组合逻辑电路和时序逻辑电路
同步时序逻辑电路逻辑电路可分为组合逻辑电路和时...

根据时序电路的输出是否与输入x1 , …, xn有关可以把同步 时序逻辑电路分为Mealy型和Moore型。Mealy型同步时序 逻辑电路的输出由输入x1 , …, xn和现态决定:
Z i f i ( x1 , , xn , y1 , , yr ) Y j g j ( x1 , , xn , y1, , yr ) Z i f i ( y1 , , yr )
4.1 同步时序逻辑电路模型
同步时序逻辑电路具有统一的时钟信号。时钟信号通常是 周期固定的脉冲信号。同步时序逻辑电路在时钟信号的控 制下工作,其电路中的各个单元、器件在时钟信号到来时 读取输入信号、执行响应动作。
4.1.1 同步时序逻辑电路结构 同步时序逻辑电路在结构上可分为组合逻辑电路部分 和存储电路部分,并且存储电路受时钟信号控制。
而存储元件的输出y1, …, yr也作为组合逻辑部分的内部输入, y1, …, yr称为同步时序逻辑电路的状态。当新的时钟信号没 有到来的时候,同步时序逻辑电路的状态y1, …, yr不会发生 改变,即使输入x1 , …, xn有变化状态y1, …, yr也不会改变; 对于新的时钟信号到来之前的状态y1, …, yr称为现态,记作 记作y (n)或y;当新的时钟信号到达后,存储电路会根据激 励信号Y1, …, Yr而改变其输出y1, …, yr ,此时的状态称为次 态,记作y (n + 1)。当时钟信号没有到达时,电路处于现态, 次态是电路未来变化的走向;当时钟信号到来后,先前的 次态成为当前的现态。
4.2.3 JK触发器
JK触发器除时钟信号输入端外有J、K两个输入端,具有置 0,置1,翻转及保持四种功能,是一种功能较强的触发器。 JK触发器的状态方程为:
Q( n1) JQ KQ
数字逻辑电路

四、时间图
时间图是用波形图的形式来表示输入信号、输出 信号和电路状态等的取值在各时刻的对应关系,通常 又称为工作波形图。在时间图上,可以把电路状态转 换的时刻形象地表示出来。
同步时序逻辑电路分析
分析的方法和步骤 常用方法有表格法和代数法。 一、表格分析法的一般步骤 1.写出输出函数和激励函数表达式。 2.借助触发器功能表列出电路次态真值表。 3.作出状态表和状态图(必要时画出时间图) 。 4.归纳出电路的逻辑功能。
0
1
4. 画出时间图,并说明电路的逻辑功能 设电路初态为“ 0” ,输入 x1 为 00110110 ,输入 x2 为 01011100 ,根据状态图可作出电路的输出和状态响应序 列如下: 时钟节拍:1 2 输入x1: 0 0 输入x2: 0 1 状态y: “0” 0 输出Z : 0 1 3 1 0 0 1 4 1 1 0 0 5 0 1 1 0 6 1 1 1 1 7 1 0 1 0 8 0 0 1 1
同步时序逻辑电路的设计
同步时序逻辑电路的设计是指根据特定的逻辑要求,设计 出能实现其逻辑功能的时序逻辑电路。显然, 设计是分析的逆 过程,即:
①
建立给定问题的逻辑描述
假定采用 “真值表法”,可作出真值表如下表所示。
A B C F
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 1 0 1 1 1
由真值表可写出函数F的最小项表达式为
F(A,B,C) = ∑m (3,5,6,7)
②
求出逻辑函数的最简表达式
0
1
根据状态响应序列可作出时间图如下:
时钟节拍:1 2 输入x1: 0 0 输入x2: 0 1 状态 y: “0” 0 输出Z : 0 1 3 1 0 0 1 4 1 1 0 0 5 0 1 1 0 6 1 1 1 1 7 1 0 1 0 8 0 0 1 1
组合逻辑电路和时序逻辑电路。

