解直角三角形教案
《解直角三角形》教案

《解直角三角形》教案一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
(2)能够将实际问题转化为数学问题,建立解直角三角形的数学模型,并运用解直角三角形的方法解决实际问题。
2、过程与方法目标(1)通过对解直角三角形的学习,培养学生分析问题和解决问题的能力,以及数学建模的思想。
(2)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高学生的运算能力和逻辑推理能力。
3、情感态度与价值观目标(1)让学生在学习过程中体会数学与实际生活的紧密联系,激发学生学习数学的兴趣。
(2)通过解决实际问题,培养学生的应用意识和创新精神,让学生在成功中获得自信,在挫折中锻炼意志。
二、教学重难点1、教学重点(1)直角三角形中五个元素之间的关系。
(2)解直角三角形的方法。
2、教学难点(1)将实际问题转化为数学问题,建立解直角三角形的数学模型。
(2)正确选择合适的锐角三角函数关系式解直角三角形。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示一些与直角三角形相关的实际问题,如测量建筑物的高度、计算斜坡的长度等,引出解直角三角形的概念,激发学生的学习兴趣。
2、知识讲解(1)直角三角形的五个元素直角三角形有三条边和两个锐角,共五个元素,分别是两条直角边a、b 和斜边 c,以及两个锐角 A 和 B。
(2)五个元素之间的关系①三边关系(勾股定理):a²+ b²= c²②锐角关系:∠A +∠B = 90°③边角关系:sin A = a/c,cos A = b/c,tan A = a/b(3)解直角三角形由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。
3、例题讲解例 1:在 Rt△ABC 中,∠C = 90°,a = 3,c = 5,求 b 和∠A、∠B 的度数。
解直角三角形公开课教案

课程目标与要求
01
知识目标
掌握直角三角形的定义、性质 及解法。
02
能力目标
能够运用所学知识解决与直角 三角形相关的问题。
03
情感目标
培养学生对数学的兴趣和热爱 ,提高学生的数学素养。
教学方法与手段
01
教学方法
讲授法、讨论法、练习法。
02
教学手段
多媒体辅助教学、实物展示、板书演示等。
02
直角三角形基础知识回顾
解答:由$sin A = frac{BC}{AB}$得 ,$AB = frac{AC}{sin A} = frac{4}{sin 60^circ} = frac{8sqrt{3}}{3}cm$。又因为$cos A = frac{AC}{AB}$,所以$BC = AB times cos A = frac{8sqrt{3}}{3} times cos 60^circ = frac{4sqrt{3}}{3}cm$。最后,由直 角三角形内角和为$180^circ$得, $angle B = 180^circ - 90^circ 60^circ = 30^circ$。
锐角三角函数等。
解直角三角形的方法
02
掌握利用已知元素求解未知元素的方法,包括使用正弦、余弦
、正切等三角函数。
实际应用
03
了解解直角三角形在实际问题中的应用,如测量、航海、工程
等领域。
学生自我评价报告
知识掌握情况
学生能够准确理解解直角三角形的相关概念和方 法,并能够灵活运用所学知识解决实际问题。
学习态度和习惯
要点二
分析
此题考查了勾股定理和锐角三角函数 的定义。首先利用勾股定理求出AC的 长度,再利用锐角三角函数的定义求 出$angle A$和$angle B$的度数。
