明口袋中随机摸球”的问题,小明画出图2所示的树状图.已知这些球除 颜色外无其他差别,根据树状图,小明从两个口袋 中各随机取出一个球恰好是1个白球和1个黑球的 结果共有( ) A .1种B .2种C .3种D .4种7.如图3,在正六边形 ABCDEF 中,连接BF 、BE ,则关于△ABF外心的位置,下列说法正确的是( ) A .在△ABF 内 B .在△BFE 内 C .在线段BF 上D .在线段BE 上8.有一个人患了流感,经过两轮传染后有若干人被传染上流感.假设在每轮的传染中平均一个人传染了m 个人,则第二轮被传染上流感的人数是( ) A .(m +1)B .(m +1)2C .m (m +1)D .m 2FED CBA图1白球白球黑球红球红球黑球白球红球图2FEDCBA图39.东汉初年我国的《周髀算经》里就有“径一周三”的古率,提出了圆的直径与周长之间存在一定的比例关系.将图4中的半圆狐形铁丝(⌒MN )向右水平拉直(保持M 端不动),根据该古率,与拉直后铁丝( )N 端的位置最接近的是( ) A .点A B .点BC .点CD .点D10.为准备一次大型实景演出,某旅游区划定了边长为12m 的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图5所示),其中O 为中心,A 、B 、C 、D 是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节日演出过程中增开 人工喷泉,喷头位于演出区域东侧,且在中轴线l 上与点O 相距 14m 处.该喷泉喷出的水流落地半径最大为10m ,为避免演员被喷 泉淋湿,需要调整的定位点的个数是 A .1个B .2个C .3个D .4二、填空题(本大题有6小题,每小题4分,共24分)11.投掷一枚质地均匀的正方体骰子,向上一面的点数是1的概率是_______. 12.若x =3是方程x 2-bx +3=0的一个根,则b 的值为_______. 13.抛物线y =3(x -1)2+2的对称轴是_______.14.如图6,AB 是⊙O 的直径,点C 在⌒AB 上,点D 在AB 上,AC=AD ,OE ⊥CD 于E .若∠COD =84°,则∠EOD 的度数是_______.15.在平面直角坐标系中,O 为原点点A 在第一象限,B (23,0)OA=AB ,∠AOB =30°,把△OAB绕点B 顺时针旋转60°得到△MPB ,点O 、A 的对应点分别为M (a ,b )、P (p 、q ),则b -q 的值为_______.16.已知抛物线y=-x 2+6x -5的顶点为P ,对称轴与x 轴交于点A ,N 是PA 的中点,M (m ,n )在抛物线上,M 关于直线l 的对称点为B ,M 关于点N 的对称点为C .当1≤m ≤3时,线段BC 的长随m 的增大而发生的变化是_______. (“变化”是指增减情况及相应m 的取值范围) 三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解方程x 2-2x -5=0. 18.(本题满分8分)如图7,在△ABC 中,AB=AC ,以AB 为直径作⊙O ,过点O 作OD ∥BC 交AC 于D ,∠ODA =45°.求证:AC 是⊙O 的切线.OEDC BA图6图4OD C BA图7先化简,再求值:x x 12+÷⎪⎪⎭⎫ ⎝⎛-+-x x x 2411,其中x =212+. 20.(本题满分8分)2018年某贫困村人均纯收入为3000元,对该村实施精准扶贫后,2020年该村人均纯收入达到5070元,顺利实现脱贫.这两年该村人均纯收入的年平均增长率是多少? 21.(本题满分8分)某批发商从某节能灯厂购进了50盒额定功率为15W 的节能灯.由于包装工人的疏忽,在包装时混进了30W 的节能灯.每盒中混入30W 的节能灯数见表一:表一(1(2)从这50盒中任意抽取一盒,记事件A 为:该盒中没有混入30W 的节能灯.求事件A 的概率.22.(本题满分10分)如图8,菱形ABCD 的对角线AC 、BD 交于点O ,其中BD >AC .把△AOD 绕点O 顺时针旋转得到△EOF (点A 的对应点为E ),旋转角为α(α为锐角),连接DF .若EF ⊥OD , (1)求证:∠EFD=∠CDF;(2)当α=60°时,判断点F 与直线BC 的位置关系,并说明理由.23.(本题满分10分)已知抛物线y =(x -2)(x -b),其中b >2,该抛物线与y 轴交于点A . (1)若点(21b ,0)在该抛物线上,求b 的值; (2))过点A 作平行于x 轴的直线l ,记抛物线在直线l 与x 轴之间的部分(含端点)为图象L ,点M 、N 在直线l 上,点P 、Q 在图象L 上,且P 在抛物线对称轴的左侧.设点P 的横坐标为m ,是否存在以M 、P 、Q 、N 为顶点的四边形是边长为21m +1的正方形?若存在,求出点P 、Q 的坐标;若不存在,请说明理由.OF EDCBA图8某海湾有一座抛物线形拱桥,正常水位时桥下的水面 宽为100m (如图9所示).由于潮汐变化,该海湾涨潮 5h 后达到最高潮位,此最高潮位维持1h ,之后开始 退潮.如:某日16时开始涨潮,21时达到最高潮位, 22时开始退潮.该桥的桥下水位相对于正常水位上涨的高度随涨潮时间t 变化的情况大致如表二所示,(在涨潮的5h 内,该变化关系近似于一次函数)表二 涨潮时间t (单位:h )1 2 3 4 5 6 桥下水位上涨的高度(单位:m )54 58 512 516 4 4(1(2)某日涨潮期间,某船务公司对该桥下水面宽度进行了三次测量,数据如表三所示:表三涨潮时间(单位:h ) 45 25 415 桥下水面宽(单位:m )242023202220过?请说明理由. 25.(本题满分14分)在△ABC 中,∠B =90°,D 是△ABC 外接圆上的一点,且点D 是∠B 所对的弧的中点. (1)尺规作图:在图10中作出点D ;(要求:不写作法,保留作图痕迹)(2)如图11,连接BD 、CD ,过点B 的直线交边AC 于点M ,交该外接圆于点E ,交CD 的延长线于点P ,BA 、DE 的延长线交于点Q ,DP=DQ . (i )若⌒AE =⌒BC ,AB =4,BC=3,求BE 的长; (ii )若DP =22(AB+BC ),求∠PDQ 的度数.CBA图10 MQPEDCBA图11。
福建省厦门市第十一中学2024-2025学年九年级上学期期中质量检测数学试卷

福建省厦门市第十一中学2024-2025学年九年级上学期期中质量检测数学试卷一、单选题1.如图所示图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是()A .()1,4--B .()1,4-C .()1,4D .()1,4-3.抛物线22y x =-+的顶点坐标为()A .()0,2B .()0,2-C .()2,0-D .()2,04.如图,点A ,B ,C 均在O 上,80AOB ∠=︒,则ACB ∠的度数为()A .80︒B .60︒C .50︒D .40︒5.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为()A .16-B .4-C .4D .166.如图,某汽车车门的底边长为1m ,车门侧开后的最大角度为72︒,若将一扇车门侧开,则这扇车门底边扫过区域的最大面积是()A .2m 10πB .2m 5πC .22m 5πD .24m 5π7.某校开展课外阅读活动,经过两年,2021级的学生人均阅读量从七年级的每年36万字增长到九年级时的每年49万字,设2021级的学生人均阅读量年平均增长率为x ,根据题意列出方程,正确的是()A .()236149x +=B .()362149x ⨯+=C .()361249x +=D .