北京市朝阳区2010年七年级(下)期末数学模拟试卷(六)及答案

合集下载

北京市人教版七年级下册数学期末考试试卷及答案

北京市人教版七年级下册数学期末考试试卷及答案

北京市人教版七年级下册数学期末考试试卷及答案一、选择题1.下列条件中,能判定△ABC为直角三角形的是().A.∠A=2∠B-3∠C B.∠A+∠B=2∠C C.∠A-∠B=30°D.∠A=12∠B=13∠C2.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x岁,小红今年y岁”,根据题意可列方程为()A.449x y yx y x-=+⎧⎨-=+⎩B.449x y yx y x-=+⎧⎨-=-⎩C.449x y yx y x-=-⎧⎨-=+⎩D.449x y yx y x-=-⎧⎨-=-⎩3.如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC 中AC边上的高是()A.CF B.BE C.AD D.CD4.若x2+kx+16是完全平方式,则k的值为()A.4 B.±4 C.8 D.±85.如图,将四边形纸片ABCD沿MN折叠,若∠1+∠2=130°,则∠B+∠C=()A.115°B.130°C.135°D.150°6.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为()A.4 B.5 C.6 D.87.已知a、b、c是正整数,a>b,且a2-ab-ac+bc=11,则a-c等于()A.1-B.1-或11-C.1 D.1或118.下列调查中,适宜采用全面调查方式的是()A.考察南通市民的环保意识B.了解全国七年级学生的实力情况C.检查一批灯泡的使用寿命D.检查一枚用于发射卫星的运载火箭的各零部件9.若关于x的一元一次不等式组202x mx m-<⎧⎨+>⎩无解,则m的取值范围是()A.23m≤B.23m<C.23m≥D.23m>10.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个二、填空题11.如图,点B 在线段AC 上(BC>AB ),在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB=1时,△AME 的面积记为S 1;当AB=2时,△AME 的面积记为S 2;当AB=3时,△AME 的面积记为S 3;则S 2020﹣S 2019=_____.12.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____.13.已知a+b=5,ab=3,求: (1)a 2b+ab 2; (2)a 2+b 2.14.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____.15.分解因式:x 2﹣4x=__.16.如图,若AB ∥CD ,∠C=60°,则∠A+∠E=_____度.17.已知关于x ,y 的方程22146m n m n xy --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限. 18.若a m =2,a n =3,则a m +n 的值是_____.19.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________. 20.若2m =3,2n =5,则2m+n =______.三、解答题21.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值; (3)若25,2x y xy +==,求2x y -的值.22.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.23.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.24.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.25.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高. (1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).26.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:()1//AD BC ;()2BC 平分DBE ∠.27.因式分解:(1)2()4()a x y x y ---(2)2242x x -+- (3)2616a a -- 28.分解因式:(1)3222x x y xy -+; (2)2296(1)(1)x x y y -+++;(3)()214(1)mm m -+-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断. 【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误;B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误;C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确. 故选:D . 【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.2.D解析:D 【分析】根据题设老师今年x 岁,小红今年y 岁,根据题意列出方程组解答即可. 【详解】解:老师今年x 岁,小红今年y 岁,可得:449x y y xyx,故选:D . 【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.3.B解析:B 【解析】试题分析:根据图形,BE 是△ABC 中AC 边上的高.故选B . 考点:三角形的角平分线、中线和高.4.D解析:D 【分析】利用完全平方公式的结构特征判断即可求出k 的值. 【详解】∵216x kx ++是完全平方式, ∴8k =±, 故选:D . 【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.5.A解析:A 【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论. 【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°.∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°, ∴∠B +∠C =∠AMN +∠DNM =115°. 故选:A . 【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.6.C解析:C 【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案. 【详解】解:设外角为x ,则相邻的内角为2x , 由题意得,2180x x +=︒, 解得,60x =︒,多边形的边数为:360606÷︒=, 故选:C . 【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.7.D解析:D 【解析】 【分析】此题先把a 2-ab -ac +bc 因式分解,再结合a 、b 、c 是正整数和a >b 探究它们的可能值,从而求解. 【详解】解:根据已知a 2-ab -ac +bc =11, 即a (a -b )-c (a -b )=11, (a -b )(a -c )=11, ∵a >b , ∴a -b >0, ∴a -c >0, ∵a 、b 、c 是正整数,∴a-c=1或a-c=11故选D.【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.8.D解析:D【分析】调查方式的选择需要将全面调查的局限性和抽样调查的必要性结合起来,具体问题具体分析,全面调查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择全面调查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,全面调查就受到限制,这时就应选择抽样调查.【详解】解:A、考察南通市民的环保意识,人数较多,不适合全面调查;B、了解全国七年级学生的实力情况,人数较多,不适合全面调查;C、检查一批灯泡的使用寿命,数量较多,且具有破坏性,不适合全面调查;D、检查一枚用于发射卫星的运载火箭的各零部件,较为严格,必须采用全面调查,故选D.【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果和普查得到的调查结果比较近似.9.A解析:A【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m的取值范围.【详解】解:202x mx m-<⎧⎨+>⎩①②解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m≥2m.解得23 m≤.故选A.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.10.B解析:B 【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断. 【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确; 从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确, 故选:B . 【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.二、填空题11.【分析】先连接BE ,则BE∥AM,利用△AME 的面积=△AMB 的面积即可得出 , ,即可得出Sn-Sn-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作 解析:40392【分析】先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出212n S n =,211122n S n n -=-+ ,即可得出S n -S n-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF , ∴BE ∥AM ,∴△AME 与△AMB 同底等高, ∴△AME 的面积=△AMB 的面积, ∴当AB=n 时,△AME 的面积记为212n S n =, 221111(1)222n S n n n -=-=-+∴当n ≥2时,221111121()22222n n n S S n n n n ---=--+=-= , ∴S 2020﹣S 2019=220201403922⨯-= , 故答案为:40392. 【点睛】此题主要考查了三角形面积求法以及正方形的性质,根据已知得出正确图形,得出S 与n 的关系是解题关键.12.5 【分析】方程组两方程左右两边相加即可求出所求. 【详解】 解:, ①②得:, 则,故答案为:5. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5 【分析】方程组两方程左右两边相加即可求出所求. 【详解】解:2728x y x y +=⎧⎨+=⎩①②,①+②得:3315x y +=,则5x y +=, 故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=ab(a+b)=3×5=15(2)a2+b2=(a+b)2-2ab=52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.14.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】++,由此即可得出答案.由x=1可知,等式左边=-4,右边=a b c【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键. 15.x (x ﹣4)【详解】解:x2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).解析:x (x ﹣4)【详解】解:x 2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).16.60【解析】【分析】先由AB∥CD,求得∠C 的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E 的度数.【详解】∵AB∥CD,∴∠C 与它的同位角相等,根据三角形的外角等于解析:60【解析】【分析】先由AB ∥CD ,求得∠C 的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A +∠E 的度数.【详解】∵AB ∥CD ,∴∠C 与它的同位角相等,根据三角形的外角等于与它不相邻的两内角之和,所以∠A +∠E =∠C =60度.故答案为60.【点睛】本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.17.四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.18.6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:am+n =am•an=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,解析:6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:a m +n =a m •a n =2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,掌握a m +n =a m •a n 是解题的关键;19.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.20.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.三、解答题21.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为: 224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=,∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =; (3)∵25,2x y xy +==, ∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.22.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键. 23.149299a b ⎧=⎪⎪⎨⎪=⎪⎩【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【详解】354526x y ax by -=⎧⎨+=-⎩①③ 和2348x y ax by +=-⎧⎨-=⎩②④ 解:联立①②得:35234x y x y -=⎧⎨+=-⎩ 解得:12x y =⎧⎨=-⎩将12x y =⎧⎨=-⎩代入③④得:4102628a b a b -=-⎧⎨+=⎩解得:149299a b ⎧=⎪⎪⎨⎪=⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.24.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PE AB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD∥BC,∴AD∥BC∥PE,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.25.(1)20°;(2)11 22 n m【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE=12∠CAB=90°﹣(12m)°﹣(12n)°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣n°,∴∠DAE=∠EAC﹣∠DAC=(12n﹣12m)°,故答案为:(12n﹣12m).【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)见解析;(2)见解析.【解析】【分析】()1求出1BDC ∠=∠,根据平行线的判定得出//AB CF ,根据平行线的性质得出C EBC ∠=∠,求出A EBC ∠=∠,根据平行线的判定得出即可;()2根据角平分线定义求出FDA ADB ∠=∠,根据平行线的性质得出FDA C ∠=∠,ADB DBC ∠=∠,C EBC ∠=∠,求出EBC DBC ∠=∠即可.【详解】()12180BDC ∠+∠=,12180∠+∠=,1BDC ∴∠=∠,//AB CF ∴,C EBC ∴∠=∠,A C ∠=∠,A EBC ∴∠=∠,//AD BC ∴;()2AD 平分BDF ∠,FDA ADB ∴∠=∠,//AD BC ,FDA C ∴∠=∠,ADB DBC ∠=∠,C EBC ∠=∠,EBC DBC ∴∠=∠,BC ∴平分DBE ∠.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,考查了学生运用性质进行推理的能力,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.27.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解. 【详解】解:(1)2()4()a x y x y ---()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.28.(1)x (x-y )2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x ,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x (x 2-2xy+y 2)=x (x-y )2;(2)原式=(3x )2-2×(3x )(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m 2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.。

2023-2024学年北京市朝阳区七年级(下)期末数学试卷+答案解析

2023-2024学年北京市朝阳区七年级(下)期末数学试卷+答案解析

2023-2024学年北京市朝阳区七年级(下)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.9的算术平方根为()A.3B.C.D.812.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,以单位长度为边长画一个正方形,以原点为圆心,正方形的对角线长为半径画弧,与数轴交于点A,则点A表示的数是()A. B. C. D.4.如图,三角形ABC中,,于点在线段AC,AB,BC,CD中,长度最短的是()A.线段ABB.线段ACC.线段BCD.线段CD5.若,则下列结论正确的是()A. B. C. D.6.一个等腰直角三角尺和一把直尺按如图所示的位置摆放厚度忽略不计,若,则的度数为()A.B.C.D.7.经调查,七年级某班学生上学所用的交通工具中,自行车占,公交车占,私家车占,其他占如果用扇形图描述以上数据,下列说法正确的是()A.“自行车”对应扇形的圆心角为B.“公交车”对应扇形的圆心角为C.“私家车”对应扇形的圆心角为D.“其他”对应扇形的圆心角为8.已知,,,给出下面3个结论:①当时,;②M的最小值是18;③M的最大值是上述结论中,所有正确结论的序号为()A.①②B.①③C.②③D.①②③二、填空题:本题共8小题,每小题3分,共24分。

