信息论第二、三章习题解答

合集下载

信息论与编码理论习题答案

信息论与编码理论习题答案

信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。

信息论基础各章参考答案

信息论基础各章参考答案

各章参考答案2.1. (1)4.17比特 ;(2)5.17比特 ; (3)1.17比特 ;(4)3.17比特2.2. 1.42比特2.3. (1)225.6比特 ;(2)13.2比特2.4. (1)24.07比特; (2)31.02比特2.5. (1)根据熵的可加性,一个复合事件的平均不确定性可以通过多次实验逐步解除。

如果我们使每次实验所获得的信息量最大。

那么所需要的总实验次数就最少。

用无砝码天平的一次称重实验结果所得到的信息量为log3,k 次称重所得的信息量为klog3。

从12个硬币中鉴别其中的一个重量不同(不知是否轻或重)所需信息量为log24。

因为3log3=log27>log24。

所以在理论上用3次称重能够鉴别硬币并判断其轻或重。

每次实验应使结果具有最大的熵。

其中的一个方法如下:第一次称重:将天平左右两盘各放4枚硬币,观察其结果:①平衡 ②左倾 ③右倾。

ⅰ)若结果为①,则假币在未放入的4枚币,第二次称重:将未放入的4枚中的3枚和已称过的3枚分别放到左右两盘,根据结果可判断出盘中没有假币;若有,还能判断出轻和重,第三次称重:将判断出含有假币的三枚硬币中的两枚放到左右两盘中,便可判断出假币。

ⅱ)若结果为②或③即将左盘中的3枚取下,将右盘中的3枚放到左盘中,未称的3枚放到右盘中,观察称重砝码,若平衡,说明取下的3枚中含假币,只能判出轻重,若倾斜方向不变,说明在左、右盘中未动的两枚中其中有一枚为假币,若倾斜方向变反,说明从右盘取过的3枚中有假币,便可判出轻重。

(2)第三次称重 类似ⅰ)的情况,但当两个硬币知其中一个为假,不知为哪个时,第三步用一个真币与其中一个称重比较即可。

对13个外形相同的硬币情况.第一次按4,4,5分别称重,如果假币在五个硬币的组里,则鉴别所需信息量为log10>log9=2log3,所以剩下的2次称重不能获得所需的信息.2.6. (1)215log =15比特; (2) 1比特;(3)15个问题2. 7. 证明: (略) 2.8. 证明: (略)2.9.31)(11=b a p ,121)(21=b a p ,121)(31=b a p ,61)()(1312==b a b a p p ,241)()()()(33233222====b a b a b a b a p p p p。

信息论第三章答案

信息论第三章答案

信息论第三章答案3.2.设二元对称信道的传的矩阵32313132。

(1)、若P (0)=43,P(1)=41,求H(X),H(X/Y),H(Y/X)和I(X;Y); (2)、求该信道的信道容量及其达到信道容量时的输入概率分布。

解:(1)、H(X)=-symbol bit x p ii /81.0)41log 4143log 43()(=+?-=∑ H(Y/X) =-)/(log )/()(i j i j i j i x y p x y p x p ∑∑ =-(32log 324131log 314131log 314332log 3243?+?+?+?) = 0.92bit/symbolP )/()()/()()()()(21211112111x y p x p x y p x p y x p y x p y +=+= =31413243?+?=0.58 同理可得:p(2y )=0.42H (Y)=-(0.42×log0.42+0.58×l og0.58)=0.980bit/symbol得:H(X/Y)=H(X)-H(Y)+H(Y/X)=0.81-0.98+0.92=0.75bit/symbolI(X;Y)=H(X)-H(X/Y)=0.81-0.75=0.06bit/symbol(2)由题:C=maxI(X;Y)=logm-mi H =log2-(32log 3231log 31+)=0.082bit/symbol 因为信道容量达到最大值即X 等概率出现即:p(i x )=21 3.6、有一个二元对称信道,其信道矩阵为??098.02.002.098.0。

设该信源以1500二元符号/每秒的速度传输输入符号。

现有一消息序列共有14000个二元符号,并设P(0)=P(1)=21,问从消息传输的角度来考虑,10秒钟内能否将这些消息序列无失真的传递完?解:由题得:C=max[H(Y)-ni H ]=log2-ni H =1+0.98log0.98+0.02log0.02=0.859bit/symbol 即每输入一个信道符号,接收到的信息量是0.859bit,已知信源输入1500二元符号/每秒,那么每秒钟的信息量是:1I =(1500symbol/s )×0.859bit/symbol=1288bit/s10秒钟传输:2I =101I =12880bit传送14000个二元符号,P(0)=P(1)=21 则有:3I =14000×(21log 21×2)=14000bit 得出:2I ﹤3I 即10秒内不能将消息序列无失真传递完3.11、已知离散信源?=4.02.03.01.0)(4321x x x x X P X ,某信道的信道矩阵为2.04.03.01.02.01.02.05.01.01.02.06.04.01.03.02.0试求:(1)、“输入3x ,输出2y ”的概率;(2)、“输出4y ”的概率;(3)、“收到3y 的条件下推测输入2x ”的概率。