()()236136149x x +++=8.已知O 的半径是3cm ,点O 到同一平面内直线l 的距离为一元二次方程2340x x --=的根,则直线l 与O 的位置关系是()A .相交B .相切C .相离D .无法判断9.如图,二次函数21y ax bx =-的图象与正比例函数2y kx =的图象交于点()3,2A ,与x 轴交于点()2,0B ,若120y y <<,则x 的取值范围是()A .02x <<B .03x <<C .0x <或3x >D .23x <<10.如图,在平面直角坐标系中,有()1,0A -,()0,1B ,()3,2P -三点,若点C 是以点P 为圆心,1为半径的圆上一点,则ABC V 的面积最大值为()A .22+B .22-C .2D .2二、填空题11.二次函数2y 2(x 1)3=-+的图象的对称轴是直线.12.若O 的半径为2,M 为平面内一点,3OM =,则点M 在O .(填“上”、“内部”或“外部”)13.已知1x =是方程230x mx -+=的解,则m 的值为.14.我国东汉初年的数学典籍《周髀算经》中总结了对几何工具“矩”(即直角形状的曲尺,如图1所示)的使用之道,其中就有“环矩以为圆”的方法.我国许多数学家对该方法作了如下更具体的描述:如图2所示,在平面内固定两个钉子A ,B ,保持“矩”的两边始终紧靠两钉子的内侧,转动“矩”,则“矩”的顶点C 的运动路线将会是一个圆.依此描述,请用你学过的一个数学概念或定理解释“环矩以为圆”这种方法的道理:.15.如图,在ABC V 和ADE V 中,40AB AC BAC DAE =∠=∠=︒,,将ADE V 绕点A 顺时针旋转一定角度,当AD BC ∥时,BAE ∠的度数是.16.在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y 2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是.三、解答题17.解方程:2430x x -+=.18.如图,AB 是O 的直径,CD 是O 的弦,CD AB ⊥于点E ,点F 在O 上且CF CA =,连接AF .求证:AF CD =;19.先化简、再求值:2221111a a a -⎛⎫÷- ⎪-+⎝⎭,其中a =20.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”学校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆200人次,进馆人次逐月增加,到第三个月来进馆288人次.若进馆人次的月平均增长率相同,求进馆人次的月平均增长率.21.按照下列要求作出图形(不写作法,保留作图痕迹).(1)尺规作图:将图1中的破轮子复原(2)如图2,矩形ABCD 的顶点A 在圆上,顶点B ,C ,D 在圆内,请仅用无刻度的直尺画出图2中的圆心O .22.如图,以点O 为圆心,AB 长为直径作圆,在O 上取一点C ,延长AB 至点D ,连接DC ,DCB DAC ∠=∠,过点A 作AE AD ⊥交DC 的延长线于点E .(1)求证:CD 是O 的切线;(2)若42CD DB ==,,求AE 的长.23.如图,已知二次函数2y x bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,其中()()2,0,0,2A C --.(1)求二次函数的表达式;(2)若P 是二次函数图象上的一点,且点P 在第二象限,线段PC 交x 轴于点,D PDB △的面积是CDB △的面积的2倍,求点P 的坐标.24.在ABC V 中,AB AC =,120BAC ∠=︒,D 为BC 上一点,连接DA ,将线段DA 绕点D 顺时针旋转60︒得到线段DE .(1)如图1,当点D 与点B 重合时,连接AE ,交BC 于点H ,求证:AE BC ⊥;(2)当BD CD ≠时(图2中BD CD <,图3中BD CD >),F 为线段AC 的中点,连接EF .在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形.②猜想AFE ∠的大小,并证明.25.【问题提出】在绿化公园时,需要安装一定数量的自动喷洒装置,定时喷水养护,某公司准备在一块边长为18m 的正方形草坪(如图1)中安装自动喷洒装置,为了既节约安装成本,又尽可能提高喷洒覆盖率,需要设计合适的安装方案.说明:一个自动喷洒装置的喷洒范围是半径为()m r 的圆面.喷洒覆盖率k sρ=,s 为待喷洒区域面积,k 为待喷洒区域中的实际喷洒面积.【数学建模】这个问题可以转化为用圆面覆盖正方形面积的数学问题.【探索发现】(1)如图2,在该草坪中心位置设计安装1个喷洒半径为9m 的自动喷洒装置,该方案的喷洒覆盖率ρ=______.(2)如图3,在该草坪内设计安装4个喷洒半径均为9m 2的自动喷洒装置;如图4,设计安装9个喷洒半径均为3m 的自动喷洒装置;⋅⋅⋅⋅⋅⋅,以此类推,如图5,设计安装2n 个喷洒半径均为9m n 的自动喷洒装置.与(1)中的方案相比,采用这种增加装置个数且减小喷洒半径的方案,能否提高喷洒覆盖率?请判断并给出理由.(3)如图6所示,该公司设计了用4个相同的自动喷洒装置喷洒的方案,且使得该草坪的喷洒覆盖率1ρ=.已知正方形ABCD 各边上依次取点F ,G ,H ,E ,使得AE BF CG DH ===,设()m AE x =,1O 的面积为()2my ,求y 关于x 的函数表达式,并求当y 取得最小值时r 的值.【问题解决】(4)该公司现有喷洒半径为的自动喷洒装置若干个,至少安装几个这样的喷洒装置可使该草坪的喷洒覆盖率1ρ=?(直接写出结果即可)。
福建厦门2024年九上数学开学质量检测试题【含答案】

学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………福建厦门2024年九上数学开学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,直线y ax b =+与直线y mx n =+交于点(2,1)P --,则根据图象可知不等式ax b mx n +>+的解集是()A .2x >-B .2x <-C .20x -<<D .1x >-2、(4分)如图,在ABC 中,10AB =,6BC =,点D 为AB 上一点,BC BD =,BE CD ⊥于点E ,点F 为AC 的中点,连接EF ,则EF 的长为()A .5B .4C .3D .23、(4分)张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则较符合题意的图形是()A .B .C .D .4、(4分)医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为()A .0.43×410-B .0.43×410C .4.3×410-D .4.3×510-5、(4分)如图,平行四边形ABCD 中,AB =4,AD =5,AE 平分∠BAD 交BC 边于点E ,则CE 的长为()A .1B .2C .3D .46、(4分)某校八()2班5名同学在1分钟投篮测试中的成绩如下:5,2,8,5,10,(单位:个),则这组数据的中位数、众数分别是()A .8,6B .5,6C .8,5D .5,57、(4分)如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是()A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+38、(4分)如图,在矩形ABCD 中,AE 平分BAD ∠,交边BC 于点E ,若5ED =,3EC =,则矩形ABCD 的周长为()A .11B .14C .22D .28二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一种盛饮料的圆柱形杯子(如图),测得它的内部底面半径为2.5cm ,高为12cm ,吸管放进杯子里,杯口外面至少要露出5.2cm ,则吸管的长度至少为_______cm .10、(4分)一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________.11、(4分)如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.12、(4分)你喜欢足球吗?