9.的相反数是______.10.比较大小:4__________填“>”或“<”11.“a与2的差大于“用不等式表示为______.12.不等式的正整数解是______.13.有如下调查:①调查某批次汽车的抗撞击能力;②了解某班学生的视力情况;③选出某班长跑最快的学生参加全校比赛以上调查,适宜抽样调查的是______填写序号14.图中显示了15名七年级学生国家安全知识竞赛成绩和航天知识竞赛成绩单位:分例如:甲同学的国家安全知识竞赛成绩为40分,航天知识竞赛成绩为70分这15名学生中,国家安全知识竞赛成绩与航天知识竞赛成绩相等的有______人.15.如图,第一象限内有两个点,,将线段AB平移,使点A,B平移后的对应点分别同时落在两条坐标轴上,则点A平移后的对应点的坐标为______写出一个即可16.某校为提高校园足球质量和水平,让学生在参与校园足球运动中享受乐趣、增强体质、健全人格、锤炼意志,实现德智体美劳全面发展,举办了校园足球联赛.根据赛事安排,每队均需参赛19场,记分办法如下:胜1场得3分,平1场得1分,负1场得0分.在这次足球联赛中,若某队得13分,则该队可能负______场;写出一种情况即可在这次足球联赛中,若甲、乙两队都得33分,甲队所有比赛都没有踢平,甲、乙两队负场数不同,则乙队最多胜______场.三、计算题:本大题共1小题,共5分。

2009-2010年第二学期七年级数学期末模拟试卷

2009-2010年第二学期七年级数学期末模拟试卷

北京市朝阳区09-10学年度第二学期数学学科七年级期末模拟试卷(2)一、填空1、单项式232yxπ-是系数是 ,次数是 ,多项式6433++-xxyxy是次项式,其中二次项系数是。

2、近似数245.31精确到位,有个有效数字,用科学记数法表示记作。

3、若''''1213242︒=∠,则2∠的余角为度,2∠的补角为度。

4、已知一个∠1的两边分别平行∠2的两边,且∠1比∠2大600,则这两个角的度数分别是______________________。

5.点)3,4(-P先向上平移2个单位,再向右平移4个单位,所得到的点1P的坐标为 .6.如果等腰三角形的周长为18厘米,一边长为5厘米,那么它另外两边长边长为 .7.已知点P(x,y)满足()0452=-++yx,则点P的坐标是。

8、若2y-3 x-1=0,则用含y的代数式表示x 为。

9、已知甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则乙队人数是甲队人数的2倍,调整后两队人数间的数量关系用等式表示为 .10、在一个△ABC 中,∠A=4∠B ,∠C=900,则∠A 和∠B 的度数分别是为 。

11.适合不等式—9≤3x —6<3的所有整数解是 .12.一双鞋进价是30元,那么定价至少是 元,打八折后才不会亏本?13、一个正多边形每一个外角都是72 0,那么它的内角和是 度。

14、已知-21<x<1,化简︱2-x ︱-︱x-3︱= 。

15. 在△ABC ,AB =7,BC =10,那么 <AC <16、若y<x,则-2x+1 -2y+1(填“>”、“<”、或“=”) 二、解答题 17.(5分)用代入法解方程组⎩⎨⎧=-=-14833y x y x (5分)18. (5分)3(1)5412123x x x x +>+⎧⎪⎨--⎪⎩ ①≤ ②,并将解集在数轴上表示出来.(5分)19、先化简再求值:()()22222352536ab b a ab b a b a --+--其中21,2=-=b a (5分)20、一个多边形的内角和比它的的外角和的3倍还多1800,求这个多边形的边数。

北京市朝阳区七年级(下)期末数学试卷(解析版)

北京市朝阳区七年级(下)期末数学试卷(解析版)