解直角三角形初中三年级教案

教学目标:1.了解直角三角形的定义和性质;2.掌握直角三角形的判别方法;3.能够应用直角三角形的性质解决实际问题。
教学重点:1.直角三角形的定义和性质;2.直角三角形的判别方法。
教学难点:1.直角三角形的应用。
教学准备:教师:直角三角形的示意图、直角三角形的定义和性质的板书。
学生:直尺、量角器等。
教学过程:一、导入(10分钟)1.老师出示一张直角三角形的示意图,让学生观察并回答问题:你们看到这个图形有什么特点?2.学生回答后,教师引导学生总结:这个图形有一个直角和其他两个锐角。
3.教师板书直角三角形的定义:“一个三角形有一个角是直角,就叫做直角三角形。
”二、讲解直角三角形的性质(15分钟)1.教师出示直角三角形的定义的板书,解释直角三角形的性质:直角三角形的两条边相互垂直。
2.教师提问:在一个直角三角形中,直角和两条边的关系是什么?3.学生回答后,教师解释:直角和两条边的关系是直角三角形的基本性质之一,直角所对的边叫做斜边,其他两条边叫做直角边。
4.教师出示直角三角形的示意图,引导学生观察,总结直角边和斜边的关系。
三、直角三角形的判别方法(15分钟)1.教师出示几个图形,让学生观察并判断哪些是直角三角形。
2.学生回答后,教师引导学生总结直角三角形的判别方法:通过角的大小来判断。
3.教师出示两条边并标注角的示意图,解释判断直角三角形的方法:如果两条直角边的平方和等于斜边的平方,那么这个三角形就是直角三角形。
四、应用直角三角形的性质解决实际问题(30分钟)1.教师出示一些实际问题,让学生运用直角三角形的性质解决。
2.学生分小组或个人解答,并在黑板上展示答案。
3.教师对答案进行点评和讲解。
五、小结(10分钟)1.教师带领学生复习直角三角形的定义和性质。
2.教师总结本节课的重点和难点。
教学反思:通过本节课的教学,学生能够了解直角三角形的定义和性质,并掌握判断直角三角形的方法;同时,通过解决实际问题,学生能够应用直角三角形的性质解决实际问题。
28.2.1解直角三角形 教案

28.2.1解直角三角形
二、【教学流程】
【问题2】
通过课本引言中“比萨斜塔”倾斜的问题,引出解直角三角形,详见书本P72页.
通过两个问题,让学生了解本节课的学习可以帮助我们解决以上问题
'
28
5
0954
.0
5.
54
2.5
sin
≈
∠
≈
=
=
A
AB
BC
A
利用计算器可得
自主探究【探究1】
问题(1)可以归结为:在
Rt △ABC中,已知∠A=75°,
斜边AB=6,求∠A的对边
BC的长.
问题(2)可以归结为在Rt△ABC
中,已知AC=2.4,斜边AB=6,
当梯子与地面所成的角a为75°
时,梯子顶端与地面的距离是使
用这个梯子所能攀到的最大高
度.
当梯子底端距离墙面2.4m时,求
梯子与地面所成的角a的问题,A
B
α
C
三、【板书设计】
四、【教后反思】。
九年级数学《解直角三角形》教案

23.2解直角三角形
一、学习目标
1.知道直角三角形的边角关系,能利用它求直角三角形的边或角。
2.理解并掌握解直角三角形的概念。
3.能够根据所给条件解直角三角形。
小组展示各组指派
代表,师友
共同回答,
依次展示
各自的结
论,其他同
学适时补
充纠正。
检验学生自学和
互相学习的效
果,培养学生表
达和理解能力,
提高学生学习积
极性和主动性,
当堂检测1、出检测题(见右栏);
2、学生练习完,公布答案;
3、对没有达到要求的学生,教师要求组内解决,
及时进行订正。
4、教师适当进行点评组内合作
当堂检测学生自主
完成查缺补漏,课堂最后一次扫除学生的问题,及时补救
课堂小结 1.本节课我有什么收获?
2,通过本节课的学习我有什么感想?
3,你对自己今天的表现满意吗?