信息论第二章答案(南邮研究生作业)

信息论第二章答案(南邮研究生作业)

2-1 同时掷两个正常的骰子,也就是各面呈现的概率都是1/6,求:(1)“3和5同时出现”这事件的自信息量。

(2)“两个1同时出现”这事件的自信息量。

(3)两个点数的各种组合(无序对)的熵或平均信息量。

(4)两个点数之和(即2,3,…,12构成的子集)的熵。

(5)两个点数中至少有一个是1的自信息。

解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2-2 设有一离散无记忆信源,其概率空间为[]⎥⎦⎤⎢⎣⎡=====8/14/14/18/332104321x x x x P X(1) 求每个符号的自信息量;(2) 若信源发出一消息符号序列为(202 120 130 213 001 203 210 110 321 010 021 032 011 223 210),求该消息序列的自信息量及平均每个符号携带的信息量。

信息论与编码(曹雪虹 张宗橙)第二、三章答案

信息论与编码(曹雪虹 张宗橙)第二、三章答案

2-1.解:该一阶马尔可夫信源,由转移概率构成的转移矩阵为:对应的状态图如右图所示。

设各符号稳定概率为:1p ,2p ,3p 则可得方程组: 1p =211p +312p +313p 2p =211p +323p3p =322p1p +2p +3p =1解得各符号稳态概率为:1p =2510,2p =259,3p =256 2-2.解:该马尔可夫信源的符号条件概率矩阵为:状态转移概率矩阵为:对应的状态图如右图所示。

