综合应用例题

合集下载

综合算式专项练习题实际应用问题解决

综合算式专项练习题实际应用问题解决

综合算式专项练习题实际应用问题解决一、购物优惠某商场举办了一次购物优惠活动,买满一定金额可以获得相应的折扣优惠。

以下是小明所购买商品的价格表:商品名称单价(元)数量(件)商品A 10 3商品B 20 2商品C 30 11. 小明买了以上商品后,总共花费了多少钱?2. 如果小明可以享受满200元减50元的折扣优惠,请问他应该支付多少钱?3. 如果小明还有一张面值为100元的商场代金券,可以用于抵扣购物费用,他最终应该支付多少钱?解答:1. 小明购买商品A的总价为10元/件 × 3件 = 30元;购买商品B的总价为20元/件 × 2件 = 40元;购买商品C的总价为30元/件 × 1件 = 30元。

因此,小明总共花费的钱为30元 + 40元 + 30元 = 100元。

2. 小明购买商品的总价为100元,满200元减50元的折扣优惠可以应用在总价上。

因此,小明应该支付的金额为100元- 50元= 50元。

3. 假设小明购物总价为X元。

由于他还有一张面值为100元的商场代金券,因此可以用于抵扣购物费用。

所以,小明最终需要支付的金额为X元 - 100元。

以上就是购物优惠问题的解答。

二、汽车油耗计算小明驾驶他的汽车前往远方旅行,他想计算出整个旅程中汽车的总油耗。

已知小明的汽车在市区行驶时每百公里的耗油量为8升,而在高速公路行驶时每百公里的耗油量为6升。

以下是小明在旅途中行驶的路段情况:路段距离(公里)路况类型市区环绕道 120 市区高速公路 250 高速乡村道路 180 乡村请帮助小明计算以下问题:1. 小明在市区环绕道行驶时的油耗是多少升?2. 小明在高速公路行驶时的油耗是多少升?3. 小明在乡村道路行驶时的油耗是多少升?4. 整个旅程中小明需要消耗的总油量是多少升?解答:1. 在市区环绕道行驶120公里,每百公里的油耗为8升,因此小明在市区环绕道行驶时的油耗为120公里 ÷ 100公里/升 × 8升 = 9.6升。