下面是对耒阳市某校八年级学生的调查结果:男同学女同学喜欢的7536不喜欢的1524则男同学中喜欢足球的人数占全体同学的百分比是________%.13、(4分)如图,已知矩形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD ,BC 于E ,F ,若3AB =,4BC =,则阴影部分的面积是______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,平面直角坐标系中,直线AB:y=-13x +b 交y 轴于点A(0,1),交x 轴于点B,直线x=1交AB 于点D,交x 轴于点E,P 是直线x=1上的一动点,且在点D 的上方,设P(1,n).(1)求直线ABd 解析式和点B 的坐标;(2)求△ABP 的面积(用含n 的代数式表示);(3)当ABP S △=2时,①求出点P 的坐标;②在①的条件下,以PB 为边在第一象限作等腰直角△BPC ,直接写出点C 的坐标.15、(8分)如图,在平面直角坐标系中,矩形OABC 的顶点A 在y 轴的正半轴上,点C 在x 轴的正半轴上,线段OA ,OC 的长分别是m ,n 且满足(m -6)2=0,点D 是线段OC 上一点,将△AOD 沿直线AD 翻折,点O 落在矩形对角线AC 上的点E 处(1)求线段OD 的长(2)求点E 的坐标(3)DE 所在直线与AB 相交于点M ,点N 在x 轴的正半轴上,以M 、A 、N 、C 为顶点的四边形是平行四边形时,求N 点坐16、(8分)(知识链接)连结三角形两边中点的线段,叫做三角形的中位线.(动手操作)小明同学在探究证明中位线性质定理时,是沿着中位线将三角形剪开然后将它们无缝隙、无重叠的拼在一起构成平行四边形,从而得出:三角形中位线平行于第三边且等于第三边的一半.(性质证明)小明为证明定理,他想利用三角形全等、平行四边形的性质来证明.请你帮他完成解题过程(要求:画出图形,根据图形写出已知、求证和证明过程).17、(10分)列分式方程解应用题:今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?18、(10分)已知关于x 的一元二次方程()222120x k x k k -+++=有两个实数根1x ,2x .(1)求实数k 的取值范围;(2)若方程的一个根是1,求另一个根及k 的值.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)把直线y =x -1向下平移后过点(3,-2),则平移后所得直线的解析式为________.20、(4分)在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.21、(4分).22、(4分)在一个不透明的盒子中装有2个白球和3个红球这些球除了颜色外无其他差别现从这个盒子中任意摸出1个球,那么摸到1个红球的概率是_________.23、(4分)一组正方形按如图所示的方式放置,其中顶点1B 在y 轴上,顶点1C 、1E 、2E 、2C 、3E 、4E 、⋯在x 轴上,已知正方形1111A B C D 的边长为1,11B C O 60∠=,112233B C //B C //B C //⋯,则正方形2018201820182018A B C D 的边长是______.二、解答题(本大题共3个小题,共30分)24、(8分)计算:(1-;(2)2(1+.25、(10分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.(1)若该城市某户6月份用水18吨,该户6月份水费是多少?(2)设某户某月用水量为x 吨(x >20),应缴水费为y 元,求y 关于x 的函数关系式.26、(12分)如图,方格纸中的每个小方格都是边长为1个单位长度的小正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,A ,B ,C 三点的坐标分别为(5,﹣1),(2,﹣5),(2,﹣1).(1)把△ABC 向上平移6个单位后得到△A 1B 1C 1,画出△A 1B 1C 1;(2)画出△A 2B 2C 2,使它与△ABC 关于y 轴对称;(3)画出△A 3B 3C 3,使它与△ABC 关于原点中心对称.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A 【解析】根据函数图象交点右侧直线y=ax+b 图象在直线:y=mx+n 图象的上面,即可得出不等式ax+b >mx+n 的解集.【详解】解:直线y ax b =+与直线y mx n =+交于点(2,1)P --,∴不等式ax b mx n +>+为:2x >-.故选:A .此题主要考查了一次函数与不等式,利用数形结合得出不等式的解集是考试重点.2、D 【解析】利用三角形的中位线定理即可求答,先证明出E 点为CD 的中点,F 点为AC 的中点,证出EF 为AC 的中位线.【详解】因为BD=BC,BE ⊥CD ,所以DE=CE ,又因为F 为AC 的中点,所以EF 为ΔACD 的中位线,因为AB=10,BC=BD=6,所以AD=10-6=4,所以EF=12×4=2,故选D本题考查三角形的中位线等于第三边的一半,学生们要熟练掌握即可求出答案.3、C【解析】【详解】根据题意可知,张老师与甲镇的距离越来越大,而且速度先快后慢,所以选项C比较符合题意.故选C考核知识点:函数图象的判断.理解题意是关键.4、D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000043毫米,则这个数用科学记数法表示为4.3×10-5毫米,故选:D.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、A【解析】由平行四边形的性质得出BC=AD=5,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=4,∴CE=BC-BE=1;故选:A .此题考查平行四边形的性质,等腰三角形的判定,熟练掌握平行四边形的性质,并能进行推理计算是解题的关键.6、D 【解析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:把数据从小到大的顺序排列为:2,1,1,8,10;在这一组数据中1是出现次数最多的,故众数是1.处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.故选:D .此题考查中位数与众数的意义,掌握基本概念是解决问题的关键7、D 【解析】试题分析:∵B 点在正比例函数y=2x 的图象上,横坐标为1,∴y=2×1=2,∴B (1,2),设一次函数解析式为:y=kx+b ,∵过点A 的一次函数的图象过点A (0,1),与正比例函数y=2x 的图象相交于点B (1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+1.故选D .