组合逻辑电路和时序逻辑电路。
组合逻辑电路是一种基本的数字电路,它采用各种逻辑门和电子元件,将输入信号转换成输出信号。
与之不同的是,时序逻辑电路是一种具有时序和存储能力的数字电路,它可以记忆之前的状态并将其用于决策。
下面我们将从以下几个方面入手,分别探讨组合逻辑电路和时序逻辑电路。
1. 组合逻辑电路组合逻辑电路通常由以下基本门电路构成:与门、或门、非门、异或门等。
这些门电路可以组成各种条理分明的电路逻辑,如加法器、减法器、多路选择器、多输出逻辑功能等。
组合逻辑电路主要应用在组合逻辑相关电路的设计中,如编码器、解码器等。
2. 时序逻辑电路时序逻辑电路是一种带有存储元件的数字电路,可在一定时间间隔足够长的情况下,自行储存当前状态并决策下一状态。
时序逻辑电路通常需要用到触发器、计数器等元件,可以实现循环、计数、分频等功能。
时序逻辑电路常应用于计算机、嵌入式系统、通信系统等领域。
3. 组合逻辑电路和时序逻辑电路的联系组合逻辑电路和时序逻辑电路结合在一起,可以构成高级电路系统,实现各种复杂功能。
例如,组合电路可以用于控制输入信号的条件,并动态的改变输出信号。
时序电路可以用于储存过程中产生的信号,而组合电路则将其用于进一步计算。
4. 组合逻辑电路和时序逻辑电路的应用组合逻辑电路和时序逻辑电路广泛应用于各种数字电路系统,为现代电子技术的发展做出了重要贡献。
它们常应用于计算机领域,如中央处理器(CPU)、存储器和逻辑集成电路等;还常应用于通信系统、嵌入式系统以及各种控制电路等。
总而言之,组合逻辑电路和时序逻辑电路是数字电路的重要组成部分,它们分别代表了两种不同的设计思想和电路方法。
它们的相互配合和应用,可以实现各种复杂电路系统,进一步推动数字电子技术的发展。
时序逻辑电路的基本结构包括组合逻辑电路和存储单元

时序逻辑电路的基本结构包括组合逻辑电路和存储单元
时序逻辑电路是一种用于实现时序控制的电路,它是由组合逻辑电路和存储单元组成的。
组合逻辑电路是一种由多个电路元件组成的电路,它可以根据输入信号的变化来控制输出信号的变化。
它可以实现复杂的逻辑功能,如逻辑运算、比较、控制等。
存储单元是一种用于存储信息的电路,它可以根据输入信号的变化来改变存储的信息,从而控制输出信号的变化。
它可以实现复杂的时序控制功能,如计数、定时、记忆等。
时序逻辑电路是由组合逻辑电路和存储单元组成的,它可以实现复杂的时序控制功能,如计数、定时、记忆等。
它可以用于实现计算机的控制系统、自动控制系统、通信系统等。
时序逻辑电路的基本结构包括组合逻辑电路和存储单元,它们可以实现复杂的时序控制功能,为计算机系统、自动控制系统和通信系统提供了可靠的控制。
简述组合逻辑电路和时序逻辑电路的特点

简述组合逻辑电路和时序逻辑电路的特点组合逻辑电路和时序逻辑电路都是数字电路,组合逻辑电路与时序逻辑电路的区别体现在输入输出关系、有无存储(记忆)单元、结构特点上。
本文主要介绍了组合逻辑电路和时序逻辑电路比较,以及组合逻辑电路和时序逻辑电路的区别是什么。
组合逻辑电路与时序逻辑电路的区别体现在输入输出关系、有无存储(记忆)单元、结构特点上。
1、输入输出关系组合逻辑电路是任意时刻的输出仅仅取决于该时刻的输入,与电路原来的状态无关。
时序逻辑电路是不仅仅取决于当前的输入信号,而且还取决于电路原来的状态,或者说,还与以前的输入有关。
2、有没有存储(记忆)单元3、结构特点女团逻辑电路只是涵盖了电路,但是时序逻辑电路涵盖了女团逻辑电路+存储电路,输入状态必须意见反馈至女团电路的输出端的,与输出信号共同同意女团逻辑的输入。
常用组合逻辑电路——算术运算电路1、半加器两个数a、b相加,只求本位之和,暂不管低位送来的进位数,称之为“半加”。
顺利完成半提功能的逻辑电路叫做半加器。
实际并作二进制乘法时,两个加数通常都不能就是一位,因而不考量低位位次的半加器就是无法解决问题的。
2、全加器两数相乘,不仅考量本位之和,而且也考量低位去的入位数,称作“全加”。
同时实现这一功能的逻辑电路叫做全加器。
3、四位串行加法器如t。
优点:电路直观、相连接便利。
缺点:运算速度不低。
最低位的排序,必须要到所有低位依此运算完结,送去位次信号之后就可以展开。
为了提升运算速度,可以使用全面性位次方式。
4、超前进位加法器所谓全面性位次,就是在作乘法运算时,各位数的位次信号由输出的二进制数轻易产生。
组合逻辑电路和时序逻辑电路的区别