小学数学 加乘原理综合应用 完整版教案 例题+练习+答案

小学数学 加乘原理综合应用 完整版教案 例题+练习+答案

加乘原理在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....来完成,这....的独立步骤几步是完成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.例题精讲第一板块、简单加乘原理综合应用【例题1】商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.⑴如果小明只买一种糖,他有几种选法?⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法?⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从2种巧克力糖中选一种有2种办法;第二类是从3种水果糖中选一种,有3种办法.因此,小明有2+3=5种选糖的方法.⑵小明完成这件事要分两步,每步分别有2种、3种方法,因此有3×2=6种方法.【巩固】从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海或者武汉作停留,已知北京到上海、武汉和上海、武汉到广州除了有飞机和火车两种交通方式外还有汽车.问,从北京到广州一共有多少种交通方式供选择?从北京转道上海到广州一共有3×3=9种方法,从北京转道武汉到广州一共也有3×3=9种方法供选择,从北京直接去广州有2种方法,所以一共有9+9+2=20种方法.【例题2】从智慧学校到王明家有3条路可走,从王明家到张老师家有2条路可走,从智慧学校到张老师家有3条路可走,那么从智慧学校到张老师家共有多少种走法?根据乘法原理,经过王明家到张老师家的走法一共有3×2=6种方法,从智慧学校直接去张老师家一共有3条路可走,根据加法原理,一共有6+3=9种走法.【巩固】如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法?丁丙乙甲从甲地到丙地有两种方法:第一类,从甲地经过乙地到丙地,根据乘法原理,走法一共有4×2=8种方法,;第二类,从甲地经过丁地到丙地,一共有3×3=9种方法.根据加法原理,一共有8+9=17种走法.【例题3】如下图,八面体有12条棱,6个顶点.一只蚂蚁从顶点A 出发,沿棱爬行,要求恰好经过每一个顶点一次.问共有多少种不同的走法?F E DCBA走完6个顶点,有5个步骤,可分为两大类:①第二次走C 点:就是意味着从A 点出发,我们要先走F ,D ,E ,B 中间的一点,再经过C 点,但之后只能走D ,B 点,最后选择后面两点.有4×1×2×1×1=8种(从F 到C 的话,是不能到E 的);②第二次不走C :有4×2×2×2×1=32种(同理,F 不能到E);共计:8+32=40种.【巩固】如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?因为强调2本书来自不同的学科,所以共有三种情况:来自语文、数学:3×4=12;来自语文、外语:3×5=15;来自数学、外语:4×5=20;所以共有12+15+20=47.【例题4】某信号兵用红,黄,蓝,绿四面旗中的三面从上到下挂在旗杆上的三个位置表示信号.每次可挂一面,二面或三面,并且不同的顺序,不同的位置表示不同的信号.一共可以表示出多少种不同的信号?(6级)由于每次可挂一面、二面或三面旗子,我们可以根据旗杆上旗子的面数分三类考虑:第一类第一类,可以从四种颜色中任选一种,有4种表示法;第二类,要分两步完成:第一步,第一面旗子可以从四种颜色中选一种,有4种选法;第二步,第二面旗子可从剩下的三种中选一种,有3种选法.根据乘法原理,共有4×3=12种表示法;第三类,要分三步完成:第一步,第一面旗子可以从四种颜色中选一种,有4种选法;第二步,第二面旗子可从剩下的三种中选一种,有3种选法;第三步,第三面旗子可从剩下的两种颜色中选一种,有2种选法.根据乘法原理,共有4×3×2=24种表示法.根据加法原理,一共可以表示出4+12+24=40种不同的信号.【巩固】五面五种颜色的小旗,任意取出一面、两面或三面排成一行表示各种信号,问:共可以表示多少种不同的信号?分3种情况:⑴取出一面,有5种信号;⑵取出两面:可以表示5×4=20种信号;⑶取出三面:可以表示:5×4×3=60种信号;由加法原理,一共可以表示:5+20+60=85种信号.第三类,三种颜色:4×3×2=24所以,根据加法原理,一共可以表示2+36+24=62种不同的信号.(二)白棋打头的信号,后两面旗有4×4=16种情况.所以白棋不打头的信号有62-16=46种.【例题5】小红和小明举行象棋比赛,按比赛规定,谁先胜头两局谁赢,如果没有胜头两局,谁先胜三局谁赢.共有种可能的情况.小红和小明如果有谁胜了头两局,则胜者赢,此时共2种情况;如果没有人胜头两局,即头两局中两人各胜一局,则最少再进行两局、最多再进行三局,必有一人胜三局,如果只需再进行两局,则这两局的胜者为同一人,对此共有2×2=4种情况;如果还需进行三局,则后三局中有一人胜两局,另一人只胜一局,且这一局不能为最后一局,只能为第三局或第四局,此时共有2×2×2=8种情况,所以共有2+4+8=14种情况.【巩固】过年了,妈妈买了7件不同的礼物,要送给亲朋好友的5个孩子每人一件.其中姐姐的儿子小强想从智力拼图和遥控汽车中选一个,朋友的女儿小玉想从学习机和遥控汽车中选一件.那么,妈妈送出这5件礼物共有种方法.若将遥控汽车给小强,则学习机要给小玉,此时另外3个孩子在剩余5件礼物中任选3件,有5×4×3=60种方法;若将遥控车给小玉,则智力拼图要给小强,此时也有60种方法;若遥控车既不给小强、也不给小玉,则智力拼图要给小强,学习机要给小玉,此时仍然有60种方法.所以共有60+60+60=180种方法.【例题6】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?可以分三种情况来考虑:⑴3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有3×2×1=6种不同的排列,此时有6×2=12种订法.⑵3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.⑶3所学校订的报纸数量都相同,只有100,100,100一种订法.由加法原理,不同的订法一共有12+6+1=19种.【巩固】玩具厂生产一种玩具棒,共4节,用红、黄、蓝三种颜色给每节涂色.这家厂共可生产________种颜色不同的玩具棒.每节有3种涂法,共有涂法3×3×3×3=81(种).但上述81种涂法中,有些涂法属于重复计算,这是因为有些游戏棒倒过来放时的颜色与顺着放时的颜色一样,却被我们当做两种颜色计算了两次.可以发现只有游戏棒的颜色关于中点对称时才没有被重复计算,关于中点对称的游戏棒有3×3×1×1=9(种).故玩具棒最多有(81+9)÷2=45种不同的颜色.【例题7】奥苏旺大陆上的居民使用的文字非常独特,他们文字的每个单词都由5个字母a、b、c、d、e组成,并且所有的单词都有着如下的规律,⑴字母e不打头,⑵单词中每个字母a后边必然紧跟着字母b,⑶c 和d不会出现在同一个字母之中,那么由四个字母构成的单词一共有多少种?分为三种:第一种:有两个a的情况只有abab1种第二种,有一个a的情况,又分3类第一类,在第一个位置,则b在第二个位置,后边的排列有4×4=16种,减去c、d同时出现的两种,总共有14种,第二类,在第二个位置,则b在第三个位置,总共有3×4-2=10种.第三类,在第三个位置,则b在第四个位置,总共有3×4-2=10种.第三种,没有a的情况:分别计算没有c的情况:2×3×3×3=54种.没有d的情况:2×3×3×3=54种.没有c、d的情况:1×2×2×2=8种.由容斥原理得到一共有54+54-8=100种.所以,根据加法原理,一共有1+14+10+10+100=135种.【巩固】从6名运动员中选出4人参加4×100接力赛,求满足下列条件的参赛方案各有多少种:⑴甲不能跑第一棒和第四棒;⑵甲不能跑第一棒,乙不能跑第二棒⑴先确定第一棒和第四棒,第一棒是除甲以外的任何人,有5种选择,第四棒有4种选择,剩下的四人中随意选择2个人跑第二、第三棒,有4×3=12种,由乘法原理,共有:5×4×12=240种参赛方案⑵先不考虑甲乙的特殊要求,从6名队员中随意选择4人参赛,有6×5×4×3=360种选择.考虑若甲跑第一棒,其余5人随意选择3人参赛,对应5×4×3=60种选择,考虑若乙跑第二棒,也对应5×4×3=60种选择,但是从360种中减去两个60种的时候,重复减了一次甲跑第一棒且乙跑第二棒的情况,这种情况下,对应于第一棒第二棒已确定只需从剩下的4人选择2人参赛的4×3=12种方案,所以,一共有360-60×2+12=252种不同参赛方案.