设各状态的稳态分布概率为1W ,2W ,3W ,4W ,则可得方程组为:1W =0.81W +0.53W 2W =0.21W +0.53W 3W =0.52W +0.24W4W =0.52W +0.84W1W +2W +3W +4W =1解得稳定分布的概率为:1W =145,2W =142,3W =142,4W =145 2-3.解:(1)“3和5同时出现”事件的概率为: p(3,5)=181故其自信息量为: I(3,5)=-㏒2181=4.17bit (2)“两个1同时出现”事件的概率为:p(1,1)=361故其自信息量为: I(1,1)=- ㏒2361=5.17bit (3)两个点数的各种组合构成的信源,其概率空间为:则该信源熵为: H(x 1)=6×361lb36+15×181lb18=4.337bit/事件(4)两个点数之和构成的信源,其概率空间为:则该信源的熵为: H(x 2)=2×361lb36+2×181lb18+2×121lb12+2×91lb9+2×365lb 536+61lb6=3.274bit/事件(5)两个点数中至少有一个是1的概率为: p(1)=3611 故其自信息量为:I(1)= -㏒23611=1.7105bit 2-7.解:(1)离散无记忆信源的每个符号的自信息量为I(x 1)= -㏒283=1.415bit I(x 2)= -㏒241=2bitI(x 3)= -㏒241=2bitI(x 4)= -㏒281=3bit(2)由于信源发出消息符号序列有12个2,14个0,13个1,6个3,故该消息符号序列的自信息量为: I(x)= -㏒2(83)14 (41)25 (81)6=87.81bit平均每个符号携带的信息量为: L H (x)=45)(x I =1.95bit/符号 2-10解:用1x 表示第一次摸出的球为黑色,用2x 表示第一次摸出的球为白色,用1y 表示第二次摸出的球为黑色,用2y 表示第二次摸出的球为白色,则(1)一次实验包含的不确定度为:H(X)=-p(1x )lbp(1x )-p(2x )lbp(2x )=-13lb 13-23lb 23=0.92 bit (2)第一次实验X 摸出的球是黑色,第二次实验Y 给出的不确定度: H(Y|1x )=-p(1y |1x )lb p(1y |1x )-p(2y |1x )lb p(2y |1x )= -27lb 27-57lb 57= 0.86 bit(3)第一次实验X 摸出的球是白色,第二次实验Y 给出的不确定度:H(Y|2x )=-p(1y |2x )lb p(1y |2x )-p(2y |2x )lb p(2y |2x )= -514lb 514-914lb 914= 0.94 bit(4)第二次Y 包含的不确定度:H (Y|X )= -(,)(|)i j j i ijp x y lbp y x å= p(1x ) H(Y|1x )+p(2x )H(Y|2x ) =0.91 bit 2-11 解:(1)仅对颜色感兴趣的不确定度: H(colour)=H (238,1838,1838)= -238lb 238- 2´1838lb 1838=1.24 bit (2) 对颜色和数字都感兴趣的平均不确定度: H(clour,number)=H(number)= -18´118lb 118= 5.25 bit (3)颜色已知的条件熵:H (number|colour )=H (colour,number )- H(colour)=(5.25-1.24) bit=4.01 bit 2-12 解:(1)实验X和Y的平均信息量: H(X,Y)= - (,)i j ijp x y ålb (,)i j p x y = -(,)i j ijr x y ålb (,)i j r x y=H(724,124,0,124,14,0,124,724) =2.3 bit/符号(2)由联合概率,可得p(1y )=11(,)p x y +21(,)p x y +31(,)p x y=11(,)r x y +21(,)r x y +31(,)r x y=724+124+0 =13同理可得P(2y )=p(3y )=13,则实验Y 的平均信息量:H(Y)=H(13,13,13)=1.58 bit/符号(3)在已知实验Y结果的条件下,实验X的平均信息量:H(X|Y)=H(X,Y)-H(Y)=(2.3-1.58) bit/符号=0.72 bit/符号2-13解:由X和Y的联合概率,可得P(x=0)=p(x=0,y=0)+p(x=0,y=1)= 18+38=12同理,p(x=1)= 12, p(y=0)=p(y=1)=12由于Z=XY,由X和Y的联合概率,可得P(z=0)= P(x=0,y=0)+P(x=1,y=0)+P(x=0,y=1)= 7 8P(z=1)=p(x=1,y=1)= 1 8P(x=0,z=0)= P(x=0,y=0)+ P(x=0,y=1)= 12, P(x=0,z=1)=0P(x=0,y=0)P(x=0,y=0) P(x=0,y=0) P(x=0,y=0)P(x=1,z=0)= P(x=1,y=0)= 38, P(x=1,z=1) =P(x=1,y=1)=18P(y=0,z=0)= 12P(y=0,z=1)=0 P(y=1,z=0)=38P(y=1,z=1)=18P(x=0,y=0,z=0)= 18P(x=0,y=0,z=1)=0 P(x=0,y=1,z=0)=38P(x=0,y=1,z=1)=0 P(x=1,y=0,z=0)= 38P(x=1,y=1,z=0)=0P(x=0,y=0,z=1)=0 P(x=0,y=1,z=1)=0 P(x=1,y=1,z=1)= 18,则:(1) H(X)=H(12,12)=1 bitH(Y)=H(12,12)=1 bitH(Z) =H(18,78)= 0.54 bitH(X,Z)=H(12,0,38,18)=1.41 bitH(Y,Z) =H(12,0,38,18)=1.41 bitH(X,Y,Z) =H(18,0,38,0,38,0,0,18)=1.8 bit(2) H(X,Y)=H(18,38,18, 38)=1.81 bitH(X|Y)= H(X,Y) – H(Y)=0.81 bit H(Y |X)= H(X,Y) – H(X)=0.81 bit H(X|Z)= H(X,Z) – H(Z)=0.87 bit H(Z|X)= H(X,Z) – H(X)=0.41 bit H(Y|Z)= H(Y ,Z) – H(Z)=0.87 bit H(Z|Y)=H(Y ,Z)-H(Y)=0.41bitH(X|Y ,Z)=H(X,Y ,Z)-H(Y ,Z)=0.4bit H(Y|X,Z)=H(X,Y ,Z)-H(X,Z)=0.4bit H(Z|X,Y)=H(X,Y ,Z)-H(X,Y)=0(3) I(X;Y)=H(X)-H(X|Y)=0.19bit I(X;Z)=H(X)-H(X|Z)=0.13bit I(Y;Z)=H(X)-H(Y|Z)=0.13bitI(X;Y|Z)=H(X|Z)-H(X|Y,Z)=0.47bit I(Y;Z|X)=H(Y|X)-H(Y|X,Z)=0.41bit I(X;Z|Y)=H(X|Y)-H(X|Y ,Z)=0.41bit 2-14 解:依题意,可得信道传输概率p(y=0|x=0)=1-p(y=1|x=0)=3/4, p(y=1|x=1)=1-p(y=0|x=1)=7/8 联合概率:p(x=0,y=0)=p(y=0|x=0)p(x=0)=3/8同理:p(x=0,y=1)=1/8,p(x=1,y=0)=1/16,p(x=1,y=1)=7/16 概率:p(y=0)=p(x=0,y=0)+p(x=1,y=0)=7/16 p(y=1)=p(x=0,y=1)+p(x=1,y=1)=9/16后验概率:p(x=0|y=0)=p(x=0,y=0)/p(y=0)=(3/8)/(7/16)=6/7 同理:p(x=1|y=0)=1/7,p(x=0|y=1)=2/9,p(x=1|y=1)=7/9,则(1) I (x;y=0)=(|0)(|0)log()i i ii p x y p x y p x ==å)22(0|0)(1|0)(0|0)log (1|0)log (0)(1)p x y p x y p x y p x y p x p x =======+====616177(log log )/0.41/117722bit bit =+=符号符号22222(|)()(|)log ()(0|0)(1|0)(0)(0|0)log (0)(1|0)log (0)(1)(0|1)(1|1)(0)(0|1)log (1)(1|1)log (0)(1)76(l 167i j j i j iji p x y p y p x y p x p x y p x y p y p x y p y p x y p x p x p x y p x y p y p x y p y p x y p x p x ========+=========+===+======å(2)I(X;Y)=222261277192977799og log log log )/111116716916922220.31/bit bit +++=符号符号21211111211212211212)(|)()(|)()(|)()112121722343412a P x a x a P x a P x a x a P x a P x a x a P x a =====+===+====???2-29 解:由已知起始概率和转移概率,可得:P(x 2223122211222122213255P(),()2424111111)(log log log ) 1.5224444111111H(|)(log log log ) 1.52244442211H(|)log 0log )0.9183333221H(|)log 333x a P x a bit bit x a bit bitx a bit bitx a =====---==---==-+-==--同理可得:由起始概率,可得:H(x 另外:21log 0)0.9183bit bit+=2111211222132332213122321333H(|)()(|)()(|)()(|)111( 1.50.9180.918) 1.209244H(|)()(|)()(|)()(|)755( 1.50.9180.918) 1.257122424x x P x a H x a P x a H x a P x a H x a bit bit x x P x a H x a P x a H x a P x a H x a bit bit H ==+=+==???==+=+==???12,31213121213212,3(,)H()H(|)H(|)H()H(|)H(|)(1.5 1.209 1.257) 3.996(,) 3.996()/331.322/L x x x x x x x x x x x x x x bit bitH x x x H x bit bit =++=++=++====符号符号12312311321231231231122332)w w w 122w w 23311w w 4311w w 43w w w 1833w ,w ,w ,141414()w (|)(|)(|)833( 1.50.9180.918) 1.251141414r r r w w w w H x H x a w H x a w H x a bit bit¥++=+=+=++=====++=???,(设各稳定时的概率为,,则解得:该链的极限平均符号熵为000111220(3)log 3 1.58/ 1.2511(/)10.211.417883333(log log log ) 1.4137/1414141414141.251()10.1151.4171.251/H bit r y H H H bit bit H r y H H H bit r ¥¥¥====-=-=-==---==-=-=-===符号符号符号2-30解:依题意,状态转移图如下图所示,其状态转移概率矩阵为P=213310⎛⎫⎪ ⎪ ⎪⎝⎭设状态稳定概率为1W 、2W ,则:231W +2W =1W 131W =2W 解得:1W =34 ;2W =141W +2W =1则:H(X |1S )=-232log 23-132log 13=0.918bit H(X |2S )=0信源熵为:H (X )=1W H(X |1S )+2W H(X |2S )=(34*0.918+14*0)bit=0.688bit2-32解:(1)由状态图,可得状态转移概率矩阵为:P=122122122p p p p p p p p p ⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭设状态稳定概率为1W ,2W ,3W ,则: (1-p )1W +2p 2W +2p3W =1W2p1W + (1-p) 2W +2p3W =2W 解得:1W =2W =3W =13,2p1W +2p2W +(1-p) 3W =3W 即p(0)=p(1)=p(2)= 131W +2W +3W =1(2) H(X|0)=H(X|1)=H(X|2)= - (1-p) 2log (1-p) -2p 2log 2p -2p 2log 2p= - (1-p) 2log (1-p) - p 