北京市朝阳区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的,请将正确选项前的字母填在题后的括号内.1.的算术平方根是()A.B.C.D.【考点】算术平方根.【专题】计算题.【分析】利用算术平方根的定义计算即可得到结果.【解答】解:根据题意得:的算术平方根为.故答案为:.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.如果a<b,那么下列不等式成立的是()A.a﹣b>0 B.a﹣3>b﹣3 C.a> b D.﹣3a>﹣3b【考点】不等式的性质.【分析】根据不等式的基本性质对每个选项进行判断.【解答】解:a<bA、a﹣b<0,故A选项错误;B、a﹣3<b﹣3,故B选项错误;C、a<b,故C选项错误;D、﹣3a>﹣3b,故D选项正确.故选:D.【点评】此题考查的知识点是不等式的性质,关键不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.3.下列各数中,无理数是()A.B.3.14 C.D.5π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是有理数,故A错误;B.3.14是有理数,故B错误;C、=﹣3是有理数,故C错误;D、5π是无理数,故C正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.不等式2x+3<5的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,2x<5﹣3,合并同类项得,2x<2,系数化为1得.x<1.在数轴上表示为:.故选A.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.5.若是方程kx+3y=1的解,则k等于()A. B.﹣4 C.D.【考点】二元一次方程的解.【专题】计算题.【分析】把x与y的值代入方程计算即可求出k的值.【解答】解:把代入方程得:3k+6=1,解得:k=﹣,故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.下列命题中,假命题是()A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,同旁内角互补C.两直线平行,内错角相等D.在同一平面内,过一点有且只有一条直线与已知直线垂直【考点】命题与定理.【分析】利用平行线的性质及判定分别判断后即可确定正确的选项.【解答】解:A、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确,是真命题;B、两条平行线被第三条直线所截,同旁内角才互补,故错误,是假命题;C、两直线平行,内错角相等,正确,是真命题;D、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定,属于基础定义及定理,难度不大.7.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.25°D.35°【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【解答】解:∵直尺的两边互相平行,∠1=65°,∴∠3=65°,∴∠2=90°﹣65°=25°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.8.下列调查中,最适合采用抽样调查的是()A.对旅客上飞机前的安检B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况【考点】全面调查与抽样调查.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、对旅客上飞机前的安检,必须准确,故必须普查;B、了解全班同学每周体育锻炼的时间,适合全面调查;C、企业招聘,对应聘人员的面试,因而采用普查合适;D、了解某批次灯泡的使用寿命情况,适合抽样调查.故选:D.【点评】本题主要考查了全面调查及抽样调查,解题的关键是熟记由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.9.如图,将△ABC进行平移得到△MNL,其中点A的对应点是点M,则下列结论中不一定成立的是()A.AM∥BN B.AM=BN C.BC=ML D.BN∥CL【考点】平移的性质.【分析】根据平移的性质:新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等可得答案.【解答】解:∵将△ABC进行平移得到△MNL,其中点A的对应点是点M,∴AM∥BN∥CL,AM=BN=CL,BC=NL,∴A、B、D都正确,C错误,故选:C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)【考点】坐标与图形性质.【分析】由垂线段最短可知点BC⊥AC时,BC有最小值,从而可确定点C的坐标.【解答】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.【点评】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.二、填空题:(本大题共18分,每小题3分)11.化简:=3.【考点】二次根式的性质与化简.【专题】计算题.【分析】先算出(﹣3)2的值,再根据算术平方根的定义直接进行计算即可.【解答】解:==3,故答案为:3.【点评】本题考查的是算术平方根的定义,把化为的形式是解答此题的关键.12.如果2x﹣7y=5,那么用含y的代数式表示x,则x=.【考点】解二元一次方程.【专题】计算题.【分析】把y看做已知数求出x即可.【解答】解:方程2x﹣7y=5,解得:x=,故答案为:【点评】此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.13.请写出命题“在同一平面内,垂直于同一直线的两直线平行”的题设和结论:题设:在同一平面内两条直线垂直于同一条直线,,结论:这两条直线平行.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:∵可改写为:如果在同一平面内两条直线垂直于同一条直线,那么这两条直线平行.∴题设是在同一平面内两条直线垂直于同一条直线,结论是:这两条直线平行,故答案为:在同一平面内两条直线垂直于同一条直线,这两条直线平行;【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.14.点A(2m+1,m+2)在第二象限内,且点A的横坐标、纵坐标均为整数,则点A的坐标为(﹣1,1).【考点】点的坐标.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由A(2m+1,m+2)在第二象限内,得,解得﹣2<m<﹣,点A的横坐标、纵坐标均为整数,得m=﹣1.2m+1=﹣1,m+2=1,则点A的坐标为(﹣1,1),故答案为:(﹣1,1).【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠CEF的度数是70°.【考点】平行线的性质.【专题】计算题.【分析】先根据平行线的性质得∠ABC=∠C=35°,再根据角平分线定义得∠ABF=2∠ABC=70°,然后根据两直线平行,同位角相等可得∠CEF=∠ABF=70°.【解答】解:∵AB∥CD,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABF=2∠ABC=70°,∵AB∥CD,∴∠CEF=∠ABF=70°.故答案为70°.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.16.将自然数按以下规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对(m,n),例如数2在第2行第1列,记它的位置为有序数对(2,1)).按照这种方式,位置为数对(4,5)的数是;数位置为有序数对(9,6).【考点】规律型:数字的变化类.【分析】由数表可以看出:偶数行第一个数是所在行数,平方后依次减少1;奇数行第一个数是上行数平方加1再开方,平方后依次增加1;奇数列第一个数是所在列数,平方后依次减少1;偶数列第一个数是所在上列数平方加1再开方,平方后依次增加1;由此规律得出答案即可.【解答】解:∵偶数行第一个数是所在行数,平方后依次减少1;偶数行第一个数是所在行数,平方后依次减少1;奇数列第一个数是所在列数,平方后依次减少1;∴(4,5)第5列的第一个数是5,平方后是25减去4就是第四行的数21,开方后为;∵8<<9,∴第9行的第一个数是,65+6﹣1=70,第数位置为有序数对是(9,6).故答案为:,(9,6).【点评】此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共40分,每小题4分)17.计算:.【考点】实数的运算.【专题】计算题.【分析】原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果.【解答】解:原式=2﹣+﹣2=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3+②得:5x=10,即x=2,把x=2代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式:.并把解集在数轴上表示出来.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:去分母得,3x﹣(x+4)≤6x﹣12,去括号得,3x﹣x﹣4≤6x﹣12,移项得,3x﹣x﹣6x≤﹣12+4,合并同类项得,﹣4x≤﹣8,系数化为1得,x≥2.在数轴上表示为:.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.20.求不等式组:的整数解.【考点】一元一次不等式组的整数解.【分析】线求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x<1,解不等式②得:x≥﹣1,∴不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1,0,1.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.21.如图,三角形ABC中任一点P(m,n)经平移后对应点为P1(m+4,n﹣3),将三角形ABC作同样的平移得到三角形A1B1C1.(1)直接写出A1、C1的坐标分别为A1(5,1),C1(3,﹣4);(2)在图中画出△A1B1C1;(3)请直接写出△A1B1C1的面积是8.【考点】作图-平移变换.【分析】(1)根据点P平移后的点可得,△ABC先向右平移4个单位,然后向下平移3个单位得到△A1B1C1,根据点A、C的坐标,写出点A1,C1的坐标;(2)根据坐标系的特点,将点A、B、C先向右平移4个单位,然后向下平移3个单位,然后顺次连接;(3)用△ABC所在的矩形的面积减去三个小三角形的面积.【解答】解:(1)由图可得,A1(5,1),C1(3,﹣4);(2)所作图形如图所示:(3)S△A1B1C1=5×4﹣×2×4﹣×2×3﹣×2×5=20﹣4﹣3﹣5=8.故答案为:(5,1),(3,﹣4);8.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.22.补全解答过程:已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,求∠BOD 的度数.解:由题意∠EOC:∠EOD=2:3,设∠EOC=2x°,则∠EOD=3x°.∵∠EOC+∠EOD=180°(平角的定义),∴2x+3x=180.x=36.∴∠EOC=72°.∵OA平分∠EOC(已知),∴∠AOC=∠EOC=36°.∵∠BOD=∠AOC(对顶角相等),∴∠BOD=36°(等量代换)【考点】对顶角、邻补角;角平分线的定义.【专题】推理填空题.【分析】根据邻补角,可得方程,根据角平分线的定义,可得∠AOC的度数,根据对顶角相等,可得答案.【解答】解:由题意∠EOC:∠EOD=2:3,设∠EOC=2x°,则∠EOD=3x°.∵∠EOC+∠EOD=180°(平角的定义),∴2x+3x=180.x=36.∴∠EOC=72°.∵OA平分∠EOC(已知),∴∠AOC=∠EOC=36°.∵∠BOD=∠AOC(对顶角相等),∴∠BOD=36°(等量代换),故答案为:EOD,平角的定义,对顶角相等,36°.【点评】本题考查了对顶角、邻补角,利用邻补角得出方程是解题关键,又利用了对顶角相等.23.阅读下列材料:∵,∴,∴的整数部分为3,小数部分为.请你观察上述的规律后试解下面的问题:如果9π的整数部分为a,的小数部分为b,求a+b的值.【考点】估算无理数的大小.【专题】阅读型.【分析】由9π≈28.26,可得其整数部分a=28,由27<28<64,可得<<,可得3<4,可得的小数部分b=﹣3,可得a+b的值.【解答】解:∵9π≈28.26,∴a=28,∵27<28<64,∴<<,∴3<4,∴b=﹣3,∴a+b=28+﹣3=25,∴a+b的值为25.【点评】本题主要考查了估算无理数的大小,根据题意估算出a,b的值是解答此题的关键.24.为了解某区2015年七年级学生的体育测试情况,随机抽取了该区若干名七年级学生的体育测试成绩等级,绘制如图统计图(不完整):请根据以上统计图表提供的信息,解答下列问题:(1)本次抽样调查的样本容量200,“A等级”对应扇形的圆心角度数为108°;(2)请补全条形统计图;(3)该区约10000名七年级学生,根据抽样调查结果,请估计其中体育测试成绩为“D等级”的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用D等级的人数除以对应的百分比即可得本次抽样调查的样本容量,利用“A等级”对应扇形的圆心角度数=“A等级”的百分比×360°求解即可.(2)先求出B,C等级的人数即可补全条形统计图,(3)利用体育测试成绩为“D等级”的学生人数=总人数דD等级”的学生百分比求解即可.【解答】解:(1)本次抽样调查的样本容量:10÷5%=200(名),“A等级”对应扇形的圆心角度数为(1﹣50%﹣15%﹣5%)×360°=108°,故答案为:200,108°.(2)B等级的人数为200×50%=100(名),C等级的人数为:200×15%=30(名),如图,(3)体育测试成绩为“D等级”的学生人数为10000×5%=500(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.已知:如图,AB∥CD.∠A+∠DCE=180°,求证:∠E=∠DFE.证明:∵AB∥CD (已知),∴∠B=∠DCE(两直线平行,同位角相等).∵∠A+∠DCE=180°(已知),∴∠E=∠DFE(两直线平行,内错角相等).【考点】平行线的性质.【专题】推理填空题.【分析】由平行线的性质得出同位角相等,再由已知条件得出AD∥BC,即可得出结论.【解答】解:∵AB∥CD (已知),∴∠B=∠DCE(两直线平行,同位角相等).∵∠A+∠DCE=180°(已知),∴∠A+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等).故答案为:DCE;两直线平行,同位角相等.【点评】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.26.列方程组解应用题某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.求两种跳绳的单价各是多少元?【考点】二元一次方程组的应用.【分析】设短跳绳单价为x元,长跳绳单价为y元,根据长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同,列方程组求解.【解答】解:设短跳绳单价为x元,长跳绳单价为y元,由题意得,,解得:,答:短跳绳单价为8元,长跳绳单价为20元.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,正确找出题目中的相等关系,列方程组求解.四、解答题(本大题共12分,每小题6分)27.某果品公司要请汽车运输公司或火车货运站将60吨水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是x千米,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费外,其他要收取的费用和有关运输资料由下表列出:运输单位运输速度(千米/时)运费单价元/(吨•千米)运输途中冷藏元/(吨•时)装卸总费用(元)汽车货运公司75 1.5 5 4000火车货运站100 1.3 5 6600 (1)用含x的式子分别表示汽车货运公司和火车货运站运送这批水果所要收取的总费用(总运费=运费+运输途中冷藏费+装卸总费用);(2)果品公司应该选择哪家运输单位运送水果花费少?【考点】一次函数的应用.【分析】(1)根据需要花费费用为冷藏费、运输费用和装卸费用的和,分别计算用火车和用汽车花费即可解题;(2)计算用汽车和用火车运输费用一样多时s的值,即可解题.【解答】解:(1)用汽车运输,需要花费:y1=(1.5×60)x+5××60+4000=94x+4000;用火车运输,需要花费:y2=(1.3×60)x+5××60+6600=81x+6600;(2)当y1=y2时,即94x+4000=81x+6600,解得:s=200,故当s=200km时,用火车和汽车运输花费一样,当s>200km时,用火车运输比较划算,当s<200km时,用汽车运输比较划算.【点评】本题考查了一次函数的实际应用,本题中求得用汽车和用火车运输费用一样多时x 的值是解题的关键.28.夏季来临,某饮品店老板大白计划下个月(8月)每天制作新鲜水果冰淇淋800份销售.去年同期,这种冰淇淋每份的成本价为5元,售价为8元.该冰淇淋不含防腐剂,很受顾客的欢迎,但如果当天制作的冰淇淋未售出,新鲜水果就会腐败变质,饮品店就将承担冰淇淋制作成本的损失.根据大白去年的销售记录,得到去年同期该冰淇淋日销售量的频数分布表和频数分布直方图(不完整)如下:8月该冰淇淋日销售量频数分布表8月该冰淇淋日销售量频数分布直方图日销售量分组频数500≤x<600 3600≤x<700 6700≤x<800 16800≤x<900 6由于今年水果涨价,该冰淇淋的制作成本提高了10%.大白计划今年冰淇淋还按8元/份销售.设下个月该冰淇淋的日销售量为m份(0<m≤800).(1)请根据以上信息补全频数分布表和直方图,并标明相应数据;(2)用含m的式子表示下个月销售该冰淇淋的日利润;(3)大白认为,下个月该冰淇淋的销售状况将会与去年同期相差不多.①请你通过计算帮助大白估计下个月销售该冰淇淋的日利润少于1200元的天数;②为减少因当日冰淇淋未售出造成的损失,大白计划今年采取下班前打八折销售的方法,希望将剩余的冰淇淋售出.请你通过计算帮助大白估计下个月因销售该冰淇淋获得月利润的范围.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据頻数分布直方图可知800≤x<900一组的频数是6,然后根据頻数之和为31,即可求得700≤x<800一组的频数;(2)利用总销量﹣总成本=利润,进而得出答案;(3)①利用8m﹣4400<1200进而得出答案;②利用当剩余的冰淇淋打八折后全部售完以及当剩余的冰淇淋打八折后仍没人购买,分别表示出利润即可.【解答】解:(1)800≤x<900一组的频数是6,则700≤x<800一组的频数是31﹣3﹣6﹣6=16(天).;(2)该冰淇淋的制作成本是5(1+10%)=5.5(元),则平均每日的利润是:8m﹣800×5.5=8m ﹣4400;(3)①由题意可得:8m﹣4400<1200,解得:m<700,则下个月销售该冰淇淋的日利润少于1200元的天数为:3+6=9(天);②当剩余的冰淇淋打八折后全部售完,则其利润为:8m﹣800×5.5+(800﹣m)×8×0.8=14.4m+3888,当剩余的冰淇淋打八折后仍没人购买,则其利润为:8m﹣4400,故下个月因销售该冰淇淋获得月利润的范围为:8m﹣4400到14.4m+3888.【点评】此题主要考查了频数分布直方图以及利用样本估计总体以及频数分布直方图等知识,正确利用图形得出正确信息是解题关键.。