第二板块、加乘原理与数字问题【例题1】由数字1,2,3可以组成多少个没有重复数字的数?因为有1,2,3共3个数字,因此组成的数有3类:组成一位数;组成二位数;组成三位数.它们的和就是问题所求.⑴组成一位数:有3个;⑵组成二位数:由于数字可以重复使用,组成二位数分两步完成;第一步排十位数,有3种方法;第二步排个位数也有3种方法,因此由乘法原理,有3×2=6个;⑶组成三位数:与组成二位数道理相同,有3×2=6个三位数;所以,根据加法原理,一共可组成3+6+6=15个数.【巩固】用数字0,1,2,3,4可以组成多少个小于1000的自然数?小于1000的自然数有三类.第一类是0和一位数,有5个;第二类是两位数,有4×5=20个;第三类是三位数,有4×5×5=100个,共有5+20+100=125个.【例题2】由数字0,1,3,9可以组成多少个无重复数字的自然数?满足条件的数可以分为4类:一位、二位、三位、四位数.第一类,组成0和一位数,有4个(0不是一位数,最小的一位数是1);第二类,组成二位数,有3×3=9个;第三类,组成三位数,有3×3×2=18个;第四类,组成四位数,有3×3×2×1=18个.由加法原理,一共可以组成4+9+18+18=49个数.【巩固】用数码0,1,2,3,4,可以组成多少个小于1000的没有重复数字的自然数?分为三类,一位数时,0和一位数共有5个;二位数时,为4×4=16个,三位数时,为:4×4×3=48个,由加法原理,一共可以组成5+16+48=69个小于1000的没有重复数字的自然数.【例题3】用0~9这十个数字可组成多少个无重复数字的四位数.无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.(方法一)分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法;第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法;由乘法原理,共有满足条件的四位数9×9×8×7=4536个.(方法二)组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个;第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.由加法原理,共有满足条件的四位数3024+1512=4536个.【巩固】用0,1,2,3四个数码可以组成多少个没有重复数字的四位偶数?分为两类:个位数字为0的有3×2=6个,个位数字为 2的有2×2=4个,由加法原理,一共有:6+4=10个没有重复数字的四位偶数.【例题4】某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,只要考虑6的位置即可,6可以随意选择四个位置,其余位置方1,共有4种选择.第二种中,先考虑放2,有4种选择,再考虑5的位置,有3种选择,剩下的位置放1,共有4×3=12种选择,同理,第三、第四、第五种都有12种选择,最后一种与第一种相似,3的位置有四种选择,其余位置放2,共有4种选择.由加法原理,一共可以组成4+12+12+12+12+4=56个不同的四位数,即为确保打开保险柜至少要试56次.【巩固】从1到500的所有自然数中,不含有数字4的自然数有多少个?从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数中,小于500并且不含数字4的可以这样考虑:百位上,不含4的有1、2、3、这三种情况.十位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,个位上,不含4的也有九种情况.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理,这时共有3×9×9=243个三位数.由于500也是一个不含4的三位数.所以,1~500中,不含4的三位数共有3×9×9+1=244个.所以一共有8+8×9+3×9×9+1=324个不含4的自然数.【例题5】从1到100的所有自然数中,不含有数字4的自然数有多少个?从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有个不含4的8+8×9+1=81自然数.【巩固】从1到300的所有自然数中,不含有数字2的自然数有多少个?从1到300的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含2的有8个,它们是1、3、4、5、6、7、8、9;两位数中,不含2的可以这样考虑:十位上,不含2的有1、3、4、5、6、7、8、9这八种情况.个位上,不含2的有0、1、3、4、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含2;三位数中,除去300外,百位数只有1一种取法,十位与个位均有0,1,3,4,5,6,7,8,9九种取法,根据乘法原理,不含数字2的三位数有:1×9×9=81个,还要加上300;根据加法原理,从1到300的所有自然数中,不含有数字2的自然数一共有8+72+82=162个.【例题6】自然数8336,8545,8782有一些共同特征,每个数都是以8开头的四位数,且每个数中恰好有两个数字相同.这样的数共有多少个?两个相同的数字是8时,另一个8有3个位置可选,其余两个位置有9×8=72种填法,有3×9×8=216个数;两个相同的数字不是8时,相同的数字有9种选法,不同的数字有8种选法,并有3个位置可放,有9×8×3=216个数.由加法原理,共有3×9×8+9×8×3=432个数.【巩固】在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?若相同的数是1,则另一个1可以出现在个、十、百位中的任一个位置上,剩下的两个位置分别有9个和8个数可选,有3×9×8=216个;若相同的数是2,有3×8=24个;同理,相同的数是0,3,4,5,6,7,8,9时,各有 24个,所以,符合题意的数共有216+9×24=432个【例题7】用数字1,2组成一个八位数,其中至少连续四位都是1的有多少个?将4个1看成一个整体,其余4个数有5种情况:4个2、3个2、2个2、1个2和没有2;①4个2时,4个1可以有5种插法;②3个2时,3个2和1个1共有4种排法,每一种排法有4种插法,共有4×4=16种;③2个2时,2个2和2个1共有6种排法,每一种排法有3种插法,共有6×3=18种;④1个2时,1个2和3个1共有4种排法,每一种排法有2种插法,共有4×2=8种;⑤没有2时,只有1种;所以,总共有:5+16+18+8+1=48个.答:至少连续四位都是1的有48个.【巩固】七位数的各位数字之和为60,这样的七位数一共有多少个?七位数数字之和最多可以为9×7=63.63-60=3.七位数的可能数字组合为:①9,9,9,9,9,9,6.第一种情况只需要确定6的位置即可.所以有6种情况.②9,9,9,9,9,8,7.第二种情况只需要确定8和7的位置,数字即确定.8有7个位置,7有6个位置.所以第二种情况可以组成的7位数有7×6=42个.③9,9,9,9,8,8,8,第三种情况,3个8的位置确定即7位数也确定.三个8的位置放置共有7×6×5=210种.三个相同的8放置会产生3×2×1=6种重复的放置方式.所以3个8和4个9组成的不同的七位数共有210÷6=35种.所以数字和为60的七位数共有35+42+7=84.【例题8】从自然数1~40中任意选取两个数,使得所选取的两个数的和能被4整除,有多少种取法?2个数的和能被4整除,可以根据被4除的余数分为两类:第一类:余数分别为0,0.1~40中能被4整除的数共有40÷4=10(个),10个中选2个,有10×9÷2=45(种)取法;第二类:余数分别为1,3.1~40中被4除余1,余3的数也分别都有10个,有10×10=100(种)取法;第三类:余数分别为2,2.同第一类,有45种取法.根据加法原理,共有45+100+45=190(种)取法.【巩固】在1~10这10个自然数中,每次取出两个不同的数,使它们的和是3的倍数,共有多少种不同的取法?两个数的和是3的倍数有两种情况,或者两个数都是3的倍数,或有1个除以3余1,另一个除以3余2.1~10中能被3整除的有3个数,取两个有3种取法;除以3余1的有4个数,除以3余2的有3个数,各取1个有3×4=12种取法.根据加法原理,共有取法:3+12=15种.【例题9】1到60这60个自然数中,选取两个数,使它们的乘积是被5除余2的偶数,问,一共有多少种选法?