再次突破重难
点,进一步理解
知识运用知识。
28.2解直角三角形(教案)

-难点3:针对含有两个未知数的直角三角形问题,如已知斜边和一个锐角,求另外两个未知数。通过讲解和举例,让学生掌握解题步骤,如先求出另一个锐角,再利用三角函数求解未知边长。
其次,在新课讲授环节,我发现部分学生对三角函数的定义和应用掌握不够扎实。在讲解过程中,我可能过于注重理论推导,而忽略了与实际例子的结合。针对这一问题,我打算在接下来的课程中,增加。
此外,在实践活动环节,虽然学生分组讨论和实验操作进行得如火如荼,但我发现部分小组在讨论过程中偏离了主题,讨论了一些与课程内容关联性不强的问题。在今后的教学中,我需要加强对学生讨论方向的引导,确保实践活动紧扣课程内容。
今天我们在课堂上学习了解直角三角形这一章节,回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,关于导入新课环节,我通过提问方式引导学生思考日常生活中的直角三角形实例,但感觉学生的反应并不如预期。可能是我提出的问题不够具体,或者是学生的生活经验有限,导致他们难以快速进入学习状态。在今后的教学中,我需要更贴近学生生活实际,提出更具启发性的问题,激发他们的兴趣。
在学生小组讨论环节,我注意到有些学生发言不够积极,可能是他们对讨论主题不感兴趣或者缺乏自信。为了提高学生的参与度,我计划在下一节课中,鼓励学生提出自己的观点,并适时给予表扬和鼓励,让他们在讨论中找到成就感和自信心。
最后,关于课堂总结环节,我觉得自己总结得还不够到位,没有完全覆盖本节课的重点和难点。在今后的教学中,我需要更加注重课堂总结,明确指出重点和难点,帮助学生巩固所学知识。
(3)将实际问题抽象成直角三角形模型,运用三角函数解决生活问题。
28.2.1 解直角三角形教案

28.2.1 解直角三角形本节是在学习锐角三角函数之后,结合已学过的三角形内角和定理和勾股定理,研究解直角三角形的问题,既能加深对锐角三角函数概念的理解,又为后续解决与其相关的实际问题打下基础.解直角三角形是结合三角形内角和定理、勾股定理等知识,利用锐角三角函数对直角三角形的三条边以及两锐角这五个要素进行求解,在解直角三角形时注意借助相应的直角三角形来寻找已知元素与未知元素的关系式.【情景导入】要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°(见教材第85页第10题图),现有一架长6 m 的梯子.(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1 m)?(2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角α等于多少(精确到1°)?这时人是否能够安全使用这架梯子?【说明与建议】 说明:用来源于学生身边的问题吸引他们的注意力,激发他们的好奇心,体会解直角三角形来源于生活,并服务于生活,诱发学生对新知识的渴求.建议:教师引导学生思考,为本节课学习解直角三角形做好铺垫. 【归纳导入】在Rt △ABC 中,∠C =90°,∠A =20°,c =10 cm. (1)根据“直角三角形两锐角互余”得∠B =70°. (2)由sinA =ac ,得a =c ·sinA =10sin20°cm.(3)由cosA =bc,得b =c ·cosA =10cos20°cm.通过以上填空,Rt △ABC 的三条边长及三个角全部知道了,这种由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.【说明与建议】 说明:通过解答此题说明已知直角三角形的一个锐角,可以求出另一个锐角,选择恰当的边角关系,还可以求出其他的边长.建议:让学生先自主探究,然后交流解题的方法并比较从中选择最合适的方法.命题角度1 在直角三角形中解直角三角形这类题目一般已知一边一角或两边求其他元素.注意以下知识和技巧的总结及运用: 理论依据:在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c. (1)三边之间的关系:a 2+b 2=c 2. (2)锐角之间的关系:∠A +∠B =90°.(3)边角之间的关系:sinA =a c =cosB ,cosA =b c =sinB ,tanA =a b =1tanB .