北京市七年级下期末模拟数学试卷及解析

北京市七年级下期末模拟数学试卷及解析

北京市七年级下册期末模拟数学试卷一.选择题(共10小题,满分30分,每小题3分)1.利用数轴求不等式组的解集表示正确的是()A. B.C.D.2.下列运算正确的是()A.2x﹣3x=﹣1 B.x3•x2=x5 C.(﹣a)2=﹣a2D.(a2)3=a53.若a<b,则下列不等式变形错误的是()A.a﹣2<b﹣2 B.<C.3﹣2a<3﹣2b D.2a﹣3<2b﹣34.下列各式中,从左到右的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2 D.2a2﹣2a=2a2(1﹣)5.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B) B.∠B C.(∠B﹣∠A)D.∠A6.若方程ax﹣5y=3的一个解是,则a的值是()A.13 B.﹣13 C.﹣7 D.77.为了解我市七年级学生的视力情况,市教育局组织抽查了14个街镇和3处市直初中学校的2000名学生的视力情况进行统计分析,下面四个说法正确的是()A.全市七年级学生是总体B.2000名学生是总体的一个样本C.每名学生的视力情况是总体的一个个体D.样本容量是2000名8.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A.150°B.135°C.120°D.90°9.某水资源保护组织对石家庄某小区的居民进行节约水资源的问卷调查.某居民在问卷上的选项代号画“√”,这个过程是收集数据中的()A.确定调查范围B.汇总调查数据C.实施调查D.明确调查问题10.小亮在“五一”假期间,为宣传“摈弃不良习惯,治理清江污染”的环保意识,对到利川市清江流域游玩人群的垃圾处理习惯(A带回处理、B焚烧掩埋、C就地扔掉,三者任选其一)进行了随机抽样调查.小亮根据调查情况进行统计,绘制的扇形统计图和频数分布直方图尚不完整,如图示.请结合统计图中的信息判断,下列说法错误的是()A.抽样调查的样本数据是240B.“A带回处理”所在扇形的圆心角为18°C.样本中“C就地扔掉”的人数是168D.样本中“B焚烧掩埋”的人数占“五一”假到利川市清江流域游玩人数的25%二.填空题(共8小题,满分16分,每小题2分)11.若0.000000168=1.68×10n,则n的值为.12.计算:(﹣6a2b5)÷(﹣2a2b2)=.13.分解因式:y3﹣4x2y=.14.已知a+b=3,且a﹣b=﹣1,则a2﹣b2=.15.从一个边长为2a+b的大正方形中剪出一个边长为b的小正方形,剩余的正好能剪拼成四个宽为a的长方形,那么这个长方形的长为.16.如图,已知∠1=∠2,∠B=30°,则∠3=.17.设甲数为x,乙数为y,列出二元一次方程:(1)甲数的2倍与乙数的相反数的和等于3;(2)甲数的一半与乙数的差的是7.18.在一张足够大的纸上,第一次画出一个大的正方形,第二次将大的正方形画成四个较小的正方形,第三次将其中一个较小的正方形再次画成四个更小的正方形…(1)第三次后纸上一共个正方形;(2)第n次后纸上一共个正方形.三.解答题(共10小题,满分54分)19.(4分)(1)计算:﹣4sin30°+(2015﹣π)0﹣(﹣1)2+()﹣1(2)解不等式:x﹣1≤x﹣.20.(5分)先化简,再求值:(x+1)2﹣(x+1)(x﹣1),其中x=1.21.(5分)已知不等式的最小整数的解是关于x的方程x﹣3ax=15的解,求代数式9a2﹣18a﹣160的值.22.(5分)解不等式组,并把解集在数轴上表示出来.23.(5分)用加减消元法解方程:(1);(2).24.(5分)如图,AB∥CD,∠1+∠2=180°,试给出∠EFM与∠NMF的大小关系,并证明你的结论.25.(5分)列二元一次方程组解应用题:某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间没人每天35元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元,两种客房各租住了多少间?26.(5分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分.依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数(人)11018(1)在图①中,“7分”所在扇形的圆心角等于;(2)请你将图②中的统计图补充完整;(3)请求出甲、乙两校的平均分、中位数,并从平均分和中位数的角度分析哪个学校成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?27.(7分)当m、n为何值时,方程组的解与方程组的解相同?28.(8分)已知直线AB∥CD,点E在直线AB上,点EG在直线CD上,∠EFC、∠EGD的平分线FM、GN分别交直线AB于M、N.(1)如果△EFG为等边三角形(如图1),那么∠1+∠2=.如果△EFG 为等腰三角形(如图2),且顶角∠FEG=36°,那么∠1+∠2=.(2)如果△EFG为任意三角形(如图3),那么∠1+∠2与∠FEG有什么关系?试说明理由;(3)当三角形的一个内角α是另一个内角β的两倍时,我们称此三角形为“倍角三角形”,其中α为“倍角”,如果△EFG是有一个角为30°的“倍角三角形”,且∠FEG为“倍角”,请利用(2)中的结论求∠1+∠2的度数.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.利用数轴求不等式组的解集表示正确的是()A. B.C.D.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x≤1,∴不等式组的解集为﹣3<x≤1,表示在数轴上,如图所示:,故选D【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.下列运算正确的是()A.2x﹣3x=﹣1 B.x3•x2=x5 C.(﹣a)2=﹣a2D.(a2)3=a5【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣x,错误;B、原式=x5,正确;C、原式=a2,错误;D、原式=a6,错误,故选B【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.若a<b,则下列不等式变形错误的是()A.a﹣2<b﹣2 B.<C.3﹣2a<3﹣2b D.2a﹣3<2b﹣3【分析】利用不等式基本性质变形得到结果,即可作出判断.【解答】解:由a<b,得到a﹣2<b﹣2,选项A正确;得到<,选项B正确;得到3﹣2a>3﹣2b,选项C错误;得到2a﹣3<2b﹣3,选项D正确,故选C【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.4.下列各式中,从左到右的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2 D.2a2﹣2a=2a2(1﹣)【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、是因式分解,故本选项正确;D、右边不是整式积的形式,不是因式分解,故本选项错误;故选C.【点评】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.5.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B) B.∠B C.(∠B﹣∠A)D.∠A【分析】根据互为补角的和得到∠A,∠B的关系式,再根据互为余角的和等于90°表示出∠A的余角,然后把常数消掉整理即可得解.【解答】解:根据题意得,∠A+∠B=180°,∴∠A的余角为:90°﹣∠A=﹣∠A,=(∠A+∠B)﹣∠A,=(∠B﹣∠A).故选C.【点评】本题主要考查了互为补角的和等于180°,互为余角的和等于90°的性质,利用消掉常数整理是解题的关键.6.若方程ax﹣5y=3的一个解是,则a的值是()A.13 B.﹣13 C.﹣7 D.7【分析】由方程ax﹣5y=3的一个解是,即可得方程:﹣a﹣10=3,解此方程即可求得答案a的值.【解答】解:∵方程ax﹣5y=3的一个解是,∴将代入方程ax﹣5y=3得:﹣a﹣10=3,解得:a=﹣13.故选B.【点评】此题考查了二元一次方程的解的定义.此题比较简单,注意理解定义是解此题的关键.7.为了解我市七年级学生的视力情况,市教育局组织抽查了14个街镇和3处市直初中学校的2000名学生的视力情况进行统计分析,下面四个说法正确的是()A.全市七年级学生是总体B.2000名学生是总体的一个样本C.每名学生的视力情况是总体的一个个体D.样本容量是2000名【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、我市七年级学生的视力情况是总体,故A错误;B、2000名学生的视力情况是总体的一个样本,故B错误;C、每名学生的视力情况是总体的一个个体,故C正确;D、样本容量是2000,故D错误;故选:C.【点评】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A.150°B.135°C.120°D.90°【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB,根据平行线的性质求出∠ABD+∠EDB,即可求出答案.【解答】解:连接BD,∵BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=180°﹣90°=90°,∵AB∥DE,∴∠ABD+∠EDB=180°,∴∠1+∠2=180°﹣∠ABC+180°﹣∠EDC=360°﹣(∠ABC+∠EDC)=360°﹣(∠ABD+∠CBD+∠EDB+∠CDB)=360°﹣(90°+180°)=90°,故选D.【点评】本题考查了平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.9.某水资源保护组织对石家庄某小区的居民进行节约水资源的问卷调查.某居民在问卷上的选项代号画“√”,这个过程是收集数据中的()A.确定调查范围B.汇总调查数据C.实施调查D.明确调查问题【分析】根据收集数据的几个阶段可以判断某居民在问卷上的选项代号画“√”,属于哪个阶段,本题得以解决.【解答】解:某居民在问卷上的选项代号画“√”,这是数据中的实施调查阶段,故选C.【点评】本题考查调查收集数据的过程与方法,解题的关键是明确收集数据的几个阶段.10.小亮在“五一”假期间,为宣传“摈弃不良习惯,治理清江污染”的环保意识,对到利川市清江流域游玩人群的垃圾处理习惯(A带回处理、B焚烧掩埋、C就地扔掉,三者任选其一)进行了随机抽样调查.小亮根据调查情况进行统计,绘制的扇形统计图和频数分布直方图尚不完整,如图示.请结合统计图中的信息判断,下列说法错误的是()A.抽样调查的样本数据是240B.“A带回处理”所在扇形的圆心角为18°C.样本中“C就地扔掉”的人数是168D.样本中“B焚烧掩埋”的人数占“五一”假到利川市清江流域游玩人数的25%【分析】根据百分比的意义以及扇形的圆心角的度数等于360°乘以对应的百分比即可作出判断.【解答】解:A、调查的总人数是:60÷25%=240(人),故命题正确;B、“A带回处理”所在扇形的圆心角为:360×=18°,故命题正确;C、样本中“C就地扔掉”的人数是:240﹣12﹣60=168,故命题错误;D、样本中“B焚烧掩埋”的人数占调查的人数的25%,不是“五一”假到利川市清江流域游玩人数的25%.故命题错误.故选D.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.二.填空题(共8小题,满分16分,每小题2分)11.若0.000000168=1.68×10n,则n的值为﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 168=1.68×10﹣7,答:n的值为﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.计算:(﹣6a2b5)÷(﹣2a2b2)=3b3.【分析】原式利用单项式除单项式法则计算即可得到结果.【解答】解:原式=3b3.故答案为:3b3.【点评】此题考查了整式的除法,熟练掌握单项式除单项式法则是解本题的关键.13.分解因式:y3﹣4x2y=y(y+2x)(y﹣2x).【分析】先提公因式,然后利用平方差公式分解因式.【解答】解:原式=y(y2﹣4x2)=y(y+2x)(y﹣2x).