组合逻辑电路和时序逻辑电路的区别
一、输入输出关系
组合逻辑电路是任意时刻的输出仅仅取决于该时刻的输入,与电路原来的状态无关。
而时序逻辑电路不仅仅取决于当前的输入信号,而且还取决于电路原来的状态,或者说,还与以前的输入有关。
二、结构特点
组合逻辑电路只包含门电路。
而时序逻辑电路是组合逻辑电路+存储电路结合;输出状态必须反馈到组合电路的输入端,与输入信号共同决定组合逻辑的输出..
三、分析方法
组合逻辑电路是从电路的输入到输出逐级写出逻辑函数式,最后得到表示输出与输入关系的逻辑函数式。
然后用公式化简法或者卡诺图化简法得到函数式的化简或变换,以使逻辑关系简单明了。
有时还可以将逻辑函数式转换为真值表的形式。
时序逻辑电路:。
第四章同步时序逻辑电路逻辑电路可分为组合逻辑电路和时

组合逻辑电路的模型:
x1
输入
xn
组合 逻辑 电路
F1
输出
Fm
Fi fi (x1,, xn ) i 1,, m
2 触发器
触发器是一种具有两个稳定状态、并且能可靠地设置其状 态的电路单元。触发器通常由逻辑门构成。
同步时序逻辑电路中常常用触发器作为存储元件。
4.2.1 RS触发器
1. 基本RS触发器
4.2.2 D触发器
D触发器除时钟信号输入端外有一个输入端D,具有置0、 置1的功能。D触发器受时钟信号控制,只有当时钟信号 有效时,才能通过输入端D设置其状态;若时钟信号无效, 无论输入端D是什么信号,D触发器保持先前的状态不变。
D触发器的状态方程为:
Q(n1) D
为避免“空翻”现象,实际使用的D触发器采用了维持阻 塞结构,称为维持阻塞D触发器。维持阻塞D触发器在时 钟信号的上升沿采样输入端D并设置状态,具有较高的稳 定性和可靠性。
而存储元件的输出y1, …, yr也作为组合逻辑部分的内部输入, y1, …, yr称为同步时序逻辑电路的状态。当新的时钟信号没 有到来的时候,同步时序逻辑电路的状态y1, …, yr不会发生 改变,即使输入x1 , …, xn有变化状态y1, …, yr也不会改变; 对于新的时钟信号到来之前的状态y1, …, yr称为现态,记作 记作y (n)或y;当新的时钟信号到达后,存储电路会根据激 励信号Y1, …, Yr而改变其输出y1, …, yr ,此时的状态称为次 态,记作y (n + 1)。当时钟信号没有到达时,电路处于现态, 次态是电路未来变化的走向;当时钟信号到来后,先前的 次态成为当前的现态。
在不完全确定状态表中,判断两个状态是否相容的条件是: 在所有的输入条件下,
verilog时序逻辑和组合逻辑