考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.8、C【解析】【详解】∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2−CE2=25−9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选C此题考查矩形的性质,解题关键在于求出DC=4二、填空题(本大题共5个小题,每小题4分,共20分)9、18.2【解析】由于吸管、圆柱形杯内部底面直径与杯壁正好构成直角三角形,故可先利用勾股定理求出AC的长,进而可得出结论.【详解】解:如图;杯内的吸管部分长为AC,杯高AB=12cm,杯底直径BC=5cm;Rt△ABC中,AB=12cm,BC=5cm;由勾股定理得:13(cm)故吸管的长度最少要:13+5.2=18.2(cm).故答案为:18.2.本题考查勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.10、32y x =--【解析】设一次函数解析式为y=kx+b ,先把(0,-1)代入得b=-1,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.【详解】解:设一次函数解析式为y=kx+b ,把(0,-1)代入得b=-1,∵直线y=kx+b 与直线y=1-3x 平行,∴k=-3,∴一次函数解析式为y=-3x-1.故答案为:y=-3x-1.本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k 值相同.11、45︒【解析】先求出AED ∠的度数,即可求出AEC ∠.【详解】解:由题意可得,,90,60AD DC DE ADC EDC DEC ︒︒==∠=∠=∠=,,150AD DE ADE ADC EDC ︒=∠=∠+∠=180150152AED DAE ︒︒︒-∴∠=∠==45AEC CED AED ︒∴∠=∠-∠=故答案为:45︒本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.12、50【解析】先计算调查的男同学喜欢与不喜欢的全体人数,再用男同学中喜欢的人数比上全体人数乘以100%即可得出答案.【详解】调查的全体人数为75+15+36+24=150人,所以男同学中喜欢足球的人数占全体同学的百分比=75100%=50% 150⨯故答案为50.本题考查的是简单的统计,能够计算出调查的全体人数是解题的关键.13、1【解析】首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△AOD的面积.【详解】∵四边形ABCD是矩形,∴OA=OC,AD∥BC,∴∠AEO=∠CFO.在△AOE和△COF中,∵AEO CFOOA OCAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF,∴S△AOE=S△COF,∴S阴影=S△COF+S△EOD=S△AOE+S△EOD=S△AOD.∵S△AOD14=BC•AD=1,∴S阴影=1.故答案为:1.本题考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的14,是解决问题的关键.三、解答题(本大题共5个小题,共48分)14、(1)y=-13x+1,点B(3,0);(2)32n-1;(3)①P(1,2);②(3,4)或(5,2)或(3,2).【解析】(1)将点A 的坐标代入直线AB 的解析式可求得b 值,可得AB 的解析式,继而令y=0,求得相应的x 值即可得点为B 的坐标;(2)过点A 作AM ⊥PD ,垂足为M ,求得AM 的长,再求得△BPD 和△PAD 的面积,二者的和即为△ABP 的面积;(3)①当S △ABP =2时,代入①中所得的代数式,求得n 值,即可求得点P 的坐标;②分P 是直角顶点且BP=PC 、B 是直角顶点且BP=BC 、C 是直角顶点且CP=CB 三种情况求点C 的坐标即可.【详解】(1)∵y=-13x+b 经过A(0,1),∴b=1,∴直线AB 的解析式是y=-13x+1,当y=0时,0=-13x+1,解得x=3,∴点B(3,0);(2)过点A 作AM ⊥PD ,垂足为M ,则有AM=1,∵x=1时,y=-13x+1=23,P 在点D 的上方,∴PD=n -23,S △APD =12PD•AM=12×1×(n -23)=12n -13,由点B(3,0),可知点B 到直线x=1的距离为2,即△BDP 的边PD 上的高长为2,∴S △BPD =12PD×2=n -23,∴S △PAB =S △APD +S △BPD =12n -13+n -23=32n -1;(3)①当S △ABP =2时,32n -1=2,解得n=2,∴点P(1,2);②∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC ,过点C 作CN ⊥直线x=1于点N .∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°,在△CNP 与△BEP 中,90NPC EPB CNP PEB BP PC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△CNP ≌△BEP ,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4);第2种情况,如图2,∠PBC=90°,BP=BC ,过点C 作CF ⊥x 轴于点F .∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°,在△CBP 与△PBE 中,CBF PBE CFB PEB BC BP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CBF ≌△PBE .∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2);第3种情况,如图3,∠PCB=90°,CP=CB ,∴∠CPB=∠CBP=45°,∵∠EPB=∠EBP=45°,∴∠PCB=∠CBE=∠EPC=90°,∴四边形EBCP 为矩形,∵CP=CB ,∴四边形EBCP 为正方形,∴PC=CB=PE=EB=2,∴C(3,2);∴以PB 为边在第一象限作等腰直角三角形BPC ,点C 的坐标是(3,4)或(5,2)或(3,2).本题考查了待定系数法求函数的解析式、全等三角形的判定和性质、等腰直角三角形的性质的综合应用,正确求得n 的值,判断∠OBP=45°是解决问题的关键.15、(1)OD=3;(2)E 点(245,125)(3)点N 为(312,0)或(12,0)【解析】(1)根据非负性即可求出OA ,OC ;根据勾股定理得出OD 长;(2)由三角形面积求法可得1122DE EC DC EG ⋅=⋅,进而求出EG 和DG ,即可解答;(3)由待定系数法求出DE 的解析式,进而求出M 点坐标,再利用平行四边形的性质解答即可.【详解】解:(1)∵线段OA ,OC 的长分别是m ,n 且满足2(6)0m -+∴OA =m =6,OC =n =8;设DE =x ,由翻折的性质可得:OA =AE =6,OD =DE =x ,DC =8-OD =8-x ,AC ==10,可得:EC =10-AE =10-6=4,在Rt △DEC 中,由勾股定理可得:DE 2+EC 2=DC 2,即x 2+42=(8-x )2,解得:x =3,可得:DE =OD =3,(2)过E 作EG ⊥OC ,在Rt △DEC 中,1122DE EC DC EG ⋅=⋅,即1134522EG ⨯⨯=⨯⋅解得:EG =125,在Rt △DEG 中,95DG ==,∴OG =3+95=245,所以点E 的坐标为(245,125),(3)设直线DE 的解析式为:y =ax +c ,把D (3,0),E (4.8,2.4)代入解析式可得:30241255a c a c +⎧⎪⎨+⎪⎩==,解得:434a c ⎧=⎪⎨⎪=-⎩,所以DE 的解析式为:443y x =-,把y =6代入DE 的解析式443y x =-,可得:x =152,即AM =152,当以M 、A 、N 、C 为顶点的四边形是平行四边形时,CN =AM =152,所以ON =8+152=312,ON '=8-152=12,即存在点N ,且点N 的坐标为(312,0)或(12,0).