两个数的乘积被5除余2有两类情况,一类是两个数被5除分别余1和2,另一类是两个数被5除分别余3和4,只要两个乘数中有一个是偶数就能使乘积也为偶数.1到60这60个自然数中,被5除余1、2、3、4的偶数各有6个,被5除余1、2、3、4的奇数也各有6个,所以符合条件的选取方式一共有(6×6+6×6+6×6+6×6)+(6×6+6×6)=216种.【巩固】一个自然数,如果它顺着看和倒过来看都是一样的,那么称这个数为“回文数”.例如1331,7,202都是回文数,而220则不是回文数.问:从一位到六位的回文数一共有多少个?其中的第1996个数是多少? 我们将回文数分为一位、二位、三位、…、六位来逐组计算.所有的一位数均是“回文数”,即有9个;在二位数中,必须为aa形式的,即有9个(因为首位不能为0,下同);在三位数中,必须为aba(a、b可相同,在本题中,不同的字母代表的数可以相同)形式的,即有9×10 =90个;在四位数中,必须为abba形式的,即有9×10个;在五位数中,必须为abcda形式的,即有9×10×10=900个;在六位数中,必须为abccba形式的,即有9×10×10=900个.所以共有9 + 9 + 90 + 90 + 900 + 900 = 1998个,最大的为999999,其次为998899,再次为997799.而第1996个数为倒数第3个数,即为997799.所以,从一位到六位的回文数一共有1998个,其中的第1996个数是997799.【例题10】如图,将1,2,3,4,5分别填入图中1×5的格子中,要求填在黑格里的数比它旁边的两个数都大.共有种不同的填法.因为要求“填在黑格里的数比它旁边的两个数都大”,所以填入黑格中的数不能够太小,否则就不满足条件.通过枚举法可知填入黑格里的数只有两类:第一类,填在黑格里的数是5和4;第二类,填在黑格里的数是5和3.接下来就根据这两类进行计数:第一类,填在黑格里的数是5和4时,分为以下几步:第一步,第一个黑格可从5和4中任选一个,有2种选法;第二步,第二个黑格可从5和4中剩下的一个数选择,只有1种选法;第三步,第一个白格可从1,2,3中任意选一个,有3种选法.第四步,第二个白格从1,2,3剩下的两个数中任选一个,有2种选法;第五步,最后一个白格只有1种选法.根据乘法原理,一共有(2×1)×(3×2×1)=12种.第二类,填在黑格里的数是5和3时,黑格中有两种填法,此时白格也有两种填法,根据乘法原理,不同的填法有2×2=4种.所以,根据加法原理,不同的填法共有12+4=16种.【巩固】在如图所示1×5的格子中填入1,2,3,4,5,6,7,8中的五个数,要求填入的数各不相同,并且填在黑格里的数比它旁边的两个数都大.共有种不同的填法.如果取出来的五个数是1、2、3、4、5,则共有不同填法16种.从8个数中选出5个数,共有8×7×6÷(3×2×1)=56中选法,所以共16×56=896种.【例题11】从1~12中选出7个自然数,要求选出的数中不存在某个自然数是另一个自然数的2倍,那么一共有种选法.由于要求选出的数中不存在某个自然数是另一个自然数的2倍,可以先根据2倍关系将1~12进行如下分组:(1,2,4,8);(3,4,12);(5,10);(7);(9);(11).由于第一组最多可选出2个数,第二组最多可选出2个数,其余四组最多各可选出1个数,所以最多可选出8个数.现在要求选出7个数,所以恰好有一组选出的数比它最多可选出的数少一个.⑴如果是第一组少一个,也就是说第一组选1个,第二组选2个,其余四组各选1个,此时有4×1×2×1×1×1=8种选法;⑵如果是第二组少一个,也就是说第一组选2个,其余五组各选一个,此时第一组有3种选法,根据乘法原理,有3×3×2×1×1×1=18种选法;⑶如果是第三组少一个,也就是说第一组选2个,第二组选2个,第三组不选,其余三组各选1个,有3×1×1×1×1×1=3种选法;⑷如果是第四、五、六组中的某一组少一个,由于这三组地位相同,所以各有3×1×2×1×1×1=6种选法.根据加法原理,共有8+18+3+6×3=47种不同的选法.【巩固】从1到999这999个自然数中有个数的各位数字之和能被4整除.由于在一个数的前面写上几个0不影响这个数的各位数字之和,所以可以将1到999中的一位数和两位数的前面补上两个或一个0,使之成为一个三位数.现在相当于要求001到999中各位数字之和能被4整除的数的个数.一个数除以4的余数可能为0,1,2,3,0~9中除以4余0的数有3个,除以4余1的也有3个,除以4余2和3的各有2个.三个数的和要能被4整除,必须要求它们除以4的余数的和能被4整除,余数的情况有如下5种:0+0+0;0+1+3;0+2+2;1+1+2;2+3+3.⑴如果是0+0+0,即3个数除以4的余数都是0,则每位上都有3种选择,共有3×3×3=27种可能,但是注意到其中也包含了000这个数,应予排除,所以此时共有27-1=26个;⑵如果是0+1+3,即3个数除以4的余数分别为0,1,3,而在3个位置上的排列有3×2×1=6种,所以此时有3×3×2×6=108个;⑶如果是0+2+2,即3个数除以4的余数分别为0,2,2,在3个位置上的排列有3种,所以此时有3×2×2×3=36个;⑷如果是1+1+2,即3个数除以4的余数分别为1,1,2,在3个位置上的排列有3种,所以此时有3×3×2×3=54个;⑸如果是2+3+3,即3个数除以4的余数分别为2,3,3,在3个位置上的排列有3种,此时有2×2×2×3=24个.根据加法原理,共有26+108+36+54+24=248.【例题12】有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.第一类,两个数字同为奇数.由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现奇数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.第二类,两个数字同为偶数,类似第一类的讨论方法,也有3×3=9种不同情形.最后再由加法原理即可求解.两个正方体向上的一面数字之和为偶数的共有3×3+3×3=18种不同的情形.【巩固】有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为奇数的有多少种情形?要使两个数字之和为奇数,只要这两个数字的奇偶性不同,即这两个数字一个为奇数,另一个为偶数,由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现偶数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.【例题13】有两个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这两个骰子,向上一面点数之和为偶数的情形有多少种?方法一:要使两个骰子的点数之和为偶数,只要这两个点数的奇偶性相同,可以分为两步:第一步第一个骰子随意掷有6种可能的点数;第二步当第一个骰子的点数确定了以后,第二个骰子的点数只能是与第一个骰子的点数相同奇偶性的3种可能的点数.根据乘法原理,向上一面的点数之和为偶数的情形有6×3=18(种).方法二:要使两个骰子点数之和为偶数,只要这两个点数的奇偶性相同,所以,可以分为两类:第一类:两个数字同为奇数.有3×3=9(种)不同的情形.第二类:两个数字同为偶数.类似第一类,也有3×3=9(种)不同的情形.根据加法原理,向上一面点数之和为偶数的情形共有9+9=18(种).方法三:随意掷两个骰子,总共有6×6=36(种)不同的情形.因为两个骰子点数之和为奇数与偶数的可能性是一样的,所以,点数之和为偶数的情形有36÷2=18(种).【巩固】有三个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这三个骰子,向上一面点数之和为偶数的情形有多少种?方法一:要使三个点数之和为偶数,有两种情况,三个点数都为偶数,或者一个点数为偶数另外两个点数为奇数.可以分为三步:第一步,第一个骰子随意掷有6种可能的点数;第二步,当第一个骰子的点数确定了以后,第二个骰子的点数还是奇数偶数都有可能所有也有6种可能的点数;第三步,当前两个骰子的点数即奇偶性都确定了之后第三个骰子点数的奇偶性就确定了所以只有3种可能的点数.根据乘法原理,向上一面的点数之和为偶数的情形有6×6×3=108(种).方法二:要使三个点数之和为偶数,有两种情况,三个点数都为偶数,或者一个点数为偶数另外两个点数为奇数.所以,要分两大类来考虑:第一类:三个点数同为偶数.由于掷骰子可认为是一个一个地掷.每掷一个骰子出现偶数点数都有3种可能.由乘法原理,这类共有3×3×3=27(种)不同的情形.。