(4)面积公式:S △ABC =12ab =12ch(h 为斜边上的高).提示:当所求的元素既可用乘法又可用除法求解时,一般用乘法,不用除法;既可用已知数据又可用中间数据求解时,最好用已知数据.技巧方法:1.(宜昌中考)如图,△ABC 的顶点是正方形网格的格点,则cos ∠ABC 的值为(B) A.23B.22C.43D.2232.(巴中中考)如图,点A ,B ,C 在边长为1的正方形网格格点上,下列结论错误的是(A)A .sinB =13B .sinC =255C .tanB =12D .sin 2B +sin 2C =1命题角度2 构造直角三角形再解直角三角形这类问题一般和三角形或圆的相关知识结合命题,题目没有直接告诉是直角三角形,通过条件或添加辅助线,可以证明或构造直角三角形,再根据解直角三角形的方法解答问题.3.(黑龙江中考)如图,在△ABC 中,sinB =13,tanC =2,AB =3,则AC 的长为(B)A. 2B.52C. 5D .24.如图,点A ,B 是以CD 为直径的⊙O 上的两点,分别在直径的两侧,其中点A 是CDB ︵的中点.若tan ∠ACB =2,AC =5,则BC 的长为(D)A. 5B .2 5C .1D .2命题角度3 分类讨论解不定三角形在解直角三角形问题时,如遇到直角或者某个锐角不确定时,特别是在没有给出图形的情况下,要注意分类讨论,防止漏解.5.(内江中考)已知,在△ABC 中,∠A =45°,AB =42,BC =5,则△ABC 的面积为2或14.双直角三角形所谓“双直角三角形”是指一条直角边重合,另一条直角边共线的两个直角三角形.其位置关系有两种:如图1,公共直角边为AD ,则AD =BC ·tan α·tan βtan β-tan α,我们把它叫做公式1.图1 图2 如图2,公共直角边为AD ,则AD =BC ·tan α·tan βtan β+tan α,我们把它叫做公式2.课题28.2.1 解直角三角形授课人素养目标1.了解解直角三角形的意义和条件.2.帮助学生理解直角三角形中五个元素(直角除外)的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.3.发展学生的数学应用意识,提高归纳能力,感受解直角三角形的策略.教学重点解直角三角形的意义以及一般方法.教学难点选择恰当的边角关系解直角三角形.授课类型新授课课时教学步骤师生活动设计意图回顾如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b,c,那么除直角∠C外的两个锐角和三条边之间有如下关系:两锐角之间的关系:∠A+∠B=90°.三边之间的关系:a2+b2=c2.边角之间的关系:sinA=ac,cosA=bc,tanA=ab.回顾以前所学内容,为本节课的教学内容做好准备.活动一:创设情境、导入新课【课堂引入】意大利比萨斜塔在落成时就已倾斜,其塔顶中心点为B,塔身中心线与垂直中心线的夹角为∠A,过点B向垂直中心线引垂线,垂足为C,如图.在Rt△ABC中,∠C=90°,BC=5.2 m,AB=54.5 m,求∠A的度数.师生活动:教师呈现问题并引导学生结合图形,观察已知条件和所求角之间的关系,分析得到通过求∠A的正弦来求∠A的度数.通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,并一般化:已知直角三角形斜边和直角边,求它的锐角的度数,通过求解的过程,初步体会解直角三角形的内涵,引入课题.活动二:实践探究、交流新知【探究新知】1.解直角三角形的定义问题:将比萨斜塔问题推广为一般的数学问题该如何求解?师生活动:已知直角三角形的斜边和一条直角边,求它的锐角的度数,利用锐角的正弦(或余弦)的概念直接求解.问题:在活动一所述的Rt△ABC中,你还能求出其他未知的边和角吗?师生活动:学生思考并说明求解思路,教师把问题一般化,给出解直角三角形的内涵:一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.2.解直角三角形的方法问题:回想一下,刚才解直角三角形的过程中,用到了哪些知识?你能梳理一下直角三角形各个元素之间的关系吗?