本题是一次函数综合题目,考查了非负性、用待定系数法求一次函数的解析式、勾股定理、平行四边形的性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过求一次函数的解析式和平行四边形的性质才能得出结果.16、见解析【解析】作出图形,然后写出已知、求证,延长DE 到F ,使DE=EF ,证明△ADE 和△CEF 全等,根据全等三角形对应边相等可得AD=CF ,全等三角形对应角相等可得∠F=∠ADE ,再求出BD=CF ,根据内错角相等,两直线平行判断出AB ∥CF ,然后判断出四边形BCFD 是平行四边形,根据平行四边形的性质证明结论.【详解】解:已知:如图所示,在△ABC 中,D 、E 分别是AB 、AC 的中点,求证:DE=12BC ,DE ∥BC ,证明:延长DE 到F ,使DE=EF ,连接CF ,∵点E 是AC 的中点,∴AE=CE ,在△ADE 和△CEF 中,AE EC AED CEF DE EF =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CEF(SAS),∴AD=CF ,∠ADE=∠F ,∴AB ∥CF ,∵点D 是AB 的中点,∴AD=BD ,∴BD=CF ,∴BD ∥CF ,∴四边形BCFD 是平行四边形,∴DF ∥BC ,DF=BC ,∴DE ∥BC 且DE=12BC .本题考查的是三角形中位线定理的证明、平行四边形的判定和性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.17、汽车和自行车的速度分别是75千米/时、15千米/时.【解析】试题分析:设自行车的速度为x 千米/时,则汽车的速度为(x+60)千米/时,根据等量关系:一班师生骑自行车走4千米所用时间=二班师生乘汽车20千米所用时间,列出方程即可得解.试题解析:设自行车的速度为x 千米/时,则汽车的速度为(x+60)千米/时,根据题意得:20162060x x -=+,解得:x=15(千米/时),经检验,x=15是原方程的解且符合题意.,则汽车的速度为:60156075x +=+=(千米/时),答:汽车和自行车的速度分别是75千米/时、15千米/时.18、(1)当14k ≤时,原方程有两个实数根;(2)另一个根为0,k 的值为0.【解析】(1)根据一元二次方程根的判别式即可列出不等式进行求解;(2)把方程的根代入原方程求出k ,再进行求解即可.【详解】(1)∵原方程有两个实数根,∴()()2221420k k k -+-+≥⎡⎤⎣⎦,∴22441480k k k k ++--≥,∴140k -≥,∴14k ≤.∴当14k ≤时,原方程有两个实数根.(2)把1x =代入原方程得,得:0k =,∴原方程化为:20x x -=,解这个方程得,11x =,20x =故另一个根为0,k 的值为0此题主要考查一元二次方程的解,解题的关键是熟知根的判别式及方程的解法.一、填空题(本大题共5个小题,每小题4分,共20分)19、y =x -2【解析】解:设直线向下平移了h 个单位,y =x -2-h,过(3,-2),所以-2=3-2-h 所以h =-4所以y =x -2故答案为:y =x -2.本题考查一次函数图象左右平移,上下平移方法,口诀“左加右减,上加下减”.y=kx +b 左移2个单位,y=k (x +2)+b ;y=kx +b 右移2个单位,y =k (x -2)+b ;y=kx +b 上移2个单位,y =kx +b +2;y=kx +b 下移2个单位,y=kx +b -2.20、二【解析】根据各象限内点的坐标特征,可得答案.【详解】解:由点A (x ,y )在第三象限,得x <0,y <0,∴x <0,-y >0,点B (x ,-y )在第二象限,故答案为:二.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).21、3【解析】原式=.22、35【解析】用红球的个数除以总球的个数即可得出答案.【详解】解:∵不透明的盒子中装有2个白球和3个红球,共有5个球,∴这个盒子中任意模出1个球、那么摸到1个红球的概率是35;故答案为:35.本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.23、201733【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【详解】正方形1111A B C D 的边长为1,11B C O 60∠=,112233B C //B C //B C ,1122D E B E ∴=,2334D E B E =,111222334D C E C B E C B E 30∠∠∠===,11111D E C D sin302∴==,则12222B E 3B C cos303==,同理可得:2331B C ()33==,故正方形n n n n A B C D 的边长是:n 13-,则正方形2018201820182018A B C D 的边长为:20173,故答案为:201733.此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.二、解答题(本大题共3个小题,共30分)24、(1);(2)3.【解析】根据二次根式的运算法则依次计算即可【详解】(1)解:原式=(2)解:原式==3熟练掌握二次根式的计算是解决本题的关键,难度不大25、(1)该户6月份水费是45元;(2)y=3.3x-1.【解析】(1)每户每月用水量如果未超过20吨,按每吨2.5元收费,而该城市某户6月份用水18吨,未超过20吨,根据水费=每吨水的价格×用水量,即可得出答案;(2)如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费,设某户某月用水量为x 吨,那么超出20吨的水量为(x-20)吨,根据水费=每吨水的价格×用水量,即可得出答案.【详解】解:(1)根据题意:该户用水18吨,按每吨2.5元收费,2.5×18=45(元),答:该户6月份水费是45元;(2)设某户某月用水量为x 吨(x >20),超出20吨的水量为(x-20)吨,则该户20吨的按每吨2.5元收费,(x-20)吨按每吨3.3元收费,应缴水费y=2.5×20+3.3×(x-20),整理后得:y=3.3x-1,答:y 关于x 的函数关系式为y=3.3x-1.本题考查的是一次函数的应用,理清题意,找出各数量间的数量关系,正确得出函数关系式是解题关键.26、(1)见解析;(2)见解析;(3)见解析.【解析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)直接利用旋转的性质得出对应点位置进而得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:△A3B3C3,即为所求.此题主要考查了平移变换以及轴对称变换和旋转变换,正确得出对应点位置是解题关键.。
厦门市九年级上册期末质量检测数学试卷有答案