7.5不等式的综合应用(教师版)

7.5不等式的综合应用(教师版)

科 目 数学 年级 高三 备课人 高三数学组 第 课时 7.5不等式的综合应用【典型例题】一、简单线性规划的实际应用:例1、(2012 四川)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A.1800元B.2400元C.2800元D.3100元*2122120,0,x y x y x y x y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈⎩,最大利润为max 300400,430044002800z x y z =+=⨯+⨯=.变式训练:(2012 江西)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:年产量/亩 年种植成本/亩 每吨售价黄瓜 4吨 1.2万元 0.55万元韭菜 6吨 0.9万元 0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A.50,0B.30,20C.20,30D.0,50501.20.9540,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,最大收入为40.5560.3 1.20.90.9z x y x y x y =⨯+⨯--=+,则z 在区间(30,20)处取最大值.二、基本不等式的简单应用:例2、某养殖厂需定期购买饲料,已知该厂每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管与其他费用为平均每千克每天0.03元,购买饲料每次支付运费300元.假定当天所买饲料当天用不需要保管与其他费用.(1)求该厂多少天购买一次饲料才能使平均每天支付的总费用最少?(2)若提供饲料的公司规定,当一次购买饲料不少于5吨时其价格可享受八五折优惠(即为原价的85%),问该厂是否可以考虑利用此优惠条件?若考虑优惠条件,则应如何安排可使平均每天所支付的费用最少?(1)设该厂应隔*()x x N ∈天购买一次饲料,平均每天支付的总费用为y .由于饲料的保管与其他费用每天比前一天少2000.036⨯=元,故x 天饲料的保管与其他费用总共是:26(1)6(2)...633x x x x -+-++=-元所以21300(33300)200 1.83357417y x x x x x=-++⨯=++≥ 当且仅当3003,10x x x ==即时取等号 (2)若厂家利用此优惠条件,则至少25天购买一次饲料,设该厂利用此优惠条件,每隔*(25,)x x x N ≥∈天购买一次饲料,平均每天支付的总费用为z , 则:2*1300(33300)200 1.80.853303,(25,)z x x x x x N x x=-++⨯⨯=++≥∈ 由于23003z x'=-+,故当25x ≥时,0z '>,即函数z 在[25,)+∞为增函数. 故当25x =时,z 有最小值min 390417z =<故该厂可以接受此优惠条件变式训练:某厂家拟在2013年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用m 万元(0m ≥)满足31k x m =-+(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2013年生产该产品的固定投入为8万元,每生产1万件产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2013年该产品的利润y 万元表示为年促销费用m (万元)的函数;(2)该厂家2013年的促销费用投入多少万元时,厂家的利润最大?(1)当0m =时,1x =,故2k =;所以231x m =-+; 而每件产品的销售价格为8161.5x x +⨯元 因此81616[1.5](816)[(1)]29,(0)1x y x x m m m x m +=⨯-++=-+++≥+ (2)16[(1)]2921629211y m m =-+++≤-+=+,当且仅当16(1),31m m m =+=+即万元时取等号.【课后反思】。

一次函数综合应用(习题及答案)

一次函数综合应用(习题及答案)

一次函数综合应用(习题及答案)一次函数综合应用(习题)➢例题示范例1:一次函数y=kx+b 的图象经过点A(0,3),且与正比例函数y=-x 的图象相交于点B,点B 的横坐标为-1,求一次函数的表达式.思路分析:从完整的表达式入手,由正比例函数过点B,可得B 点坐标,然后由一次函数y=kx+b 的图象经过点A,B,待定系数法求解.解:∵点B 在正比例函数y=-x 的图象上,且点B 的横坐标为-1∴B(-1,1)将A(0,3),B(-1,1)代入y=kx+b,得⎧ b = 3⎨-k +b = 1⎧k = 2⎩b 3∴一次函数的表达式为y=2x+3.➢巩固练习1.已知一次函数y=2x+a 和y=-x+b 的图象都经过点A(-2,0),且与y轴分别交于点B,C,则△ABC 的面积为.2.已知直线y=kx+b 和直线y =-1x + 3 与y 轴的交点相同,且经2过点(2,-1),则这个一次函数的表达式是.3.已知一次函数y=kx-3 经过点M,则此直线与x轴、y 轴围成的三角形的面积为.4.5.如图,直线y=2x+3 与直线y=-2x-1 相交于C 点,并且与y 轴分别交于A,B 两点.(1)求两直线与y 轴交点A,B 的坐标及交点 C 的坐标;(2)求△ABC 的面积.6.一次函数y=2x-3 的图象与y 轴交于点A,另一个一次函数图象与y 轴交于点B,两条直线交于点C,C 点的纵坐标为1,且S =5,求另一条直线的解析式.△ABC7.已知一次函数y=kx+b 的图象经过点(0,10),且与正比例函数y 1x 的图象相交于点(4,a).2(1)求一次函数y=kx+b 的解析式;(2)求这两个函数图象与y 轴所围成的三角形的面积.8.如图,直线y=kx+4 与x 轴、y 轴分别交于点A,B,已知点A的坐标为(-3,0),点 C 的坐标为(-2,0).(1)求k 的值;(2)若P 是直线y=kx+4 上的一个动点,当点P 运动到什么位置时,△OPC 的面积为3?请说明理由.【参考答案】➢ 巩固练习1. 62. y =-2x +33. 944. 4 或-45. 26. y = x + 2或y =﹣x + 27. (1)A (12,0),B (0,6),C (4,4) (2)248. (1)A (0,3) B (0,-1) C (-1,1);(2)29. y = - 1 x + 2 或 y = 9 x - 82 210. (1) y = -2x +10 (2)2011. (1) k = 4 ;(2) ⎛ - 3 ,3⎫,⎛ - 21 ,- 3⎫3 ⎝4 ⎪ ⎭ ⎝ 4 ⎪ ⎭。

不等关系综合应用(习题及答案)

不等关系综合应用(习题及答案)

6. 已知 a,b 为实数,关于 x 的不等式组的解集在数轴上的表示
如图所示,则这个不等式组可能是( )
ax 1 A. bx 1
ax 1 B. bx 1
C.
ax bx
1 1
D.
ax bx
1 1
4
7. 若 a b 2 ,且 1 5a 3b ≤ 3a ,则 b 的取值范围是_____ _________________. 【思路分析】 ①方程与不等式组合,考虑___________________. ②根据目标“求 b 的取值范围”,把方程 a b 2 变形得, ___________________, 代入不等式组得,_________________, 解得,___________________.
2x a ≥ 0 4. 若关于 x 的不等式组 3 x 1 只有 2 个整数解,则 a 的取值
范围是___________.
【思路分析】
①解不等式组得,
____________ ____________
②确定大致范围
因为不等式组只有 2 个整数解,所以利用数轴确定大致范围.
画数轴:
由数轴可得__________________, ∴a 的大致范围是__________. ③验证端点值 当_____________,即 a ____ 时,________________; 当_____________,即 a ____ 时,________________. 综上,a 的取值范围是____________________.
3
3
1
巩固练习
x 1< m
1.
若关于
x
的不等式组
x