故答案为y(y+2x)(y﹣2x).【点评】本题考查了提公因式法与公式法的综合运用:熟练掌握因式分解的方法.14.已知a+b=3,且a﹣b=﹣1,则a2﹣b2=﹣3.【分析】根据a2﹣b2=(a+b)(a﹣b),然后代入求解.【解答】解:a2﹣b2=(a+b)(a﹣b)=3×(﹣1)=﹣3.故答案是:﹣3.【点评】本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.15.从一个边长为2a+b的大正方形中剪出一个边长为b的小正方形,剩余的正好能剪拼成四个宽为a的长方形,那么这个长方形的长为a+b.【分析】根据正方形面积公式求出边长为2a+b的大正方形和边长为b的小正方形的面积,相减求出四个宽为a的长方形的面积,再除以4求出这个长方形的面积,再除以宽可求这个长方形的长.【解答】解:[(2a+b)2﹣b2]÷4÷a=(2a+b+b)(2a+b﹣b)÷4÷a=4a(a+b)÷4÷a=a(a+b)÷a=a+b.故这个长方形的长为a+b.故答案为:a+b.【点评】此题考查了平方差公式的几何背景,本题关键是求出这个长方形的面积.16.如图,已知∠1=∠2,∠B=30°,则∠3=30°.【分析】根据平行线的判定推出AB∥CD,根据平行线的性质得出∠3=∠B,即可得出答案.【解答】解:∵∠1=∠2,∴AB∥CE,∴∠3=∠B,∵∠B=30°,∴∠3=30°,故答案为:30°.【点评】本题考查了平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键,注意:①两直线平行,同位角相等,②内错角相等,两直线平行.17.设甲数为x,乙数为y,列出二元一次方程:(1)甲数的2倍与乙数的相反数的和等于32x+(﹣y)=3;(2)甲数的一半与乙数的差的是7(x﹣y)=7.【分析】(1)甲数的2倍用代数式表示为2x,乙数的相反数是﹣y,则有方程2x+(﹣y)=3;(2)甲数的一半与乙数的差的用代数式表示是(),则有方程()=7.【解答】解:(1)根据题意,得2x +(﹣y )=3;(2)根据题意,得()=7.【点评】用代数式表示各数之间的关系,是此题的关键.注意代数式的正确书写.18.在一张足够大的纸上,第一次画出一个大的正方形,第二次将大的正方形画成四个较小的正方形,第三次将其中一个较小的正方形再次画成四个更小的正方形…(1)第三次后纸上一共 7 个正方形; (2)第n 次后纸上一共 3n +1 个正方形.【分析】由题意可知:第一次画出1个的正方形,第二次画出1+3=4个正方形,第三次画出1+3+3=7个正方形,…由此得出第n 次后纸上一共3n +1个正方形,由此解决问题.【解答】解:每多画一次就会增加3个小正方形, (1)第三次后纸上一共7个正方形; (2)第n 次后纸上一共3n +1个正方形. 故答案为:7,3n +1.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律解决问题.三.解答题(共10小题,满分54分)19.(4分)(1)计算:﹣4sin30°+(2015﹣π)0﹣(﹣1)2+()﹣1(2)解不等式: x ﹣1≤x ﹣.【分析】(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,第四项利用乘方的意义计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)不等式去分母,去括号,移项合并,把x 系数化为1,即可求出解集.【解答】解:(1)原式=3﹣2+1﹣1+2=3;(2)去分母得:3x﹣6≤4x﹣3,解得:x≥﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(5分)先化简,再求值:(x+1)2﹣(x+1)(x﹣1),其中x=1.【分析】先化简题目中的式子,然后将x=1代入化简后的式子即可解答本题.【解答】解:(x+1)2﹣(x+1)(x﹣1)=x2+2x+1﹣x2+1=2x+2,当x=1时,原式=2×1+2=4.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.21.(5分)已知不等式的最小整数的解是关于x的方程x﹣3ax=15的解,求代数式9a2﹣18a﹣160的值.【分析】利用去分母,去括号,移项合并,将x系数化为1求出不等式的解集,找出解集中的最小整数解,代入已知方程中求出a的值,代入所求式子中计算即可求出值.【解答】解:去分母得:2(x+2)﹣5<3(x﹣1)+4,去括号得:2x+4﹣5<3x﹣3+4,移项合并得:﹣x<2,解得:x>﹣2,则不等式的最小整数解为﹣1,将x=﹣1代入方程得:﹣1+3a=15,解得:a=,则9a2﹣18a﹣160=9×﹣18×﹣160=256﹣96﹣160=0.【点评】此题考查了一元一次不等式的整数解,求出不等式的解集是解本题的关键.22.(5分)解不等式组,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+3>2(x﹣1),得:x<5,解不等式>1,得:x>4,则不等式组的解集为4<x<5,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(5分)用加减消元法解方程:(1);(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),①﹣②得:12y=﹣36,即y=﹣3,把y=﹣3代入①得:x=,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=28,即y=7,把y=7代入①得:x=5,则方程组的解为.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.24.(5分)如图,AB∥CD,∠1+∠2=180°,试给出∠EFM与∠NMF的大小关系,并证明你的结论.【分析】延长EF交直线CD于G,根据平行线的性质得出∠1=∠EGD,求出∠EGD+∠2=180°,根据平行线的判定得出EF∥MN,根据平行线的性质得出即可.【解答】∠EFM=∠NMF,证明:延长EF交直线CD于G,∵AB∥CD,∴∠1=∠EGD,∵∠1+∠2=180°,∴∠EGD+∠2=180°,∴EF∥MN,∴∠EFM=∠NMF.【点评】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.25.(5分)列二元一次方程组解应用题:某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间没人每天35元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元,两种客房各租住了多少间?【分析】设租住三人间x间,租住两人间y间,就可以得出3x+2y=50,3×25x+2×35y=1510,由这两个方程构成方程组求出其解就可以得出结论.【解答】解:设租住三人间x间,租住两人间y间,由题意,得,解得:.答:租住三人间8间,租住两人13间.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时找到反应全题题意的两个等量关系建立方程组是关键.26.(5分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分.依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数(人)11018(1)在图①中,“7分”所在扇形的圆心角等于144°;(2)请你将图②中的统计图补充完整;(3)请求出甲、乙两校的平均分、中位数,并从平均分和中位数的角度分析哪个学校成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?【分析】(1)求出“7分”占的百分比,乘以360即可得到结果;(2)根据“7分”的人数除以占的百分比求出总人数,确定出“8分”的人数,补全条形统计图即可;(3)分别求出甲乙两校的平均分、中位数,比较即可得到结果;(4)利用两校满分人数,比较即可得到结果.【解答】解:(1)根据题意得:“7分”所在扇形的圆心角等于360°×(1﹣25%﹣20%﹣15%)=144°;故答案为:144°;(2)根据题意得:8÷40%=20(人),则得“8分”的人数为20×15%=3(人),补全条形统计图,如图所示:(3)甲校:平均分为×(7×11+8×0+9×1+10×8)=8.3(分),中位数为7分;乙校:平均分为:×(7×8+8×3+9×4+10×5)=8.3(分),中位数为8分,平均数相同,乙校中位数较大,故乙校成绩较好;(4)因为甲校有8人满分,而乙校有5人满分,应该选择甲校.【点评】此题考查了条形统计图,扇形统计图,以及中位数,平均数,弄清题意是解本题的关键.27.(7分)当m、n为何值时,方程组的解与方程组的解相同?【分析】根据方程组的解相同,可得两个新方程组,根据解方程组,可得x、y的值,根据方程组的解满足方程,可得关于m、n的方程组,根据解方程组,可得答案.【解答】解:方程组的解与方程组的解相同得①,②,解①得,把代入②得,解得,当m=1,n=2时,方程组的解与方程组的解相同.【点评】本题考查了二元一次方程组的解,利用了方程组的解满足方程组.28.(8分)(2015春•扬州校级期中)已知直线AB∥CD,点E在直线AB上,点EG在直线CD上,∠EFC、∠EGD的平分线FM、GN分别交直线AB于M、N.(1)如果△EFG为等边三角形(如图1),那么∠1+∠2=120°.如果△EFG 为等腰三角形(如图2),且顶角∠FEG=36°,那么∠1+∠2=108°.(2)如果△EFG为任意三角形(如图3),那么∠1+∠2与∠FEG有什么关系?试说明理由;(3)当三角形的一个内角α是另一个内角β的两倍时,我们称此三角形为“倍角三角形”,其中α为“倍角”,如果△EFG是有一个角为30°的“倍角三角形”,且∠FEG为“倍角”,请利用(2)中的结论求∠1+∠2的度数.【分析】(1)①由△EFG为等边三角形,证得∠EFC=∠EGD=120°,由∠EFC、∠EGD的平分线得出∠CFM=∠DGN=60°,再由AB∥CD,内错角相等即可得出结果;②由△EFG为等腰三角形,∠FEG=36°,推出∠EFG=∠EGF=72°,∠EFC=∠EGD=108°,由∠EFC、∠EGD的平分线得出∠CFM=∠DGN=54°,再由AB∥CD,内错角相等即可得出结果;(2)由AB∥CD,∠EFC、∠EGD的平分线FM、GN,得出∠1=∠CFM=∠CFE,∠2=∠DGN=∠EGD,再由三角形的外角性质得出∠CFE=∠EGF+∠FEG,∠EGD=∠EFG+∠FEG,得出∠CFE+∠EGD=180°+∠FEG,即可得出结论;(3)△EFG是有一个角为30°的“倍角三角形”,且∠FEG为“倍角”,有三种情况:①另两个角为60°、90°,60°为倍角时;②另两个角分别为50°、100°,100°为倍角时;③另两个角分别为15°、135°,30°为倍角时,分别代入(2)的结论即可.【解答】解:(1)①∵△EFG为等边三角形,∴∠EFC=∠EGD=120°,∵∠EFC、∠EGD的平分线FM、GN,∴∠CFM=∠DGN=60°,∵AB∥CD,∴∠1=∠CFM,∠2=∠DGN,∴∠1+∠2=∠CFM+∠DGN=60°+60°=120°,故答案为120°;②∵△EFG为等腰三角形,∠FEG=36°∴∠EFG=∠EGF=72°,∴∠EFC=∠EGD=108°,∵∠EFC、∠EGD的平分线FM、GN,∴∠CFM=∠DGN=54°,∵AB∥CD,∴∠1=∠CFM,∠2=∠DGN,∴∠1+∠2=∠CFM+∠DGN=54°+54°=108°,故答案为108°;(2)∠1+∠2=90°+∠FEG;理由如下:∵AB∥CD,∠EFC、∠EGD的平分线FM、GN,∴∠1=∠CFM=∠CFE,∠2=∠DGN=∠EGD,∵∠CFE=∠EGF+∠FEG,∠EGD=∠EFG+∠FEG,∴∠CFE+∠EGD=180°+∠FEG,∴∠1+∠2=90°+∠FEG;(3)∵△EFG是有一个角为30°的“倍角三角形”,且∠FEG为“倍角”,有三种情况:①另两个角为60°、90°,60°为倍角时,∠1+∠2=90°+∠FEG=90°+×60°=120°;②另两个角分别为50°、100°,100°为倍角时,∠1+∠2=90°+∠FEG=90°+×100°=140°;③另两个角分别为15°、135°,30°为倍角时,∠1+∠2=90°+∠FEG=90°+×30°=105°.【点评】本题考查了平行线性质、角平分线性质、等边三角形性质、等腰三角形性质、三角形的外角性质、三角形内角和定理等知识;熟练掌握平行线性质、角平分线性质、三角形的外角性质是解决问题的关键.。