2019-2020学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1、下列算式中,计算结果是负数的是()A .()27-+B .1-C .()32⨯-D .()21-2、对于一元二次方程2210xx -+=,根的判别式24b ac -中的b 表示的数是()A .2-B .2C .1-D .13、如图,四边形ABCD 的对角线,AC BD 交于点O ,E 是BC 边上一点,连接,AE OE ,则下列角中是AEO ∆的外角的是()A .AEB ∠B .AOD ∠C .OEC ∠D .EOC∠4、已知圆O 的半径是3,,,A B C 三点在圆O 上,60ACB ∠= ,则弧AB 的长是()A .2πB .πC .32πD .12π5、某区25位学生参加魔方速拧比赛,比赛成绩如图所示,则这25个成绩的中位数是()A .11B .10.5C .10D .66、随着生产技术的进步,某厂生产一件产品的成本从两年前的100元,下降到现在的64元,求年平均下降率,设年平均下降率为x ,通过解方程得到一个根为1.8,则正确的解释是()A .年平均下降率为80%,符合题意B .年平均下降率为18%,符合题意C .年平均下降率为1.8%,不符合题意D .年平均下降率为180%,不符合题意7、已知某二次函数,当1x<时,y 随x 的增大而减小;当1x >时,y 随x 的增大而增大,则该二次函数的解析式可以是()A .()221y x =+B .()221y x =-C .()221y x =-+D .()221y x =--8、如图,已知,,,A B C D 是圆上的点,弧AD =弧BC ,,AC BD 交于点E ,则下列结论正确的是()A .AB AD =B .BECD=C .AC BD =D .BE AD=9、距资料,我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先了一千多年,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A .2.9B .3C .3.1D .3.1410、已知点(),Mn n -在第二象限,过点M 的直线y kx b =+()01k <<分别交x 轴、y 轴于点,A B ,过点M 作MN x⊥轴于点N ,则下列点在线段AN 的是()A .()()1,0k n -B .3,02kn ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭C .()2,0k n k+⎛⎫⎪⎝⎭D .()()1,0k n +二、填空题(本大题有6小题,每小题4分,共24分)11、已知1x=是方程20x a -=的根,则a =________.12、一个不透明盒子里装有4个除颜色外无其他任何差别的球,从盒子中随机摸出一个球,若()1=4P摸出红球,则盒子里有________个红球.13、如图,已知3,1,90AB AC D ==∠= ,DEC ∆与ABC ∆关于点C 成中心对称,则AE 的长是________.14、某二次函数的几组对应值如下表所示,若12345x x x x x <<<<,则该函数图象的开口方向是________.x 1x 2x 3x 4x 5x y3-54-021-15、P 是直线l 上的任意一点,点A 在圆O 上,设OP 的最小值为m ,若直线l 过点A ,则m 与OA 的大小关系是________.16、某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元,演出票虽未售完,但售票收入达22080元,设成人票售出x 张,则x 的取值范围是________.三、解答题(本大题有9小题,共86分)17、(本小题满分8分)241xx -=18、(本小题满分8分)如图,已知ABC ∆和DEF ∆的边AC 、DF 在一条直线上,//AB DE ,AB DE =,AD CF =,证明://BCEF19、(本小题满分8分)如图,已知二次函数图象的顶点为P ,与y 轴交于点A 。
2023-2024学年福建厦门九年级上学期数学期末考质检卷(一检Wood版)

准考证号:姓名:(在此卷上答题无效)2023—2024学年第一学期初中毕业班期末考试数学本试卷共6页.满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.核对答题卡上粘贴的条形码的“准考证号、姓名”与本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.可以直接使用2B 铅笔作图.一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A. 向上一面的点数是2B. 向上一面的点数是奇数C. 向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x²=0B.x²-3x-1=0C.x²-2x+5=0D.x²+1=03.如图1,△ABC 内接于◎0,直径AD交BC 于点P, 连接OB.下列角中,等于的是A. ∠OABB. ∠ACBC. ∠CADD. ∠OPB4.关于y=(x-2)²-1(x为任意实数)的函数值,下列说法正确的是图 1A.最小值是-1B.最小值是2C.最大值是-1D. 最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x, 可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)²=8D.5(1+2x)²=86.如图2,直线l 是正方形ABCD的一条对称轴,l 与AB,CD 分别交于点M,N.AN,BC 的延长线相交于点P, 连接BN.下列三角形中,与△NCP 成中心对称的是A.△NCBB.△BMN图2C.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4 圈才能拧紧,小梧用扳手的 卡口卡住螺帽,通过转动扳 手的手柄来转动螺帽(如图3 所示).以此方式把这个螺帽 拧紧,他一共需要转动扳手 的次数是A.4B.16图3C.24D.32 8.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s (单位:m) 关于滑行的时间t (单位:s )的函数解析式是,则t 的取值范围是A.O≤t≤600B.20≤t≤40C.O≤t≤40 二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他 差别,从袋子中随机摸出1个球,摸出红球的概率是10.抛物线y=3(x-1)²+4的对称轴是11.已知x=1 是方程x²+mx-3=0 的根,则m 的值为 12.四边形ABCD 内接于◎0,E 为 CD 延长线上一点,如图4所示,则D.O≤t≤20图4图中与∠ADE 相等的角是13. 如图5,在△ABC 中,AB=AC=5,BC=6,AD 是△ABC 的角平分线. 把△ABD 绕点A 逆时针旋转90°得到△AEF, 点B 的对应点是点E, 则点D 与点E 之间的距离是14.在平面直角坐标系xOy 中,□ABCD 的对角线交于点0.若点A 的 图5 坐标为(-2,3),则点C 的坐标为 .15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物 的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1 4 6 8 10 12 14累计试验种子数(单位:千粒)15810.5 12.5 14.5 16.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要 准备用以辐射的种子数(单位:千粒): 16.