2m

中考语文综合运用类解题类型及技巧

中考语文综合运用类解题类型及技巧

中考语文综合运用类解题类型及技巧语文综合运用的中考具体题型分类有:一、综合运用类二、实践探究类三、主题探讨类四、地方特色类五、图文结合类六、信息提取类七、关注时事类一、综合运用类例题:你班组织“毕业晚会”活动,你经历了下面一些事情,你是怎么解决的?1、班级征集晚会主题语,要求是简洁形象的一句话或一个短语。

你写的是什么?2、根据节目表,合唱《让我们荡起双桨》之后是舞蹈”友谊地久天长“,请你为连接这两个节目写几句串台词。

3、事后某同学为学校广播站写了一则消息,交稿前,她请你做些修改。

①为了活泼毕业班同学的课余生活,加强同学之间、师生之间的情感交流,九年级⑴班最近组织了毕业晚会。

②同学们踊跃参与、认真准备,各逞其能。

晚会内容丰富,形式多样,③有歌舞、朗诵、合唱、相声、小品等。

活动中,大家增进了友谊,展望了未来。

晚会过后,该班又精神饱满地投入到紧张的学习之中。

⑴句①中,有词语搭配不当,可将“____”一词改成“____”。

⑵句②中,有词语使用不当,应该为“____”。

⑶句③中,有词语并列不当,应删去“____”。

4、晚会后,你感到收获很大。

第二天上学路上,领班一位同学问你:”学习那么紧张,花那么多时间搞活动,划得来吗?“请你用一两句话得体地回答他的提问,表明你的看法。

解题指导这是一道语言综合运用题,兼容应用文、语病修改、语文活动等知识的应用与实践。

命题人做了一个精心的设计,把课堂中学习到的各种语文知识通过一次活动串联起来,各小题从不同的角度对学生的能力进行考察,而且题目与学生的实际结合非常紧密,使学生能够联系生活实际来思考和答题。

1、2题考察的是写广告、标语、解说词、拟对联、致欢迎词的能力。

3题考察的是修改病句的能力。

题4考察的口语交际能力。

二、实践探究类例题:每年的4月23日定为“世界图书和版权日”(也译为“世界读书日”、“世界书香日”),鼓励人们尤其是年轻人发现读书的乐趣,并以此对那些推动人类社会和文化进步的人们所做出的伟大贡献表示感谢和尊重。

高中数学例题:直线方程的综合应用

高中数学例题:直线方程的综合应用例6.已知△ABC 的三个顶点坐标分别是A (-5,0),B (3,-3),C (0,2),分别求BC 边上的高和中线所在的直线方程.【答案】3x -5y+15=0 x+13y+5=0【解析】 BC 边上的高与边BC 垂直,由此求得BC 边上的高所在直线的斜率,由点斜式得方程;利用中点坐标公式得BC 的中点坐标,由两点式得BC 边上的中线所在的直线方程.设BC 边上的高为AD ,则BC ⊥AD ,∴1BC AD k k ⋅=-,∴23103AD k +⋅=--,解得35AD k =, ∴BC 边上的高所在的直线方程是30(5)5y x -=+,即3x -5y+15=0. 设BC 的中点是M ,则31,22M ⎛⎫- ⎪⎝⎭, ∴BC 边上的中线所在直线方程是05130522y x -+=--+,即x+13y+5=0. ∴BC 边上的高所在的直线方程是3x -5y+15=0,BC 边上的中线所在的直线方程为x+13y+5=0.【点评】求直线的方程的关键是选择适当的直线方程的形式.本题根据已知求BC 边上的高所在的直线方程时,依据相互垂直直线的斜率关系,选择了直线方程的点斜式;求BC 边上的中线所在的直线方程时,依据中点坐标公式,选择了直线方程的两点式. 举一反三:【变式1】下列四个命题中真命题是( )(A )经过定点P 0(x 0,y 0)的直线都可以用方程y-y 0=k(x-x 0)表示;(B )经过任意两个不同点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1)表示;(C )不经过原点的直线都可以用方程a x +by =1表示;(D )经过定点A(0,b)的直线都可以用方程y =kx+b 表示.【答案】(B )【变式2】 已知倾斜角为45°的直线l 过点A (1,-2)和点B ,B在第一象限,||AB =,求点B 的坐标.【答案】(4,1)【解析】设B 点坐标为(),(0,0)x y x y >>,直线l 的方程为:21y x +=-,因为B 在直线l上,且||AB =,所以3y x =-⎧=,解之得:4x =或2x =-(舍去),所以B 点坐标为(4,1)。