2log 2pH ∞(X)=p(0)H(X|0)+p(1)H(X|1)+p(2)H(X|2)= - (1-p) 2log (1-p) - p 2log 2p bit (3) H(X)= 2log 3=1.58bit(4) 令()0dH X dp ∞=,得lnln(1)1120ln 2(1)ln 2ln 2ln 2pp p p --+---=- 解得p=23,则: 当p=23时,H ∞(X)= (- 132log 13-232log 13)bit =1.58 bit当p=0 时, H(X)=0当p=1时,H(X)=13-1 解(1)由输入概率分布和概率转移,可得: 00(,)p x y =00(|)p y x 0()p x =23*34=12同理,可得:01(,)p x y =14; 10(,)p x y =112; 11(,)p x y =16,则:0()p y =00(,)p x y +10(,)p x y =12+112=7121()p y =01(,)p x y +11(,)p x y =14+16=512因此,H(X)=( - 342log 34- 142log 14) bit =0.811 bit H(X ,Y)=( - 122log 12- 142log 14 - 1122log 112-162log 16)bit=1.73bit H(Y)=( -7122log 712 - 5122log 512)bit=0.98bit H(Y|X)=H(X ,Y)-H(X)=(1.73-0.811)bit=0.919 bitH(X|Y )= H(X ,Y)-H(X)=(1.73-0.98)bit=0.75bit I(X ;Y)=H(X)-H(X|Y)=(0.811-0.75)bit=0.061bit (2)该信道是对称DMC 信道,信道容量为 C= 2log m -1log mijij j pp =∑= 2log 2 +23 2log 23+ 13 2log 13=0.082bit 达到信道容量时输入概率分布为:0()p x = 1()p x =123-2 解:(1)由信源的概率分布和转移概率,可得11(,)p x y =11(|)p y x 1()p x =12α 同理可得:12(,)p x y =12α,13(,)p x y =0 ,21(,)p x y =12(1-α), 22(,)p x y =14(1-α),23(,)p x y =14(1-α),则:1()p y =11(,)p x y +21(,)p x y =12α+12(1-α)=12,同理可得: 2()p y =14α+14;3()p y =14(1-α)因此,接收端的平均不确定度为:2222211111111log ()log ()(1)log (1)22444444311log (1)log (1)()244bit -??--??+??=-+?-?(2)由于噪声产生的不确定度为:22222111111111(|X )=l o g l o g 0l o g l o g l o g 22222244443()22H Y bit ????--?---¶=-由于互信息为:223113I X;Y)=H(Y)-(Y|X)=[-log (1)log (1)]24422+?抖+?-?-(()令(;)0dI X Y d =¶,可得:35?,则:(3(;)()0.161bit 5max i p a C I X Y C ==?=)3-6 解:该信道的概率转移矩阵为 110022110022P=11002211022骣÷ç÷ç÷ç÷ç÷ç÷ç÷ç÷÷ç÷ç÷ç÷ç÷ç÷ç÷ç÷÷ç÷ç÷ç÷ç÷ç÷ç÷ç÷÷ç桫 可见,该信道为对称DMC 信道,因此,该信道的信道容量为: 42222211111C log m log log 4log ()log ()12222ij ij j p p bit ==+=++=å3-7解:(1)由发送符号的概率分布和转移概率,可得: 1111111(,)(|)()0.536p x y p y x p x ==? 同理可得:12132122233132331121(,),(,),(,),(,)10151510113(,),(,),(,),(,)0103010p x y p x y p x y p x y p x y p x y p x y p x y ========11121311211()(,)(,)(,)615303p y p x y p x y p x y =++=++= 同理可得:2311(),()26p y p y ==;111111(,)16(|)1()23p x y p x y p y ===同理可得:21311222321323331221(|)(|)(|)(|)5555313(|)(|)(|)(|)05105p x y p x y p x y p x y p x y p x y p x y p x y ========,,,,,,因此,222222112233H Y)=p(y )log p(y )-p(y )log p(y )-p(y )log p(y )111111log log log 1.459332266bit=---=((2)H Y|X)=(;)log (|i j j i ijp x y p y x -å()222221113112213log log log log log 6210101551551010=----- 222131139log log log 101030101010--- 1.175bit =(3)当接收为2 y ,发出为2x 是正确,发出的是1x 和3x 为错误,由于各自概率为:122232113(|),(|),(|)555p x y p x y p x y === 因此,接收端收到一个符号2y 的错误概率为:123213(|)(|)0.855i p p x y p x y =+=+= (4)从接收端看的平均错误概率为:1213111232213233[(|)(|)]()[(|)(|)]()[(|)(|)]()e P p x y p x y p y p x y p x y p y p x y p x y p y =+++++ 213112321323(,)(,)(,)(,)(,)(,)p x y p x y p x y p x y p x y p x y =+++++ 211311153010101510=+++++0.733= (5)同理可得,从发送端看的平均错误概率为:__210.733e e p p == (6)从转移矩阵来看,正确发送的概率11x y -的概率为0.5,有一半失真;22x y -的概率为0.3,产生失真;33x y -的概率为0,完全失真。