有四组一元二次方程:①x²-4x+3=0和3x²-4x+1=0;②x²-x-6=0和6x²+x-1=0;③x²-4=0和4x²-1=0;④4x²-13x+3=0和3x²-13x+4=0. 这四组方程具有共同特征, 我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个 有两个不相等实数根但没有“相关方程”的一元二次方程:数学试题 第2页(共6页)三、解答题(本大题有9 小题,共86分)17.(本题满分8分解方程x²-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.图619.(本题满分8分)先化简,再求值:,其中m=√2+1.20.(本题满分8分)如图7,AB与◎0相切于点A,OB交O0 于点C,OC=8,AC的长为2π,求BC的长.图7数学试题第3页(共6页)21.(本题满分8分)在矩形ABCD中,点E 在AD边上,∠ABE=60°, 将△ABE 绕点B 顺时针旋转得到△FBG, 使点A的对应点F 在线段BE上.(1)请在图8中作出△FBG;(要求:尺规作图,不写作法,保留作图痕迹)(2)FG 与BC交于点Q, 连接EQ,EC, 若EC=BQ, 请探究AE 与DE的数量关系.图822.(本题满分10分)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m, 横向排列30个车位,每个车位宽为3m, 各车位有相应号码,如:201 表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316 前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.316转图9 停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1 m/s, 载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421 前往401取车,升降台回到第四层40s 后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.数学试题第4页 (共6页)23.(本题满分10分)正方形的顶点T 在某抛物线上,称该正方形为该抛物线的“T 悬正方形”.若直线l:y=x+t与“T 悬正方形”以T为端点的一边相交,且点T 到直线l的距离为√2(2-t),则称直线l 为该正方形的“T 悬割线”.已知抛物线M:y=-(x-1)²+m²-2m+4,其中,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A 悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l 是正方形ABCD的“A悬割线”,现将抛物线M 及正方形ABCD进行相同的平移,是否存在直线l 为平移后正方形的“C 悬割线”的情形?若存在,请探究抛物线M 经过了怎样的平移;若不存在,请说明理由.24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P(P 不与 0重合),连接PC,以点P 为圆心,PC 长为半径的圆交直线BC 于点E,直线AE 与直线CD 交于点F, 如图10所示.(1)当∠ABC=60°时,求证:直线AB与◎P 相切;(2)当AO=2,AF²+EF²=16时,求∠ABC 的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C 与E 不重合,请探究∠AFC与∠CAF 的数量关系.图10数学试题第5页(共6页)25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:【背景】小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A 超市了吗?再开一个能吸引顾客吗?”这个问题引起了大家对超市的吸引力展开研究的兴趣.【过程】为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素”为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p” 作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s (单位:m²) 及其与居民住处的距离r (单位:m), 并对p,s,r 之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大. 这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为 (G是引力常数),我们是不是可以作个类比,试一下看p与的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与对应关系的图11 r²散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A 超市为原点,分别以正东、正北方向为x 轴、y 轴正方向建立平面直角坐标系,规定一个单位长度代表1 m 长,则小梧家的坐标为(400,200). A 超市的占地面积为2000m², 规划中的B 超市在A 超市的正东方向.根据(1)中的对应关系,解决下列问题:① 若B 超市与A 超市距离600 m~800m,且对小梧家的吸引力与A 超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划 B 超市开在距A 超市300m处,且占地面积最大为490m²,要想与A 超市竞争百花巷的居民,该规划是否合适?请说明理由.数学试题第6页(共6页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017—2018学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10选项 C A D A A D B C B D二、填空题(本大题共6小题,每题4分,共24分)11. 1. 12. 1.13.13.14.向下.15.m≤OA.16.252<x≤368(x为整数)或253≤x≤368(x为整数)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:x2-4x+4=5.………………4分(x-2)2=5.由此可得x-2=±5.………………6分x1=5+2,x2=-5+2.………………8分18.(本题满分8分)证明:如图1,∵AB∥DE,∴∠BAC=∠EDF. ………………2分∵AD=CF,∴AD+DC=CF+DC.即AC=DF. ………………4分又∵AB=DE,∴△ABC≌△DEF.………………6分∴∠BCA=∠EFD.∴BC∥EF. ………………8分19.(本题满分8分)解:(1)如图2,点B即为所求. ………………3分(2)由二次函数图象顶点为P(1,3),可设解析式为y=a(x-1)2+3. ………………6分把A(0,2)代入,得a+3=2.解得a=-1. ………………7分图1F ABCDEA··P图2·B所以函数的解析式为y =-(x -1)2+3. ……………… 8分20.(本题满分8分)解:如图3,连接AF . ………………3分将△CBE 绕点B 逆时针旋转60°,可与△ABF 重合. …………8分21.(本题满分8分)解:由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定.当移植总数为10000时, 成活率为0.950,于是可以估计树苗移植成活率为0.950. ………………3分则该市需要购买的树苗数量约为28.5÷0.950=30(万棵).