高考数学复习----《函数的奇偶性的综合应用》典型例题讲解

高考数学复习----《函数的奇偶性的综合应用》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 在(],3−∞上单调递增,且()3f x +为偶函数,则不等式()()12f x f x +>的解集为( )A .51,3⎛⎫ ⎪⎝⎭B .()5,1,3⎛⎫−∞⋃+∞ ⎪⎝⎭C .(),1−∞D .()1,+∞【答案】B【解析】∵()3f x +为偶函数, ∴()()33f x f x −+=+,即函数()f x 关于3x =对称,又函数()f x 在(],3−∞上单调递增,∴函数()f x 在[)3,+∞上单调递减,由()()12f x f x +>,可得1323x x +−<−,整理得,23850x x −+>,解得1x <或53x >. 故选:B .例2、(2023·全国·高三专题练习)设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,不等式()()24f x f x ≥的解集为( )A .(][),04,−∞+∞UB .[]0,4C .(][),02,−∞⋃+∞D .[]0,2【答案】C 【解析】根据题意,当0x ≥时,()2f x x =,所以()f x 在[0,)+∞上为增函数,因为()f x 是定义在R 上的奇函数,所以()f x 在R 上为增函数,因为20x ≥,所以24()f x x =,24124x f x ⎛⎫= ⎪⎝⎭, 所以221()42x f x f ⎛⎫= ⎪⎝⎭, 所以不等式()()24f x f x ≥可化为2()2x f f x ⎛⎫≥ ⎪⎝⎭, 所以22x x ≥,解得0x ≤或2x ≥, 所以不等式()()24f x f x ≥的解集为(][),02,−∞⋃+∞,故选:C例3、(2023·全国·高三专题练习)已知偶函数()f x 的定义域为R ,且当0x ≥时,()11x f x x −=+,则使不等式()2122f a a −<成立的实数a 的取值范围是( ) A .()1,3−B .()3,3−C .()1,1−D .(),3−∞【答案】A 【解析】当0x ≥时,()()12121111x x f x x x x +−−===−+++,所以()f x 在[)0,∞+上单调递增, 且()132f =,不等式()2122f a a −<即为()()223f a a f −<. 又因为()f x 是偶函数,所以不等式()()223f a a f −<等价于()()223f a a f −<, 则223a a −<,所以,222323a a a a ⎧−<⎨−>−⎩,解得13a −<<. 综上可知,实数a 的取值范围为()1,3−,故选:A .例4、(2023·全国·高三专题练习)定义在R 上的奇函数()f x 在(,0]−∞上单调递增,且(2)2f −=−,则不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭的解集为( ) A .10,100⎛⎫ ⎪⎝⎭B .1,100⎛⎫+∞ ⎪⎝⎭C .(0,100)D .(100,)+∞【答案】D【解析】因为函数()f x 为奇函数,所以()()f x f x −=−,又(2)2f −=−,(2)2f =, 所以不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭,可化为()2(lg )422f x f >=, 即()(lg )2f x f >,又因为()f x 在(,0]−∞上单调递增,所以()f x 在R 上单调递增,所以lg 2x >,解得100x >.故选:D .例5、(2023春·广西·高三期末)()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则()()20232022f f +−=( )A .-1B .12−C .12D .1【答案】A 【解析】()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则 1111111222222f x f x f x f x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−++=−++⇒−+++=− ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. ∴()()40451404512023202212222f f f f ⎛⎫⎛⎫+−=++−+=− ⎪ ⎪⎝⎭⎝⎭. 故选:A 例6、(2023春·甘肃兰州·高三兰化一中校考阶段练习)若函数f (x )=e e sin x x x x −−+−,则满足()()22ln 102x f a x f ⎛⎫−++≥ ⎪⎝⎭恒成立的实数a 的取值范围为( )A .12ln 2,2⎡⎫−+∞⎪⎢⎣⎭B .1(ln 2,)4−+∞C .[7,)4+∞D .[3,)2+∞ 【答案】A 【解析】因为()e e sin ()x x f x x x f x −−−=−+=−,所以()f x 是R 上的奇函数,由()e +e cos 1x x f x x −'=+−cos 11cos 0x x ≥−=+≥ ,所以()f x 是R 上的增函数, 所以2(2ln(1))02x f a x f ⎛⎫−++≥ ⎪⎝⎭等价于: 22(2ln(1))22x x f a x f f ⎛⎫⎛⎫−+≥−=− ⎪ ⎪⎝⎭⎝⎭即22ln(1)2x a x −+≥−, 所以22ln(1)2x a x ≥−++, 令2()2ln(1)2x g x x =−++, 则问题转化为:max ()a g x ≥,因为()()g x g x −=且定义域为R ,所以()g x =22ln(1)2x x −++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =−++, ()()22122()111x x x x g x x x x x +−−−+'=−+==−+++, 则当()0,1x ∈时,()0g x '>;当()1,x ∈+∞时,()0g x '<; 所以()g x 在()0,1上单调递增,在()1,+∞上单调递减,可得:max 1()(1)2ln 22g x g ==−, 即12ln 22a ≥−, 故选:A . 本课结束。

综合能力应用b真题答案解析

综合能力应用b真题答案解析B真题答案解析考试是很多人都头疼的一门考试,需要综合运用各种能力进行解答。

在B真题中,同样考察了考生的逻辑推理、综合分析和解决问题的能力。

下面将对几道典型题目进行详细解析。

题目一:某公司招聘了10名员工,其中5名男性和5名女性。

现要从中选出一个由4名男性和4名女性组成的工作小组。

要求男女员工不挨着坐。

请问共有多少种不同的座位安排方式?解析:首先我们可以分别计算男员工和女员工的座位安排。

对于男员工,由于4名男性要坐在一起,有5种不同的座位安排方式(假设第一个座位为男员工)。

同理,对于女员工,有5种不同的座位安排方式。

因此,男员工和女员工的座位安排方式总共有5*5=25种。

但是题目要求男女员工不挨着坐,所以我们需要减去挨着坐的情况。

男员工挨着坐的情况有4种,女员工挨着坐的情况也有4种。

所以最终不同的座位安排方式为25-4-4=17种。

题目二:某学校举行学生分组运动会,共有50名学生参加。

要求每个小组人数相同且不超过10人。

求所有可能的小组人数。

解析:首先我们可以列出满足要求的小组人数:1, 2, 5, 10。

接下来我们可以逐个判断这些人数是否满足条件。

对于1名学生,无法分组,所以排除。

对于2名学生,可以分为两个小组,满足条件。

对于5名学生,无法分组,所以排除。

最后,对于10名学生,也可以分为两个小组,满足条件。

因此,所有可能的小组人数为2和10。

题目三:某公司有A、B、C、D、E五个员工,需要从中选出一个由3名员工组成的项目组。

要求C不和D同时参加。

求所有可能的项目组。

解析:我们可以将这个问题转化为计算不满足条件的情况,即C 和D同时参加的情况。

由于C和D不能同时参加,所以我们可以先将C 和D放在一起,然后从A、B、E三个员工中选出1名参加。

根据排列组合的知识,从三个员工中选出1名参加的可能性为3。

因此,不满足条件的情况有3种。

总共有5个员工,从中选出3名员工的可能性为5*4*3=60。

机械能守恒定律的综合应用经典例题

机械能守恒定律的综合应用例1、如图所示,质量分别为2 m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴。

AO 、BO 的长分别为2L 和L 。

开始时直角尺的AO 部分处于水平位置而B 在O 的正下方。

让该系统由静止开始自由转动,求:⑴当A 到达最低点时,A 小球的速度大小v ;⑵ B 球能上升的最大高度h ;⑶开始转动后B 球可能达到的最大速度v m 。

解析:以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒。

⑴过程中A 的重力势能减少, A 、B 的动能和B 的重力势能增加,A 的即时速度总是B 的2倍。

222321221322⎪⎭⎫ ⎝⎛⋅+⋅⋅+⋅=⋅v m v m L mg L mg ,解得118gL v = ⑵B 球不可能到达O 的正上方,它到达最大高度时速度一定为零,设该位置比OA 竖直位置向左偏了α角。

2mg ∙2L cos α=3mg ∙L (1+sin α),此式可化简为4cos α-3sin α=3,解得sin (53°-α)=sin37°,α=16°⑶B 球速度最大时就是系统动能最大时,而系统动能增大等于系统重力做的功W G 。

设OA 从开始转过θ角时B 球速度最大,()223212221v m v m ⋅⋅+⋅⋅=2mg ∙2L sin θ-3mg ∙L (1-cos θ) =mgL (4sin θ+3cos θ-3)≤2mg ∙L ,解得114gL v m =例2、如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度?解析:A 球沿半圆弧运动,绳长不变,B A 、两球通过的路程相等,A 上升的高度为R h =;B 球下降的高度为242R R H ππ==;对于系统,由机械能守恒定律得:K P E E ∆=∆- ;2)(212v m M mgR R Mg E P +=+-=∆∴π m M mgR RMg v c +-=∴2π例3、如图所示,均匀铁链长为L ,平放在距离地面高为L 2的光滑水平面上,其长度的51悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度? 解:选取地面为零势能面:2212)102(51254mv L mg L L mg L mg +=-+ 得:gL v 7451=v 1⑴ ⑵⑶例4、如图所示,粗细均匀的U 形管内装有总长为4L 的水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合应用例题1、有下列伪码程序:
START
INPUT(M,N)
IFM>=10
THENX:=10
ELSEX:=l
ENDIF
IFN>=20
THENY:=20
ELSEY:=2
ENDIF
PRINT(X,Y)
STOP
设计该程序的语句覆盖和路径覆盖测试用例。