师生活动:如图,引导学生结合图形,梳理五个元素(直角除外)之间的关系,学生展示:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)两锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab,sinB=ba,cosB=ac,tanB=ba.问题:从上述问题来看,在直角三角形中,知道斜边和一条直角边这两个元素,可以求出其余的三个元素.一般地,已知五个元素(直角除外)中的任意两个元素,可以求其余元素吗?教师给出结论:在直角三角形中,知道除直角外的五个元素中的两个元素(至1.有条理地梳理直角三角形除直角外的五个元素之间的关系,明确各自的作用,便于应用.2.在讨论解直角三角形的方法过程中,明确解直角三角形的条件,培养学生的逻辑思维能力.少有一个是边),就可以求出其余三个未知元素.活动三:开放训练、体现应用【典型例题】例1(教材第73页例1)如图,在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.解:AB=22,∠B=30°,∠A=60°.师生活动:学生在教师的引导下,思考如何求出所有未知元素.先让学生找出所有未知元素:∠A,∠B和AB,然后让学生逐一说明求每一个未知元素的方法和依据,教师引导学生选择简便的解题途径.最后给出简洁、规范的解题步骤.例2(教材第73页例2)如图,在Rt△ABC中,∠C=90°,∠B=35°,b=20,解这个直角三角形(结果保留小数点后一位).解:∠A=90°-∠B=90°-35°=55°.∵tanB=ba,∴a=btanB=20tan35°≈28.6.∵sinB=bc,∴c=bsinB=20sin35°≈34.9.师生活动:由学生代表参照例1的解题思路,分析本题的解题思路;然后由学生独立完成,再小组交流;最后由学生代表展示解题步骤.对于求c,如果学生采取不同方法,让他们展示不同方法;如果学生没有采取不同方法,教师注意引导他们思考其他解法.【变式训练】1.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=43,则CD的值为(D)1.通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,提高学生分析和解决问题的能力.2.进一步训练解一般直角三角形的思路和方法,并体会从计算简便的角度选用适当的关系式求解.3.变式训练拓展学生思维,同时增强学生对所学知识的灵活应用能力.A .2 B.45 C.43 D.65提示:延长AD ,BC ,两线交于点O ,得到两个直角三角形,解直角三角形即可. 2.在△ABC 中,若AB =10,AC =15,∠BAC =150°,则△ABC 的面积为(A) A .37.5 B .75 C .100 D .150提示:过点C 作CD ⊥AB ,交BA 的延长线于点D.在Rt △ADC 中利用特殊角求出高CD ,再计算三角形的面积.3.在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,解这个直角三角形.解:如图:∵在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,∴12ab =92 3. ∴a =3 3.∴tanA =a b =333= 3.∴∠A =60°.∴∠B =180°-∠A -∠C =180°-60°-90°=30°. ∴c =2b =6. 活动四:课堂检测【课堂检测】1.如图,在Rt △ABC 中,∠C =90°,AB =4,sinA =12,则BC 的长为(A)A .2B .3 C. 3 D .2 3通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.2.在Rt △ABC 中,∠C =90°,∠B =40°,BC =3,则AC =(C) A .3sin40° B .3sin50° C .3tan40° D .3tan50°3.在Rt △ABC 中,∠C =90°,斜边中线是3 cm ,sinA =13,则S △ABC =(D)A. 2 cm 2B .2 2 cm 2C .3 2 cm 2D .4 2 cm 2提示:由中线长可以求出斜边,解直角三角形求出两直角边,再计算三角形面积.4.