2009-2010学年北京市朝阳区七年级(下)期末数学试卷

2009-2010学年北京市朝阳区七年级(下)期末数学试卷

2009-2010 学年北京市朝阳区七年级(下)期末数学试卷一、选择题(共10 小题,每小题3 分,满分30 分)1.(3分)设a>b,下列用不等号连接的两个式子中错误的是()A.a﹣1>b﹣1 B.a+1>b+1C.2a>2b D.﹣0.5a>﹣0.5b2.(3分)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.3.(3分)如图,直线AB、CD、EF相交于O,图中对顶角共有()A.3 对B.4 对C.5 对D.6 对4.(3分)生物学家发现一种病毒的长度约为0.000043mm,用科学记数法表示这个数的结果为()A.4.3×10﹣4 B.4.3×10﹣5C.4.3×10﹣6D.43×10﹣5 5.(3分)下列计算正确的是()A.(﹣a+b)(﹣a﹣b)=b2﹣a2C.a3÷a3=06.(3分)计算102•103 的结果是(A.104 B.105)B.(2b)3=2b3D.(a2)3=a6C.106D.1087.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC 的度数为()A.55°B.65°C.75°D.125°8.(3分)已知是方程2x﹣ay=3的一个解,那么a的值是()A.1 B.3 C.﹣3 D.﹣19.(3分)某课外兴趣小组为了了解所在学校的学生对体育运动的爱好情况,设计了四种不同的抽样调查方案,你认为比较合理的是()A.从图书馆随机选择50 名女生B.从运动场随机选择50 名男生C.在校园内随机选择50 名学生D.从七年级学生中随机选择50 名学生10.(3分)如图,阴影部分的面积是()A.B.C.6xy D.3xy二、填空题(共5 小题,每小题3 分,满分15 分)11.(3分)x的与3的差是负数,用不等式表示为.12.(3分)计算:(a﹣b)(a+2b)=.13.(3 分)将一副直角三角板按图示方法放置(直角顶点重合),则∠AOB+∠DOC=度.14.(3分)如果a2+b2=13,ab=﹣6,那么(a+b)2=.15.(3分)观察下列各式,探索发现规律:22﹣1=1×3;42﹣1=15=3×5;62﹣1=35=5×7;82﹣1=63=7×9;102﹣1=99=9×11;…用含正整数n 的等式表示你所发现的规律为.三、解答题(共12 小题,满分55 分)16.(4分)分解因式:17.(4分)分解因式:a3﹣ab2.18.(4分)解不等式2x﹣12≤8x,并把它的解集在数轴上表示出来.19.(4分)先化简,再求值:(a﹣1)2﹣a(a+1),其中.20.(4 分)在以下证明中的括号内注明理由:已知:如图,EF⊥CD 于F,GH⊥CD 于H.求证:∠1=∠3.证明:∵EF⊥CD,GH⊥CD(已知),∴EF∥GH().∴∠1=∠2().∵∠2=∠3(),∴∠1=∠3().21.(5 分)已知,如图,AB∥CD,BE∥FD.求证:∠B+∠D=180°.23.(5分)求不等式组的整数解.22.(5分)用代入法解方程组:24.(5 分)某校八年级(1)班50 名学生参加2007 年贵阳市数学质量监控考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是;(2)该班学生考试成绩的中位数是;(3)该班张华同学在这次考试中的成绩是83 分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.25.(4分)如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD 于点G,如果∠1=50°,那么∠2 的度数是度.26.(5 分)已知甲、乙两辆汽车同时、同方向从同一地点A 出发行驶.若甲车的速度是乙车的2 倍,甲车走了90 千米后立即返回与乙车相遇,相遇时乙车走了1 小时.求甲、乙两车的速度.27.(6 分)某商场用36 万元购进A、B 两种商品,销售完后共获利6 万元,其进价和售价如下表:(1)该商场购进A、B 两种商品各多少件;(2)商场第二次以原进价购进A、B 两种商品.购进B 种商品的件数不变,而购进A 种商品的件数是第一次的2 倍,A 种商品按原售价出售,而B 种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600 元,B 种商品最低售价为每件多少元?2009-2010 学年北京市朝阳区七年级(下)期末数学试卷一、选择题(共10 小题,每小题3 分,满分30 分)1.(3分)设a>b,下列用不等号连接的两个式子中错误的是()A.a﹣1>b﹣1 B.a+1>b+1C.2a>2b D.﹣0.5a>﹣0.5b【分析】根据不等式的基本性质进行逐一分析即可.【解答】解:A、正确,符合不等式的基本性质1;B、正确,符合不等式的基本性质1;C、正确,符合不等式的基本性质2;D、错误,根据不等式的基本性质3 可知,﹣0.5a<﹣0.5b.故选:D.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.2.(3分)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.【分析】首先求出不等式x+1≥2 的解集,然后根据不等式的解集在数轴上表示的方法得出结果.【解答】解:不等式x+1≥2 的解集是x≥1,在数轴上表示是C.故选:C.【点评】把不等式的解集在数轴上表示的方法是:>向右画,<向左画,含等号的画实心圆点,不含等号的画空心圆圈.3.(3分)如图,直线AB、CD、EF相交于O,图中对顶角共有()A.3 对B.4 对C.5 对D.6 对【分析】根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.【解答】解:图中对顶角有:∠AOF 与∠BOE、∠AOD 与∠BOC、∠FOD 与∠EOC、∠FOB 与∠AOE、∠DOB 与∠AOC、∠DOE 与∠COF,共6对.故选:D.【点评】本题考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.4.(3分)生物学家发现一种病毒的长度约为0.000 043mm,用科学记数法表示这个数的结果为()A.4.3×10﹣4 B.4.3×10﹣5 C.4.3×10﹣6 D.43×10﹣5【分析】绝对值<1 的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.用科学记数法表示比较小的数时,n 的值是第一个不是0 的数字前0 的个数,包括整数位上的0.【解答】解:0.000 043=4.3×10﹣5.故选:B.【点评】把一个数记成a×10n(1≤|a|<10,n 为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1 时,n 的值是第一个不是0 的数字前0 的个数,包括整数位上的0.5.(3分)下列计算正确的是()A.(﹣a+b)(﹣a﹣b)=b2﹣a2 B.(2b)3=2b3C.a3÷a3=0D.(a2)3=a6【分析】根据平方差公式,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、应为(﹣a+b)(﹣a﹣b)=a2﹣b2,故本选项错误;B、应为(2b)3=8b3,故本选项错误;C、应为a3÷a3=1,故本选项错误;D、(a2)3=a6,正确.故选:D.【点评】本题考查了平方差公式、积的乘方、同底数幂的除法以及幂的乘方,解题的关键是要熟练掌握运算性质和公式.6.(3分)计算102•103的结果是()A.104 B.105 C.106 D.108【分析】根据同底数幂相乘,底数不变指数相加计算.【解答】解:102•103=102+3=105.故选:B.【点评】本题考查了同底数幂的乘法的运算性质:同底数的幂相乘,底数不变,指数相加,熟记性质是解题的关键.7.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC 的度数为()A.55°B.65°C.75°D.125°【分析】由∠ADE=125°,根据邻补角的性质,即可求得∠ADB 的度数,又由AD∥BC,根据两直线平行,内错角相等,即可求得∠DBC 的度数.【解答】解:∵∠ADE=125°,∴∠ADB=180°﹣∠ADE=55°,∵AD∥BC,∴∠DBC=∠ADB=55°.故选:A.【点评】此题考查了平行线的性质与邻补角的定义.此题难度不大,解题的关键是注意两直线平行,内错角相等定理的应用.8.(3分)已知是方程2x﹣ay=3的一个解,那么a的值是()A.1 B.3 C.﹣3 D.﹣1【分析】把x、y 的值代入方程即可求出a 的值.【解答】解:把代入,得2+a=3,解得a=1.故选:A.【点评】本题主要用到了代入法.9.(3分)某课外兴趣小组为了了解所在学校的学生对体育运动的爱好情况,设计了四种不同的抽样调查方案,你认为比较合理的是()A.从图书馆随机选择50 名女生B.从运动场随机选择50 名男生C.在校园内随机选择50 名学生D.从七年级学生中随机选择50 名学生【分析】抽样调查中,抽取的样本不能太片面,一定要具有代表性.【解答】解:A、从图书馆随机选择50 名女生,喜欢读书,具有片面性,不合理;B、从运动场随机选择50 名男生,喜欢运动,具有片面性,不合理;C、在校园内随机选择50 名学生,具有代表性,合理;D、从七年级学生中随机选择50 名学生,具有片面性,不合理;故选:C.【点评】本题考查了抽样调查的性质:①全面性;②代表性.10.(3分)如图,阴影部分的面积是()A.B.C.6xy D.3xy【分析】阴影部分的面积即两个矩形的面积和.【解答】解:2y(3x﹣0.5x)+0.5xy=5xy+0.5xy=5.5xy.故选:A.【点评】特别注意大长方形的长的计算.熟练运用合并同类项的法则.二、填空题(共5 小题,每小题3 分,满分15 分)11.(3分)x的与3的差是负数,用不等式表示为.【分析】理解:负数<0.【解答】解:由题意可知.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.12.(3分)计算:(a﹣b)(a+2b)=a2+ab﹣2b2.【分析】根据多项式乘多项式的法则计算即可.法则可表示为(a+b )(m+n )=am+an+bm+bn.【解答】解:(a﹣b)(a+2b),=a2+2ab﹣ab+2b2,=a2+ab﹣2b2.【点评】本题主要考查了多项式乘多项式的运算,熟练掌握运算法则是解题的关键,注意不要漏项,有同类项的合并同类项.13.(3分)将一副直角三角板按图示方法放置(直角顶点重合),则∠AOB+∠DOC=180度.【分析】根据图示∠AOB=∠AOC+∠BOD﹣∠COD=180°﹣∠COD,∠AOB+∠DOC =180 度.【解答】解:∵∠AOB+∠DOC=∠AOC+∠BOD﹣∠COD+∠DOC=180度.故答案为180.【点评】要根据各角的关系来表示出∠AOB 的度数,然后代入,即可求出.14.(3分)如果a2+b2=13,ab=﹣6,那么(a+b)2=1.【分析】利用完全平方公式展开,再代入数据计算即可.【解答】解:∵a2+b2=13,ab=﹣6,∴(a+b)2=a2+2ab+b2,=13+2×(﹣6),=13﹣12,=1.【点评】本题是对完全平方公式的考查,学生经常漏掉乘积二倍项而导致出错.15.(3分)观察下列各式,探索发现规律:22﹣1=1×3;42﹣1=15=3×5;62﹣1=35=5×7;82﹣1=63=7×9;102﹣1=99=9×11;…用含正整数n的等式表示你所发现的规律为(2n)2﹣1=(2n﹣1)(2n+1).【分析】等式的左边2,4,6,8,10 为等差数列可表示为(2n)2﹣1;等式右边的整式中:1、3、5、7、9和3、5、7、9、11,可以看出是等差数列可分别表示为(2n﹣1),(2n+1),然后两数列公式相乘.【解答】解:左边:4n2﹣1=(2n)2﹣1,右边:两个等差数列分别是:2n﹣1,2n+1,即(2n﹣1)(2n+1),∴规律为(2n)2﹣1=(2n﹣1)(2n+1).【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键找到是等号左边是偶数的平方与1 的差,等式右边是与该偶数相邻的两个奇数的乘积.三、解答题(共12 小题,满分55 分)16.(4分)分解因式:【分析】分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:=m2+4m﹣1+5=(m+2)2.故答案为(m+2)2.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0 数的0 次幂等于1.17.(4 分)分解因式:a3﹣ab2.【分析】先提取公因式a,再根据平方差公式进行两次分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a3﹣ab2,=a(a2﹣b2),=a(a+b)(a﹣b).【点评】本题考查了提公因式法与公式法的综合运用,提取公因式后还能运用平方差公式继续分解因式.18.(4分)解不等式2x﹣12≤8x,并把它的解集在数轴上表示出来.【分析】利用不等式的基本性质,将两边不等式移项合并再除以6,不等号的方向不变.【解答】解:移项,得2x﹣8x≤12(1 分)合并,得﹣6x≤12(2 分)系数化为1,得x≥﹣2(3 分)不等式的解集在数轴上表示如下:(4 分)【点评】解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.19.(4分)先化简,再求值:(a﹣1)2﹣a(a+1),其中.【分析】将(a﹣1)2 展开进行化简,再将a=代入上式,即可求解.【解答】解:(a﹣1)2﹣a(a+1),=a2﹣2a+1﹣a2﹣a,=﹣3a+1,当,原式=.【点评】本题主要考查了完全平方公式、单项式与多项式相乘以及合并同类项,熟练掌握运算法则和公式是解题的关键.20.(4 分)在以下证明中的括号内注明理由:已知:如图,EF⊥CD 于F,GH⊥CD 于H.求证:∠1=∠3.证明:∵EF⊥CD,GH⊥CD(已知),∴EF∥GH(垂直于同一条直线的两直线平行).∴∠1=∠2(两直线平行,同位角相等).∵∠2=∠3(对顶角相等),∴∠1=∠3(等量代换).【分析】如果两条直线都与第三条直线垂直,那么这两条直线平行,∠1 与∠2 是两平行线EF 与GH 被AB 所截成的同位角,所以根据两直线平行,同位角相等可得∠1=∠2.再由图中可知,∠2 与∠3 是对顶角,根据对顶角相等得∠2=∠3,等量代换得∠1=∠3.【解答】证明:∵EF⊥CD,GH⊥CD(已知),∴EF∥GH(垂直于同一条直线的两直线平行).∴∠1=∠2(两直线平行,同位角相等).∵∠2=∠3(对顶角相等),∴∠1=∠3(等量代换).【点评】记准:垂直于同一条直线的两直线平行,而不是垂直.注意平行线性质和判定的灵活运用.21.(5 分)已知,如图,AB∥CD,BE∥FD.求证:∠B+∠D=180°.【分析】根据平行线的性质可得∠B=∠1,∠1+∠D=180°,等量代换即可证明∠B+∠D=180°.【解答】证明:∵AB∥CD(已知),∴∠B=∠1(两直线平行,内错角相等).(2分)∵BE∥FD(已知),∴∠1+∠D=180°(两直线平行,同旁内角互补).(4分)∴∠B+∠D=180°(等量代换).(5分)【点评】此题主要考查平行线的性质:两直线平行,同旁内角互补;两直线平行,内错角相等.22.(5分)用代入法解方程组:【分析】此方程组中未知数的系数较小且不相等,可用代入法求解.【解答】解:,由①得:y=3x﹣1…③;把③代入②,得2x﹣3(3x﹣1)=﹣11,解这个方程,得x=2.把x=2 代入③,得y=5.所以原方程组的解是.【点评】此题比较简单,考查的是二元一次方程组代入消元法,当方程组中未知数的系数较小且不相等时可用此法.23.(5分)求不等式组的整数解.【分析】此题需要首先解不等式组,求得不等式组的解集,找到符合题意的值即可.解不等式时,注意系数化一时,系数的正负.此题系数均为负,所以不等号的方向均改变.【解答】解:由①得x≥1(1 分)由②得x<5(2 分)所以原不等式组的解集为1≤x<5(4 分)所以原不等式组的整数解为1,2,3,4.(5分)【点评】此题考查了一元一次不等式组的解法.特别要注意系数化一时,不等号的方向是否需要改变.还要注意按题意解题.24.(5 分)某校八年级(1)班50 名学生参加2007 年贵阳市数学质量监控考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是 88 ;(2)该班学生考试成绩的中位数是 86 ;(3)该班张华同学在这次考试中的成绩是83 分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.【分析】(1)众数是指一组数据中出现次数最多的数据.88分的最多,所以88为众数;(2)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.此题共50 名学生,排序后第25,26 个数据的平均数是86,所以中位数是86;(3)成绩处于全班中游偏上水平,还是偏下水平,应该与中位数进行比较.该班张华同学在这次考试中的成绩是83 分低于全班成绩的中位数,所以张华同学的成绩处于全班中游偏下水平.【解答】解:(1)88出现的次数最多,所以众数是88;(2)排序后第25,26 个数据的平均数是86,所以中位数是86;(3)用样本来估计总体不能说张华的成绩处于中游偏上的水平.因为全班成绩的中位数是86,83 分低于全班成绩的中位数,张华同学的成绩处于全班中游偏下水平.【点评】主要考查了众数,中位数的确定方法和用样本估计总体的能力.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.25.(4分)如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD 于点G,如果∠1=50°,那么∠2 的度数是65 度.【分析】利用角平分线和平行的性质即可求出.【解答】解:∵AB∥CD,∴∠BEG=∠2,又∵EG 平分∠BEF,∴∠BEF=2∠2;又∵AB∥CD,∴∠1+2∠2=180°,∵∠1=50°,∴∠2=65°.故答案为:65.【点评】根据“两直线平行,同旁内角互补”,“两直线平行,内错角相等”和角平分线定义解答.26.(5 分)已知甲、乙两辆汽车同时、同方向从同一地点A 出发行驶.若甲车的速度是乙车的2 倍,甲车走了90 千米后立即返回与乙车相遇,相遇时乙车走了1 小时.求甲、乙两车的速度.【分析】设甲、乙两车速度分别是x 千米/时和y 千米/时.等量关系:①甲车的速度是乙车的2 倍;②甲车走了90 千米后立即返回与乙车相遇,相遇时乙车走了1 小时,即1 小时中,甲乙共走了90×2 千米.【解答】解:设甲、乙两车速度分别是x 千米/时和y 千米/时.根据题意,得,解这个方程组,得.答:甲、乙两车速度分别是120 千米/时、60 千米/时.【点评】此题中的第二个等量关系较难理解,可以借助画图的形式理解.27.(6 分)某商场用36 万元购进A、B 两种商品,销售完后共获利6 万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B 两种商品各多少件;(2)商场第二次以原进价购进A、B 两种商品.购进B 种商品的件数不变,而购进A 种商品的件数是第一次的2 倍,A 种商品按原售价出售,而B 种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600 元,B 种商品最低售价为每件多少元?【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A 商品购进数量,再求出B 商品的售价.【解答】解:(1)设购进A 种商品x 件,B 种商品y 件,根据题意得化简得,解之得.答:该商场购进A、B 两种商品分别为200 件和120 件.(2)由于第二次A 商品购进400 件,获利为(1380﹣1200)×400=72000(元)从而B 商品售完获利应不少于81600﹣72000=9600(元)设B 商品每件售价为z 元,则120(z﹣1000)≥9600解之得z≥1080所以B 种商品最低售价为每件1080 元.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.准确地解不等式组是需要掌握的基本能力.。