解:
语句覆盖测试用例为
①M=9(或<l0),N=l9(或<20);
②M=l0(或>=10),N=20(或>=20)
路径覆盖的测试用例为
①M=9,N=19;
②M=9、N=20;
③M=l0,N=l9;
④M=10,N=20
2、根据伪码程序画出程序流程图、程序流图,并计算其McCabe复杂度。

START
a
IFx1THEN
REPEATUNTILx2
b
ENDREPEAT
ELSE
BLOCK
c
d
ENDBLOCK
ENDIF
STOP
解:(1)程序流程图
T
(2)程序流图:略
McCabe复杂度=3
3、根据下列描述,画出教材征订系统的第一层数据流图。

学生入学后到教材科订书,教材科根据教材库存情况分析是否需要买书,如需购买,则向书店购买。

各种资金往来通过学校的会计科办理。

解:
4、画出下列伪码程序的程序流程图、程序流图,并计算其McCabe复杂度。

START
IFpTHEN
WHILEqDO
F
ENDDO
ELSE
BLOCK
g
n
ENDBLOCK
ENDIF
STOP
解:
程序流程图:
程序流图:略
McCabe复杂度=3
5.对以下程序进行测试:
PROCEDUREEX(A,B:REAL;VARX:REAL);
BEGIN
IF(A=3)OR(B>1)THENX:=A×B
IF(A>2)AND(B=0)THENX:=A-3
END
要求:先画出程序流程图。

再按语句覆盖法设计测试数据。

解:
语句覆盖A=3B=0
6、某培训中心要研制一个计算机管理系统。

它的业务是:将学员发来的信件收集分类后,按几种不同的情况处理。

如果是报名的,则将报名数据送给负责报名事务的职员,他们将查阅课程文件,检查该课程是否额满,然后在学生文件、课程文件上登记,并开出报告单交财务部门,财务人员开出发票给学生。

如果是想注销原来已选修的课程,则由注销人员在课程文件、学生文件和帐目文件上做相应的修改,并给学生注销单。

如果是付款的,则由财务人员在帐目文件上登记,也给学生一张收费收据。

要求:
1.对以上问题画出数据流程图。

2.画出该培训管理的软件结构图的主图。

解:
7、请使用程序流程图描述在数组A(1)~A(10)中找最大数的算法。

解:
8、画出下面程序流程图所对应的程序流图,并计算其环形复杂度V(G)。

解:(1)程序流图如下所示:
(2)计算其环形复杂度:V(G)=E–N+2=13–10+2=5
9.把事务型数据流图映射成软件结构图:
10.把变换型数据流图映射成软件结构图:
11、下面是两个程序流程图,试分别画出程序流图,并计算它们的McCabe复杂度。

解:
(1)
McCabe复杂度V(G)=3
(2)
McCabe复杂度V(G)=3
12、:输入三整数,判断是否构成三角形,如构成三角形,则输出三条边的值,否则输出”不能构成三角形”.要求:1.用程序流程图表示该问题的算法;2.计算程序复杂度;3.设计路径覆盖的测试用例。

答:
路径:
1.①—②—③—④—⑥—⑦ 2.①—②—⑤—⑥—⑦ 3.①—⑤—⑥—⑦
4.①—②—③—⑤—⑥—⑦ 程序复杂度13、根据下面程序流程图,给出测试用例: 路径覆盖,可使用测试用例:
⑴【A=1,B=1,X=1】执行路径:1-2-3 ⑵【A=1,B=1,X=2】执行路径:1-2-6-7 ⑶【A=3,B=0,X=1】执行路径:1-4-5-3 ⑷【A=2,B=0,X=4】执行路径:1-4-5-6-7 边覆盖,可使用测试用例:
⑴【A=3,B=0,X=3】执行路径:1-4-5-3 ⑵【A=2,B=1,X=1】执行路径:1-2-6-7 判定覆盖的测试用例: ⑴【(A=3,B=0,X=3)】 ⑵【(A=2,B=1,X=1)】 语句覆盖,可使用测试用例: 【A=2,B=0,X=3】
14、某考试报名过程中有个“记录报名单”的加工。

该加工主要是根据报名表(姓名、性别、身份证号、课程名)和开考课程(课程名、开考时间)、经校核,编号、
① ②③Ⅰ

填写、输出准考证给报名者,同时记录到考生名册中(准考证号、姓名、课程)。

请绘制该加工的DFD 图,并写出数据词典中的数据流条目。

答:
15、“决定比赛名单”这个加工,根据“运
动员名单”和“比赛项目”产生“项目
参加者”,如下图所示,运动员名单要包括所在队名,运动员编号号,运动员姓名,及参加的所有项目。

请写出这三个数据流条目。

答:
运动员名单=队名+运动员号+姓名+{项目} 项目=项目名
项目参加者=项目名+{运动员号}
16、在结构化设计过程中,要将数据流图(DFD)映射成系统结构图(SC),分别画出变换型数据流和
事物型数据流的映射方式。

答:
变换型
事务型
17、学校拟开发一套实验上机安排系统,可以帮助教师的安排上机。

系统的主要功能有以下几个方面:
教师可提交课程实验项目,安排实验机房,查询实验安排结果,打印实验安排报表等。

学生可查询实验项目,查询课程实验安排等。

管理员可管理教师、学生、课程等基本信息,同时还能管理新闻公告、查询实验安排等。

数据流词典 数据流条目:
报名单=姓名+性别+身份证号+课程名 开考课程=课程名+开考时间 考生名册=准考证号+姓名+课程
所有用户均有修改密码,查看新闻公告等功能。

要求:
分析从教师提交实验项目,到形成实验安排报表的数据流图。

(注:安排实验时首先需要提交实验项目,然后选择有空闲的机房,再查询学生的空余时间。

安排好每次的实验时间后,经过汇总形成实验安排报表)
18、请使用程序流程图、N-S图、PAD图和PDL语言描述在数组A(1)~A(10)中找最大数的算法。

解:
PDL语言:
N=1
WHILEN<=10DO
IFA(N)<=A(N+1)MAX=A(N+1);
ELSEMAX=A(N)ENDIF;
N=N+1;
ENDWHILE;
PAD图:。

相关文档
最新文档