信息论第3章课后习题答案

信息论第3章课后习题答案

信息论第3章课后习题答案信息论是一门研究信息传输、存储和处理的学科。

它的核心理论是香农信息论,由克劳德·香农于1948年提出。

信息论的应用范围广泛,涵盖了通信、数据压缩、密码学等领域。

在信息论的学习过程中,课后习题是巩固知识、检验理解的重要环节。

本文将对信息论第3章的课后习题进行解答,帮助读者更好地理解和掌握信息论的基本概念和方法。

1. 证明:对于任意两个随机变量X和Y,有H(X,Y)≤H(X)+H(Y)。

首先,根据联合熵的定义,有H(X,Y)=-∑p(x,y)log2p(x,y)。

而熵的定义为H(X)=-∑p(x)log2p(x)和H(Y)=-∑p(y)log2p(y)。

我们可以将联合熵表示为H(X,Y)=-∑p(x,y)log2(p(x)p(y))。

根据对数的性质,log2(p(x)p(y))=log2p(x)+log2p(y)。

将其代入联合熵的表达式中,得到H(X,Y)=-∑p(x,y)(log2p(x)+log2p(y))。

再根据概率的乘法规则,p(x,y)=p(x)p(y)。

将其代入上式中,得到H(X,Y)=-∑p(x,y)(log2p(x)+log2p(y))=-∑p(x,y)log2p(x)-∑p(x,y)log2p(y)。

根据熵的定义,可以将上式分解为H(X,Y)=H(X)+H(Y)。

因此,对于任意两个随机变量X和Y,有H(X,Y)≤H(X)+H(Y)。

2. 证明:对于一个随机变量X,有H(X)≥0。

根据熵的定义,可以得到H(X)=-∑p(x)log2p(x)。

由于概率p(x)是非负的,而log2p(x)的取值范围是负无穷到0之间,所以-p(x)log2p(x)的取值范围是非负的。

因此,对于任意一个随机变量X,H(X)≥0。

3. 证明:对于一个随机变量X,当且仅当X是一个确定性变量时,H(X)=0。

当X是一个确定性变量时,即X只能取一个确定的值,概率分布为p(x)=1。

信息论基础第二版习题答案

信息论基础第二版习题答案

信息论基础第二版习题答案信息论是一门研究信息传输和处理的学科,它的基础理论是信息论。

信息论的基本概念和原理被广泛应用于通信、数据压缩、密码学等领域。

而《信息论基础》是信息论领域的经典教材之一,它的第二版是对第一版的修订和扩充。

本文将为读者提供《信息论基础第二版》中部分习题的答案,帮助读者更好地理解信息论的基本概念和原理。

第一章:信息论基础1.1 信息的定义和度量习题1:假设有一个事件发生的概率为p,其信息量定义为I(p) = -log(p)。

求当p=0.5时,事件的信息量。

答案:将p=0.5代入公式,得到I(0.5) = -log(0.5) = 1。

习题2:假设有两个互斥事件A和B,其概率分别为p和1-p,求事件A和B 同时发生的信息量。

答案:事件A和B同时发生的概率为p(1-p),根据信息量定义,其信息量为I(p(1-p)) = -log(p(1-p))。

1.2 信息熵和条件熵习题1:假设有一个二进制信源,产生0和1的概率分别为p和1-p,求该信源的信息熵。

答案:根据信息熵的定义,信源的信息熵为H = -plog(p) - (1-p)log(1-p)。

习题2:假设有两个独立的二进制信源A和B,产生0和1的概率分别为p和1-p,求两个信源同时发生时的联合熵。

答案:由于A和B是独立的,所以联合熵等于两个信源的信息熵之和,即H(A,B) = H(A) + H(B) = -plog(p) - (1-p)log(1-p) - plog(p) - (1-p)log(1-p)。

第二章:信道容量2.1 信道的基本概念习题1:假设有一个二进制对称信道,其错误概率为p,求该信道的信道容量。

答案:对于二进制对称信道,其信道容量为C = 1 - H(p),其中H(p)为错误概率为p时的信道容量。

习题2:假设有一个高斯信道,信道的信噪比为S/N,求该信道的信道容量。

答案:对于高斯信道,其信道容量为C = 0.5log(1 + S/N)。

信息论习题答案第二章陈前斌版

信息论习题答案第二章陈前斌版

第2章习题2-3 同时掷两个正常的骰子,也就是各面呈现的概率都是l/6,求: (1) “3和5同时出现”事件的自信息量; (2)“两个1同时出现”事件的自信息量;(3)两个点数的各种组合(无序对)的熵或平均信息量; (4) 两个点数之和(即 2,3,…,12构成的子集)的熵; (5)两个点数中至少有一个是1的自信息。

解:(1)P (3、5或5、3)=P (3、5)+P (5、3)=1/18I =log2(18)= 4.1699bit 。

(2)P (1、1)=l/36。

I =log2(36)=5.1699bit 。

(3)相同点出现时(11、22、33、44、55、66)有6种,概率1/36。

不同点出现时有15种,概率1/18。

H (i ,j )=6*1/36*log 2(36)+15*1/18*log 2(18)=4.3366bit/事件。

2/36 1/36)=3.2744bit/事件。

(5)P (1、1or1、j or i 、1)=1/36+5/36+5/36=11/36。

I =log2(36/11)=1.7105bit/2-5 居住某地区的女孩中有25%是大学生,在女大学生中有75%身高为1.6m 以上,而女孩中身高1.6m 以上的占总数一半。

假如得知“身高1.6m 以上的某女孩是大学 生”的消息,问获得多少信息量?、解:P (女大学生)=1/4;P (身高>1.6m / 女大学生)=3/4;P (身高>1.6m )=1/2; P (女大学生 / 身高>1.6m )=P (身高>1.6m 、女大学生)/P (身高>1.6m ) =3/4*1/4*2=3/8 I =log2(8/3)=1.4150bit 。

2-7两个实验123{,,}X x x x =和123{,,}Y y y y =,联合概率()i j ij p x y p =为1112132122233132337/241/2401/241/41/2401/247/24p p p p p p p p p ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)如果有人告诉你X 和Y 的实验结果,你得到的平均信息量是多少? (2)如果有人告诉你Y 的实验结果,你得到的平均信息量是多少?(3)在已知Y 的实验结果的情况下,告诉你X 的实验结果,你得到的平均信息量是多少? 解:(1)3311(,)(,)log (,)2.301/i j i j i j H X Y p x y P x y bit symbol===-=∑∑(2)31()()log ()1.5894/j j j H Y p y p y bit symbol==-=∑(3)(|)(,)()2.301 1.58940.7151/H X Y H X Y H Y bit symbol=-=-=2.11某一无记忆信源的符号集为{}0,1,已知01/4p =,13/4p =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息论(I )第二、三章 习题解答4.1 同时掷两个正常的骰子,也就是各面呈现的概率是61,求: (1)“3和5同时出现”这一事件的自信息量。

(2)“两个1同时出现”这一事件的自信息量。

(3)两个点数的各种组合(无序对)的熵或平均信息量。

(4)两个点数之和(即2,3…12构成的子集)的熵。

(5)两个点数中至少有一个是1的自信息。

4.2 消息符号集的概率分布和二进制代码如下表(1)求消息的符号熵。

(2)每个消息符号所需要的平均二进制码的个数或平均代码长度。

进而用这个结果求码序列中的一个二进制码的熵。

(3)当消息是由符号序列组成时,各符号之间若相互独立,求其对应的二进制码序列中出现0和1的无条件概率0p 和1p ,求相邻码间的条件概率10110100,,,P P P P 。