如图,在△ABC 中,BD ⊥AC 于点D ,AB =6,AC =53,∠A =30°.(1)求BD 和AD 的长. (2)求tanC 的值. 解:(1)∵BD ⊥AC , ∴∠ADB =90°.在Rt △ADB 中,AB =6,∠A =30°, ∴BD =12AB =3.∴AD =BDtanA=3BD =3 3. (2)CD =AC -AD =53-33=23, 在Rt △BCD 中,tanC =BD CD =323=32.学生进行当堂检测,完成后,教师进行批阅、点评、讲解. 课堂小结1.课堂总结:(1)什么叫解直角三角形?(2)两个直角三角形全等要具备什么条件?为什么在直角三角形中,已知一边和一个锐角或两边就能解直角三角形呢?教学说明:教师提问并引导学生总结归纳解直角三角形的定义以及直角三角形五元素之间的关系. 2.布置作业:教材第77页习题28.2第1题.引导学生从知识和方法两个方面总结自己的收获,理清解直角三角形的目的、条件、依据、方法,提升综合运用知识的能力.。
解直角三角形优秀教案

解直角三角形【教学目标】1.让学生感受通过作辅助线,把非直角三角形转化为直角三角形来解决问题的方法。
2.让学生经历观察、操作、实践,培养学生运用所学知识解决未知问题的能力,实现从感性到理性,从已知到新知的矛盾特征的转化过程,形成新的知识网络。
3.通过课堂为学生提供的充分从事数学活动的机会,让学生理解并掌握基本数学知识与技能,了解数形结合的思想方法,培养转化、化归的思想方法,进而获得广泛的数学活动的经验。
4.通过学习,让学生在学习活动中获得成功的体验,锻炼克服困难,战胜困难的意志,建立自信心。
5.在学生充分参与知识形成过程中,学会与人合作、交流的学习方法,形成大胆质疑、实事求是的科学态度,感受数学的严谨性及数学结论的确定性。
【教学重点】非直角三角形的解法。
【教学难点】通过作辅助线,把非直角三角形转化为直角三角形。
【教学方法】谈话法、小组合作法、指导练习法。
【教学准备】三角板【教学过程】一、探索新知(一)问题:1.在一个三角形中共有几条边?几个内角?(引出“元素”这个词语)2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?讨论复习:师:Rt△ABC的角角关系、三边关系、边角关系分别是什么?总结:直角三角形的边、角关系(板书)(1)两锐角互余∠A +∠B =90°;(2)三边满足勾股定理a 2+b 2=c 2;(3)边与角关系sinA =cosB=a c ,cosA =sinB=b c ,tanA =a b ,tanB=b a 。
利用上面这些关系,如果知道直角三角形中的两个元素,就可以求出其他元素。
由直角三角形中已知的元素,求出其他所有未知元素的过程,叫做解直角三角形。
3.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a=4、c=8,求这个三角形的其他元素。
(出示问题,小组研讨后,找生板书过程)解:在Rt △ABC 中,∠C=90°,根据勾股定理,a 2+b 2=c 2,a=4,c=8∴b=.344822=-在Rt △ABC 中,∠C=90°,sinB=,2184a ==c ∴∠A=30°,∠B=90°-30°=60°师:我们已知直角三角形的两边长,求出其他未知元素,这个过程叫做什么呢?师:在直角三角形中,已知两边,我们可以求出其他未知元素,在Rt △ABC 中,如果已知一边和一个锐角,你能求出这个三角形的其他元素吗?4.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c=128,∠B=60°,解这个直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形教案高一数学教案解三角形篇一一、趣味数学,创设问题悬念。
谁能用牛皮筋很快的拉出一个五角星?(学生动手)你知道五角星的五个内角的和是多少度吗?不知道没有关系,只要你这一节课用心的学习,你自己就能解决这个问题。
二、口述目标,板书课题。
这一节课我们主要研究两个问题1、三角形的外角和他的'内角有什么关系?2、三角形的外角和是多少度?三、学一学。
让学生自己阅读课本第54页的内容,然后结合老师课件上的图形,把你学到的新内容和大家交流一下,其他的学生可以补充。