北京市朝阳区2009-2010年七年级数学 第二学期期末模拟试卷(六)人教版

北京市朝阳区2009-2010年七年级数学 第二学期期末模拟试卷(六)人教版

1 / 6 21DCBA市某某区09-10学年度第二学期 数学学科七年级期末模拟试卷(6)一、选择题1.若b a <,则下列各式中一定成立的是( ) A .11-<-b a B .33ba > C .b a -<- D . bc ac < 2.下列调查适合作全面调查的是( ) A .了解在校大学生的主要娱乐方式 B .了解市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm4.如图1是1998年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是( )A .4B .8C .10D .126.如图,在四边形ABCD 中,∠1、∠2分别是∠BAD 、∠BCD 的邻补角, 且∠B+∠ADC=140°,则∠1+∠2=( ) A .140° B .40°C .260°D .不能确定7.把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )0 1-0 1-1- 0 1-2 / 6yx DO CBA ABCD OA .B .C .D .8.地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( ) A.⎩⎨⎧=-=+128465836y x y x B.⎩⎨⎧=-=-128456836y x y x C.⎩⎨⎧=-=+128456836x y y x D.⎩⎨⎧=-=-128456836x y y x二、填空题9.已知多边形的各个内角都等于150°,则这个多边形的边数为.10.如图,AB CD ∥,AD 和BC 相交于点O ,35A ∠=,75AOB ∠=,则C ∠=.第10题图 第11题图 第12题图11.如图,在矩形ABCD 中,点A(-4,1),B(0,1),C(0,3),则点D 的坐标为.12.如图,直线a ∥b ,直线AC 分别交a 、b 于点B 、C ,直线AD 交a 于点D. 若∠1=20°,∠2=65°, 则∠3=.13.平面直角坐标系中,若点P(a ,4a -)在第二象限,则a 必须满足______ ______. 14.已知代数式1312a x y -与23b a b x y -+-是同类项,那么32a b +=. 15. 如图,在平面直角坐标系中,点A 的坐标是(1,0),点B 的 坐标是(0,2),点C 在坐标轴上.若以A 、B 、C 为顶点构成的三角 形是等腰三角形,则满足条件的点C 有个.3 / 6C A三、解答题16.(本题5分)解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来. 解:17. (本题8分)解下列方程组: (1)1528y x x y =-⎧⎨+=⎩ (2) 38512x y x y -=⎧⎨-=⎩18.解不等式组3(2)41213x x x x --⎧⎪+⎨>-⎪⎩≥19.已知△ABC ,按要求画图并填空. (1)画△ABC 的中线AM ;(2)过点A 画AD ⊥BC 于E ,若BM= 4.5,△ABM 的面积为9, 则AD=;20. 2009年5月22日,“中国移动杯”中美篮球对抗赛在某某进行.为组织该活动,中国移动某某公司已经在此前花费了费用120万元.对抗赛的门票价格分别为80元、200元和400元.已知2000X80元的门票和1800X200元的门票已经全部卖出.那么,如果要不亏本,400元的门票最低要卖出多少X ?5-8-7-6-5-4-3-2-1012346784 / 663y22x客厅卧室厨房卫 生 间21.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)写出用含x 、y 的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间 面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用 为多少元?22.如图,BD 是△ABC 的角平分线,DE ∥BC 交AB 于E ,∠A = 45°,∠BDC = 60°, 求∠EDC 的度数.对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图.根据图某某息解答下列问题:5 / 6图1 图2(1)哪一种品牌粽子的销售量最大? (2)补全图1中的条形统计图.(3)写出A 品牌粽子在图2中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A 、B 、C 三种品牌的粽子如何进货?请你提一条合理化的建议.24.已知,点A (-1,0),B (0,2),C (3,2)(1)在坐标系中描出点A 、点B 、点C ,把△ABC 向左平移3个单位得到△A B C ''',画出△A B C '''; (2)已知点P 在y 轴上,以P 、B ′、C ′为顶点的三角形与△A B C '''的面积相等,求点P 的坐标.参考答案一、选择题1. A2.D3.B4.D 6.A 7.B 8. D 二、填空题9.12 10. 70° 11. (-4,3) 12. 45° 13.a<0 14. 4 15. 4 三、解答题16. x ≥-2 17.(1)⎩⎨⎧-==12y x (2)⎩⎨⎧-==22y x ≤119.(1)略 (2)420.解:设如果要不亏本,400元的门票最低要卖出xX. 400x+2000×80+1800×200≥1200000 , x ≥27006 / 621.(1) 6x+2y+18 (2) ⎩⎨⎧⨯=++=-yy x y x 21518262126总费用为3600元?° 23. (1)C 品牌粽子 (2) 800(图略) (3) 60° (4) 略 24.(1)略 (2)P 点坐标(0,0)或(0,4)25.(1)15° (2)45° (3)105° (提示:利用三角形外角和及内外角的关系来计算)。