解答见第三章课件!4.3 某一无记忆信源的符号集为{0,1},已知0p =14,1p =34(1)求符号的平均信息熵。

(2)由100个符号构成的序列,求某一特定序列{例如有m 个“0”和(m -10)个“1”}的自信息量的表达式。

(3)计算(2)中的序列的熵。

解:(1)()()0113014408113,;;log ..i i ix p p bitH x p p symb ∈==∴=-=∑(2)这是一个求由一百个二进制符号构成的序列中的某一特定(如有m 个“0”和100-m 个“1” )序列的自信息,问题是要求某一特定序列而不是某一类序列(如含有m 个“0”的序列)(){}[]()()()()1001001001001344m 0100-m 110013100441341515844;!!!log log ..m mm m m m mmm m m m m m m mP x where x A x P A C P x m m bit I x P x m x ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭=∈⎛⎫⎛⎫∴==⎪ ⎪-⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫∴=-=-=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦其中含有个“”和个“”(3)这里有两种解法,因为是无记忆信源序列,所以单符号熵转序列熵很容易!()()()121001008113.m bit H X H x x x H x x∴==⨯=另一种解法是利用二项式定理来解。

()()()()()()()()1000100100010010010013448113log log log log .m mm m m X A m m m m m m m m mm m m mH X p x p x p A p x C p x p x C p x bit x ∈==-==-=-=-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭=∑∑∑∑4.6 有两个离散随机变量X 和Y ,其和为Y X Z +=(一般加法),若X 和Y 相互独立,求证:(1))()(Z H X H ≤)()(Z H Y H ≤(2))()(Z H XY H ≥证: ∵ Z X Y =+ 则 ()()Y P X Z P = ∴ ()()Y H X Z H = 又∵ ()Z H ≥()X Z H∴ ()Z H ≥()Y H 同理可证 ()Z H ≥()X H ∴ ()Z H ≥max ()(){}Y H X H ,上式中等号成立的条件是当X ;Y 中任意一个处于常量时。

如设X 为常量, 则 ()X Z H =()Z H =()Y H 且 ()X H = 0 ∴ ()Z H = max ()(){}Y H X H , = ()Y H 又∵ ()()()Y H X H XY H +=且 ()()()()()Z Y H Y H Y Z H Z H Z Y I -=-=; ∴()()()()()()()Z Y H X H Y H Z Y H Z H Y H Z H -+=-+=∵ ()Z Y H ≥0 离散熵的非负性。

∴ ()Z H ≤()()Y H X H +如果 ()Z Y H = 0 则 ()Z H = ()()Y H X H +∵ ()Z Y H = 0 即意味()1=Z Y P ,这表示Y 与Z 有一一对应关系。

∵ Z X Y =+ 则X 一定为一常量。

∴ 当X ;Y 中任意一个处于常量时等式成立,即()()Y H X H + = ()Z H = ()(){}Y H X H ,max证毕。

4.7 对于任意的三个离散随机变量X ,Y ,Z ;求证:(1) (;)(;)(;)(;)(;)(;)I X Y Z I X Y I Y Z X I Y Z I Z X Y I Z X -=-=-(2) ()()()(;)H XYZ H XZ H Y X I Z Y X =+-(3)()()()()H XYZ H XY H ZX H X -≤-证明: (1)、()()()()()()()()()()()()()()()()()()()()()()()();;;;;;;;;;;..;;;;;;;;;;;;;Y ZI XY Z I X Z I XX ZI Y Z I YY ZX Z I X Z I I Y Z I X Y Y Z X Z i e I I Y Z I I X Z X Y Y Z I XZ Y I X Y I XX Y I Y Z I ZX Y Y Z X Z I I X Y I I Y Z I I X Z Z X Y=+⇐=+∴+=+-=-=+=+↓∴-=-=-可加性同理:(2)、()()()()()()()()()()()()()()()()()()()()();;;Z YY Y I H H XX XZ YH XYZ H XZ H XZ Y Y YH XZ H H H X X XZ Y Y Y H XZ H H H X X XZ Z Y Y H XZ H I X XZ Y Y H XYZ H XZ H I X X=-=+=+-+⎡⎤=+--⎣⎦=+-=+-又 (3)、()()()()()()()()()()()()()()()ZH XYZ H XY H XY ZH XYZ H XY H XY Z H XZ H X H X Z ZH H X XY H XYZ H XY H XZ H X =+∴-=-=≥∴-≤- 同理:又注意:上式中等号成立的条件是什么?证毕。

4.9 一个等概率的信源符号有八种字母,分别是10000x = ,20011x = ,30101x =,40110x = ,51001x = ,61010x = ,71100x = ,81111x =,用实验测定上述码字中的每个二进制符号,可得二元输出y ,已知条件概率为00P =11P =1-ε10P =01P =ε。