答:该市需向这家园林公司购买30万棵树苗较为合适. ………………8分22.(本题满分10分)(1)(本小题满分5分)解:把A (-12,0),B (2,5)分别代入y =kx +b ,可得解析式为 y =2x +1. ……………… 3分当x =0时,y =1.所以直线l 1与y 轴的交点坐标为(0,1). ……………… 5分(2)(本小题满分5分)解:如图4,把C (a ,a +2)代入y =2x +1,可得a =1. ……………… 6分则点C 的坐标为(1,3).∵ AC =CD =CE ,又∵ 点D 在直线AC 上,∴ 点E 在以线段AD 为直径的圆上.∴ ∠DEA =90°. ……………… 8分过点C 作CF ⊥x 轴于点F ,则 CF =y C =3. ……………… 9分∵ AC =CE , ∴ AF =EF又∵ AC =CD ,∴ CF 是△DEA 的中位线.∴ DE =2CF =6. ……………… 10分23.(本题满分11分)(1)(本小题满分4分)解:因为当x =-2时,y >0;当x =-1时,y <0,所以方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1. ……………… 4分(2)(本小题满分7分)解:取x =(-2)+(-1)2=-32,因为当x =-32时,y >0, 又因为当x =-1时,y =-1<0, FA B C DE 图3所以-32<x 2<-1. ……………… 7分取x =(-32)+(-1)2=-54,因为当x =-54时,y <0, 又因为当x =-32时,y >0, 所以-32<x 2<-54. ……………… 10分又因为-54-(-32)=14, 所以-32<x 2<-54即为所求x 2 的范围. ……………… 11分 24.(本题满分11分)(1)(本小题满分5分)解:如图5,∵ AB 是半圆O 的直径,∴ ∠M =90°. ………………1分在Rt △AMB 中,AB =MA 2+MB 2 ………………2分∴ AB =10.∴ OB =5. ………………3分∵ OB =ON ,又∵ ∠NOB =60°,∴ △NOB 是等边三角形. ………………4分∴ NB =OB =5. ………………5分(2)(本小题满分6分)证明:方法一:如图6,画⊙O ,延长MC 交⊙O 于点Q ,连接NQ ,NB .∵ MC ⊥AB ,又∵ OM =OQ ,∴ MC =CQ . ………………6分即 C 是MN 的中点又∵ P 是MQ 的中点,∴ CP 是△MQN 的中位线. ………………8分∴ CP ∥QN .∴ ∠MCP =∠MQN .∵ ∠MQN =12∠MON ,∠MBN =12∠MON , ∴ ∠MQN =∠MBN .∴ ∠MCP =∠MBN . ………………10分∵ AB 是直径,∴ ∠ANB =90°.∴ 在△ANB 中,∠NBA +∠NAB =90°.图5图6∴ ∠MBN +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分方法二:如图7,连接MO ,OP ,NO ,BN .∵ P 是MN 中点,又∵ OM =ON ,∴ OP ⊥MN , ………………6分且 ∠MOP =12∠MON . ∵ MC ⊥AB ,∴ ∠MCO =∠MPO =90°.∴ 设OM 的中点为Q ,则 QM =QO =QC =QP .∴ 点C ,P 在以OM 为直径的圆上.………………8分在该圆中,∠MCP =∠MOP =12∠MQP . 又∵ ∠MOP =12∠MON , ∴ ∠MCP =12∠MON . 在半圆O 中,∠NBM =12∠MON . ∴ ∠MCP =∠NBM . ………………10分∵ AB 是直径,∴ ∠ANB =90°.∴ 在△ANB 中,∠NBA +∠NAB =90°.∴ ∠NBM +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分 25.(本题满分14分)(1)(本小题满分3分)解:把(1,-1)代入y =x 2+bx +c ,可得b +c =-2, ………………1分 又因为b -c =4,可得b =1,c =-3. ………………3分(2)(本小题满分4分)解:由b +c =-2,得c =-2-b .对于y =x 2+bx +c ,当x =0时,y =c =-2-b .抛物线的对称轴为直线x =-b 2. 所以B (0,-2-b ),C (-b 2,0). 因为b >0,图7所以OC =b 2,OB =2+b . ………………5分当k =34时,由OC =34OB 得b 2=34(2+b ),此时b =-6<0不合题意. 所以对于任意的0<k <1,不一定存在b ,使得OC =k ·OB . ………………7分(3)(本小题满分7分)解:方法一:由平移前的抛物线y =x 2+bx +c ,可得y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b .因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b .………………9分即y =(x +b 2+m )2-b 24-2+b .把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1.(1+b 2+m )2=b 24-b +1.(1+b 2+m )2=(b 2-1)2.所以1+b 2+m =±(b 2-1).当1+b 2+m =b 2-1时,m =-2(不合题意,舍去);当1+b 2+m =-(b 2-1)时,m =-b . ………………10分因为m ≥-32,所以b ≤32.所以0<b ≤32. ………………11分所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b .即顶点为(b 2,-b 24-2+b ). ………………12分设p =-b 24-2+b ,即p =-14(b -2)2-1.因为-14<0,所以当b <2时,p 随b 的增大而增大.因为0<b ≤32,所以当b =32时,p 取最大值为-1716. ………………13分此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分 方法二:因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.由平移前的抛物线y =x 2+bx +c ,可得y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b .则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分即y =(x +b 2+m )2-b 24-2+b . 把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1.可得(m +2)(m +b )=0.所以m =-2(不合题意,舍去)或m =-b . ………………10分因为m ≥-32,所以b ≤32. 所以0<b ≤32. ………………11分 所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b . 即顶点为(b 2,-b 24-2+b ). ………………12分设p =-b 24-2+b ,即p =-14(b -2)2-1.因为-14<0,所以当b <2时,p 随b 的增大而增大. 因为0<b ≤32, 所以当b =32时,p 取最大值为-1716. ………………13分此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分。