北京市七年级数学下册期末试题(带答案)

北京市七年级数学下册期末试题(带答案)

北京市七年级数学下册期末试题(带答案)聪明出于勤奋,天才在于积累。

尽快地掌握科学知识,迅速提高学习能力,接下来查字典数学网为大家提供的北京市七年级数学下册期末试题(带答案)一、选择题(本题共36分,每小题3分)1.不等式组3x-24的解集是( )A.xB.xC. xD. x22.某种流感病毒的直径是0.00 000 008米,用科学记数法表示0.00 000 008为( )A. B. C. D.3.若 ab,则下列结论中正确的是( )A.4 a4 bB.a+cb+cC.a-54.下列计算中,正确的是( )A. B. C. D.5.下列计算中,正确的是( )A.(m+2)2=m2+4B.(3+y)( 3-y)= 9-y2C.2x(x-1)= 2x2-1D.(m-3)(m+1)= m2-36.如图,AF是BAC的平分线,EF∥AC交AB于点E.若1=25,则的度数为( )A.15B.50C.25D.12.57.下列从左到右的变形正确进行因式分解的是( )A.(x+5)(x-5)=x2-25B.x2+x+1=x(x+1)+1C.-2x2-2xy=-2x(x+y)D.3x+6xy+9xz=3x(2y+9z)8.下列调查中,适合用普查方法的是( )A.了解某班学生对北京精神的知晓率B.了解某种奶制品中蛋白质的含量C.了解北京台《北京新闻》栏目的收视率D.了解一批科学计算器的使用寿命9.我市某一周的最高气温统计如下表:最高气温( )25262728天数1123则这组数据的中位数与众数分别是( )A.27,28B.27.5,28C.28,27D.26.5,2710. 如图所示,点在AC的延长线上,下列条件中能判断 ( )A.4B.C. D.11.不等式组无解,则m的取值范围是( )A.mB.mC.mD.m112.关于 , 的二元一次方程组的解满足 , 则的取值范围是( )A. B. C. D.二、填空题(本题共24分,每小题2分)13.把方程写成用含x的代数式表示y的形式,则y= .14如果一个角等于54,那么它的余角等于度.15.在方程中,当时,y= .16.分解因式 = .17.我市六月份连续五天的日最高气温(单位: )分别为35,33,37,34,39,则我市这五天的日最高气温的平均值为 .18.计算的结果是 .19.已知是关于x,y的方程组的解,那么的值是 .20.已知1与2互补,3与2互补,1=72,则3= 度.21.如图,直线AB,CD相交于点O,OEAB,O为垂足,EOD=26,则AOC= .22.若,,则的值是 .23.若多项式是完全平方公式,则k= .24. 右图为手的示意图,在各个手指间标记字母 .请你按图中箭头所指方向(即的方式)从开始数连续的正整数当字母第次出现时( 为正整数),恰好数到的数是_____________(用含的代数式表示).三、计算(本题共6分,每小题3分)1. 2.四、因式分解(本题共9分,每小题3分)1. 2. 3. .五、先化简,再求值(本题5分)其中, .六、解答题(本题共16分,每小题4分)1.解不等式,并把它的解集在数轴上表示出来.2. 解方程组3. 解不等式组并求它的所有整数解.4.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分BEF交CD于点G,1=50,求2的度数.七、在括号中填入适当的理由(本题共7分,每空1分)已知:如图,2,4. 求证:DF∥BC.证明:∵4(已知),又∵2(已知),DF∥BC. ( )八、解答题(本题5分)为了解某区2021年八年级学生的体育测试情况,随机抽取了该区若干名八年级学生的测试成绩进行了统计分析,并根据抽取的成绩等级绘制了如下的统计图表(不完整):图1 图2请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有___________名,成绩为B类的学生人数为_________名,A类成绩所在扇形的圆心角度数为________;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该区约5000名八年级学生体育测试成绩为D类的学生人数.九、列方程组解应用问题解答题(本题5分)如图,用火柴棍连续搭建三角形和正方形,公共边只用一根火柴棍. 如果搭建三角形和正方形共用了77根火柴棍,并且三角形形的个数比正方形的个数少5个,那么一共能连续搭建三角形、正方形各多少个?十、解答题(本题7分)如图,已知射线CB∥OA,OAB=120,E、F在CB上,且满足FOB=FBO,OE平分COF.(1) 求EOB的度数;(2) 若向右平行移动AB,其它条件不变,那么OBC:OFC的值是否发生变化?若变化,找出其中规律,若不变,求出这个比值;(3) 在向右平行移动AB的过程中,是否存在某种情况,使OEC=OBA?若存在,请直接写出OBA度数,若不存在,说明理由..以上就是查字典数学网为大家提供的北京市七年级数学下册期末试题(带答案).大家仔细阅读了吗?加油哦!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
1
D
C
B
A
北京市朝阳区09-10学年度第二学期
数学学科七年级期末模拟试卷(六)
一、选择题
1.若b a <,则下列各式中一定成立的是( ) A .11-<-b a B .
33b a >
C . b a -<-
D . bc ac < 2.下列调查适合作全面调查的是( ) A .了解在校大学生的主要娱乐方式 B .了解北京市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命
D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查
3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cm B .6cm C .5cm D .4cm
4.如图1是1998年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是( )
A .4
B .8
C .10
D .12
图1 图2
6.如图2,在四边形ABCD 中,∠1、∠2分别是∠BAD 、∠BCD 的邻补角,且∠B+∠ADC=140°,则∠1+∠2=( ) A .140° B .40° C .260° D .不能确定
7.把不等式组21123x x +>-⎧⎨+⎩
≤的解集表示在数轴上,下列选项正确的是( )
A .
B .
C .
D .
8.地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( )
1
1- 1
0 1-
1
0 1-
1
0 1-
y x D O C B
A
A.⎩⎨
⎧=-=+1284
65836
y x y x B.⎩⎨⎧=-=-128456836y x y x C.⎩⎨⎧=-=+128456836x y y x D.⎩⎨⎧=-=-128456836x y y x
二、填空题
9.已知多边形的各个内角都等于150°,则这个多边形的边数为 .
10.如图3,AB CD ∥,AD 和BC 相交于点O ,35A ∠=
,75AOB ∠=
,则C ∠= .
图3 图4 图5
11.如图4,在矩形ABCD 中,点A(-4,1),B(0,1),C(0,3),则点D 的坐标为 . 12.如图5,直线a ∥b ,直线AC 分别交a 、b 于点B 、C ,直线AD 交a 于点D. 若∠1=20°, ∠2=65°, 则∠3= .
13.平面直角坐标系中,若点P(a ,4a -)在第二象限,则a 必须满足______ ______. 14. 已知代数式
13
12
a x y -与23
b a b x y -+-是同类项,那么32a b += . 15. 如图,在平面直角坐标系中,点A 的坐标是(1,0),点B 的
坐标是(0,2),点C 在坐标轴上.若以A 、B 、C 为顶点构成的三角 形是等腰三角形,则满足条件的点C 有 个.
三、解答题
16. (本题5分)解不等式5122(43)x x --≤,
并把它的解集在数轴上表示出来. 解:
17. (本题8分)解下列方程组:
(1)1528y x x y =-⎧⎨+=⎩ (2) 38512x y x y -=⎧⎨-=⎩
5-8-7-6-5-4-3-2-101234678
C
B
A
18.解不等式组3(2)41213
x x x x --⎧⎪
+⎨>-⎪⎩≥
19.已知△ABC ,按要求画图并填空. (1)画△ABC 的中线AM ;
(2)过点A 画AD ⊥BC 于E ,若BM= 4.5,△ABM 的面积为9, 则AD= ;
20. 2009年5月22日,“中国移动杯”中美篮球对抗赛在吉首进行.为组织该活动,中国移动吉首公司已经
在此前花费了费用120万元.对抗赛的门票价格分别为80元、200元和400元.已知2000张80元的门票和1800张200元的门票已经全部卖出.那么,如果要不亏本,400元的门票最低要卖出多少张?
21.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:
(1)写出用含x 、y 的代数式表示的地面总面积;
(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间 面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用 为多少元?
22.如图,BD 是△ABC 的角平分线,DE ∥BC 交AB 于E ,∠A = 45°,∠BDC = 60°, 求∠EDC 的度数.
23.某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图.根据图中信息解答下列问题:
图1 图2
(1)哪一种品牌粽子的销售量最大? (2)补全图1中的条形统计图.
(3)写出A 品牌粽子在图2中所对应的圆心角的度数.
(4)根据上述统计信息,明年端午节期间该商场对A 、B 、C 三种品牌的粽子如何进货?请你提一条合理化的建议.
24.已知,点A (-1,0),B (0,2),C (3,2)
(1)在坐标系中描出点A 、点B 、点C ,把△ABC 向左平移3个单位得到△A B C ''',画出△A B C '''; (2)已知点P 在y 轴上,以P 、B ′、C ′为顶点的三角形与△A B C '''的面积相等,求点P 的坐标.
参考答案
一、选择题
1. A
2.D
3.B
4.D 6.A 7.B 8. D 二、填空题
9.12 10. 70° 11. (-4,3) 12. 45° 13.a<0 14. 4 15. 4 三、解答题
16. x ≥-2 17.(1)⎩⎨⎧-==12y x (2)⎩⎨⎧-==2
2
y x 18.x ≤1
19.(1)略 (2)4
20. 解:设如果要不亏本,400元的门票最低要卖出x 张.
400x+2000×80+1800×200≥1200000 , x ≥2700 21.(1) 6x+2y+18 (2) ⎩⎨
⎧⨯=++=-y
y x y x 215182621
26 总费用为3600元?
22. 82.5° 23. (1)C 品牌粽子 (2) 800(图略) (3) 60° (4) 略 24.(1)略 (2)P 点坐标(0,0)或(0,4)
25.(1)15° (2)45° (3)105° (提示:利用三角形外角和及内外角的关系来计算)。

相关文档
最新文档