实验结果得y =0000。

求: (1)第一位码测定后所得的关于1x的自信息。

(2)第二,第三,第四位码测定后各得多少关于1x的自信息。

(3)全部结果y =0000关于1x的自信息。

(4)讨论0=ε和21=ε时上述各自信息的情况。

解答见第二章课件!4.12 两个n 元的随机变量X 和Y 。

都取值于}{21n a a a A ⋯=定义(x )i i P a p ==,(y |x )j i ji P a a P ===以及∑∑≠=ij jii ie Pp P ;求证:()log(1)(,1)e e e H X P n H P P ≤-+-其中H 是熵函数 解答见第二章课件!4.14 有一个一阶平稳马尔柯夫链⋯⋯r X X X ,,21,各r X 取值于集},,{321a a a A =。

已知起始概率)(r X P 为11=p ,132==p p ,转移概率为(1)求123X X X 的联合熵和平均符号熵。

(2)求这个链的极限平均符号熵。

(3)求012,,H H H 和它们所对应的冗长度。

解答见第二章课件!4.17给定语声信号样值x的概率密度为:1()2xxp x eλλλ--∞<<+∞⎧=⎨>⎩;;求:随机变量x的相对熵并验证其在相同方差下小于高斯熵。

解答见第三章课件!4.18连续变量X和Y的联合概率密度为:221(,)[(1)2]}2Np x y x xy yN S=-+-+求:()CH X,()CH Y,()CH Y X和(;)I X Y。

解答见第三章课件!4.23 令)(xf是定义在连续区间B上取值于非负实数的连续函数,若连续随机变量X的概率密度()0()p x x B=∉,且()()Bf x p x dx A=⎰,并定义()()sf xBG s e dx-=⎰(1)试证必存在一个0s,使AsGsG-=)()('证:()()()()()()()F1BdefBx Bxp xx Band if p x dx then p xE f x f x p x dx A∈⎧=⎨∉⎩=⎡⎤∴==⎣⎦⎰⎰是一种概率分布密度函数。

依题意:[]()()()()()()()()()()()()()()():------='==--'∴-==≥>⎰⎰⎰⎰⎰⎰设定:则:又sf x Bsf x Bsf x sf x Bsf y sf y BBBG s e dxd G s G s f xe dxdsf x e dxG s e f x dx G s e dy e dy f x if let s()()()()()()()()()()01()()()()()()()()()(),s f x s f x s f x Bs f y s f y s f y BBBBs f x defs f y Bs f x s f y BBBBe dx e e anddx edyedyedye p x edyG s e f x dx f x p x dx A G s e dy G s A f x p x dxG s ----------≥==∴='-==='∴=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 则:这也是一种概率分布密度。

因此证毕(2)若有当x B ∈时,0()0()()s f x e q x G s -=;x B ∉时,()q x =0求证熵的上界式为00()log ()H X G s s A ≤+,当且仅当()q x 是X的概率密度时成立。

证:()()()()()001exp ;;;Bs f x x B if let q x G s x B andp x p x dx ⎧⎡⎤-⎣⎦∈⎪=⎨⎪∉⎩>=⎰ ()()()()()()()()()()()()()()()()()()()()()()()()()()()110log log log log log log ln exp log log c B B B B B B B then H x p x p x dxp x p x p x dx p x q x dxq x p x p x q x dx p x dxq x q x p x q x dx p x dx x x and x p x s f x p x dx p x G s dx s f x p x dxG s ∞-∞=-⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎡⎤=--⎢⎥⎢⎥⎣⎦⎡⎤≤-+-⇐≤->⎢⎥⎢⎥⎣⎦⎧⎫⎡⎤-⎪⎪⎣⎦=-=+⎨⎬⎪⎪⎩⎭⎰⎰⎰⎰⎰⎰⎰⎰ ()()()()()log log B B c G s s AH x G s s A=+∴≤+⎰⎰ (3)用上述一般结论,求下列各)(x f 下的熵上界公式a)x x f log )(= )(1,B ∞=解:()()()()()()()()()()()1111111112111111111=11ln log :log ,exp exp log sx s x s s s when f x x B G s sf x dx s x dxedx edx x dxx s s x s G s lets s -∞∞∞∞∞--∞∞--==∞⎡⎤⎡⎤=-=-⎣⎦⎣⎦===⎡⎤===⎢⎥---⎣⎦'∴>-⎰⎰⎰⎰⎰()()()()()()()000020000011111111:log log G s Then AG s A s G s s s s AH x G s s A A A '-==-==--∴=+≤+=++又则:b)x x f =)( )(0,B ∞=解:()()0:,when f x xB ==∞()()()()()()()0221111111:log log sf x sxsxBBc Then G s edx edx essandG s s G s s As AG s s s H X G s s A A ∞---===-='-='∴-===⇒=∴≤+=+⎰⎰c)||)(x x f = ),(-B ∞∞= 解:()():,when f x xB ==-∞∞()()()()()()()()()0222212221log log sf x s xsxBc ThenG s edx edx e dx s and G s sG s Aand G s AG s s s H X G s sA A ∞∞----∞===='-='∴-====∴≤+=+⎰⎰⎰Q.E.D .。

相关文档
最新文档