verilog时序逻辑和组合逻辑摘要:1.Verilog 语言概述2.组合逻辑概念与描述3.时序逻辑概念与描述4.组合逻辑与时序逻辑的区别5.Verilog 中组合逻辑和时序逻辑的实例正文:一、Verilog 语言概述Verilog 是一种硬件描述语言,主要用于设计数字电路和系统。
它可以描述电路的结构、功能和时序,并可以进行仿真和综合。
在Verilog 中,我们可以使用不同的逻辑描述方式来实现组合逻辑和时序逻辑电路。
二、组合逻辑概念与描述组合逻辑电路在逻辑功能上的特点是任意时刻的输出仅仅取决于该时刻的输入,与电路原来的状态无关。
组合逻辑不涉及对信号跳变沿的处理,无存储电路,也没有反馈电路。
通常可以通过真值表的形式表达出来。
在Verilog 中,我们可以使用wire 和reg 类型来描述组合逻辑电路。
wire 类型相当于实际的连接线,变量的值随时发生变化,用assign 连接。
reg 类型则是寄存器类型,在下一个触发机制到来之前保留原值,用always 描述。
三、时序逻辑概念与描述时序逻辑电路的特点是输出不仅取决于当前输入,还与电路原来的状态有关。
时序逻辑涉及对信号跳变沿的处理,通常包含存储电路和反馈电路。
时序逻辑电路的行为可以用状态转移方程或状态机描述。
在Verilog 中,我们可以使用always 块和状态机描述时序逻辑电路。
always 块用于描述时序逻辑中的行为,可以对信号进行赋值、存储和输出。
状态机则是一种更加直观的描述时序逻辑电路的方法,通过描述状态转移方程来实现。
四、组合逻辑与时序逻辑的区别组合逻辑和时序逻辑的主要区别在于对信号跳变沿的处理。
组合逻辑不涉及对信号跳变沿的处理,而时序逻辑需要对信号跳变沿进行处理。
此外,组合逻辑通常是并行执行的,而时序逻辑则涉及到时序执行。
五、Verilog 中组合逻辑和时序逻辑的实例在Verilog 中,我们可以通过编写不同的模块来实现组合逻辑和时序逻辑电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合逻辑电路和时序逻辑电路
一、实验目的
1. 熟悉集成电路的引脚排列。
2. 掌握TTL组合逻辑电路的设计方法,完成单元功能电路的设计。
3. 熟悉中规模集成电路译码器、数据选择器的性能与应用。
4. 掌握数字电子技术Multisim软件的使用。
5. 掌握用软件测试D触发器和JK触发器功能的方法。
6. 学会设计和实现具有一定功能的时序逻辑电路。
二、仪器设备
Multisim 10软件
三、实验内容与步骤
1. 用两片74LS00设计一个三人表决电路
要求该电路有3个输入端,1个输出端,输入信号接开关,输出端接发光二极管,当两个以上的人同意时,发光二极管亮。
2. 设计一个三输入三输出的逻辑电路。
要求用2-4译码器74LS139或数据选择器74LS153设计电路,实现功能如下:当A=1,B=C=0时,红绿灯亮;
当B=1,A=C=0时,绿黄灯亮;
当C=1,A=B=0时,黄红灯亮;
当A=B=C=0时,三灯全亮;
其余情况三灯全灭。
3. 利用D触发器或JK触发器和与非门设计一个4人抢答器
要求用开关作为抢答输入,发光二极管作为抢答输出,主持人用单脉冲作为清零输入。
4. 利用中规模计数器74LS161实现任意进制计数器
四、注意事项
1.所用全部器件的输出端不允许与地或电源相连接
2.器件本身的电源和地切勿接反
3.接逻辑电路之前,必须先测试所用单片组件之功能
4.检测导线的好坏
五、实验步骤及过程
1.用两片74LS00组成的三人表决电路。
A、B、C三个单刀单掷开关表示输入,高电平表示同意,悬空(0表示
不同意),LED小灯表示投票结果。
仿真电路图如下:
部分仿真结果如下:
只有A同意,未通过,小灯不亮。
A,B都同意,通过,小灯亮
B,C两人同意,通过,小灯亮
三人都同意,通过,小灯亮
2.设计一个3输入3输出的逻辑电路。
A,B,C三个单刀双掷开关表示三个输入,三个LED灯表示输出,仿真电路如下:
部分仿真结果如下:
A=1,B=C=0,红绿灯亮
C=1,A=B=0,黄红灯亮
A=B=C=0,三灯全灭
3.利用1个D触发器(或JK触发器)和与非门设计一个四人抢答器。
四个点触开关表示输入,上面四个LED分别对应各自的抢答结果,抢答成功LED亮。
下面space开关重置系统。
部分仿真结果如下:
A抢答成功,X1(蓝灯)亮。
4.“预置数置0”实现7进制计数器。
部分仿真结果如下:
六、实验报告总结
Multisim是我以前上模拟电路就想学会使用的一门软件,这次试验让我们又初步掌握一门实用的工具,界面简洁,操作简单,不过初次使用对元器件在板块的分类不是很熟悉,所以用起来不是很顺手。
以后有机会应该多进行模拟仿真,熟练以后可以大大节约资源,实现心中的任何想实现的电路。