(三角形的外角和他相邻的内角的关系简单,让学生自己完成)四、猜一猜。
通过自己的努力,知道了三角形的外角和他相邻的内角的关系,那我们下面该研究什么问题?五、动一动。
1、提出问题:∠A+∠C与∠ABD的大小有什么关系?你用什么方法验证你的结论?(小组讨论交流)2、小组:(1)度量的方法(2)叠合法3、小结:∠A+∠C=∠ABD4、你能用语言表述这个结论吗?(让学生互相补充)5、你选谁?∠ABD( )∠A ∠ABD( )∠C (用>,<填空) 6、你能用语言表述这个结论吗? 7、师生共同小结:三角形的外角与他不相邻的两个内角的关系。
六、小试身手七、阅读填空(多媒体) 1、介绍什么叫三角形的外角和? 2、学生通过阅读总结结论。
3、随堂练习。
八、小结让学生说一说自己的收获。
九、解决趣味数学。
十、拓展练习(课后作业) 用牛皮筋拉出其他的形状,并求出所有内角的和。
高一数学教案解三角形篇二目标: 1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、了解三角形的高,并能在具体的三角形中作出它们。
重点:在具体的三角形中作出三角形的高。
教学难点:画出钝角三角形的三条高。
活动准备:学生预先剪好三种三角形,一副三角板。
教学过程:过三角形的一个顶点A,你能画出它的对边BC的垂线吗?试试看,你准行!从而引出新课:1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
如图,线段AM是BC边上的高。
∵AM是BC边上的高∴AM⊥BC.做一做:每人准备一个锐角三角形纸片:(1)你能画出这个三角形的高吗?你能用折纸的方法得到它吗?(2)这三条高之间有怎样的位置关系呢?小组讨论交流。
结论:锐角三角形的'三条高在三角形的内部且交于一点。
3、议一议:每人画出一个直角三角形和一个钝角三角形。
(1)画出直角三角形的三条高,并观察它们有怎样的位置关系?(2)你能折出钝角三角形的三条高吗?你能画出它们吗?(3)钝角三角形的三条高交于一点吗?它们所在的直线交于一点吗?小组讨论交流。
结论:1、直角三角形的三条高交于直角顶点处。
2、钝角三角形的三条高所在直线交于一点,此点在三角形的外部。
4、练习:如图,(1)共有___________个直角三角形;(2)高AD、BE、CF相对应的底分别是_______,_____,____;(3)AD=3,BC=6,AB=5,BE=4.则S△ABC=___________,CF=_________,AC=_____________.5、小结:(1)锐角三角形的三条高在三角形的内部且交于一点。
(2)直角三角形的三条高交于直角顶点处。
(3)钝角三角形的三条高所在直线交于一点,此点在三角形的外部。
作业:P127 1、2、3教学目标:使学生了解解直角三角形的概念,能运用直角三角形的角与角、边与边、边与角关系解直角三角形;通过学生的探索讨论发现解直角三角形所需的条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决.教学重点:直角三角形的解法.教学难点:三角函数在解直角三角形中的灵活运用.教学过程:一、课前专训问题一:如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞多远?问题二:如图,为测量旗杆AB的高度,在C点测得A点的仰角为60°,点C到点B的距离18.4m,求旗杆的高度(精确到0.1m).二、复习1.直角三角形两锐角间的关系:两角互余。
2.直角三角形三边关系:两直角边的平方和等于斜边的平方。
3.直角三角形中,30所对直角边与斜边的关系:30所对直角边等于斜边的一半。
你能利用三角函数知识解释第三问的。
结论吗?三、新授如图,在Rt△ABC中,∠C为直角,其余5个元素之间有以下关系:(1)三边之间关系:a2+b2=c2(勾股定理).(2)锐角之间的关系:∠A+∠B=90°(直角三角形的两个锐角互余).(3)边角之间的关系:,.直角三角形的边角关系(勾股定理、两锐角互余、锐角三角函数)如上所述,根据这些关系,你们觉得除直角外,我们还需要知道几个元素才能得到三角形的“六要素”。
(1)已知两条边(一直角边一斜边;两直角边);(2)已知一条边和一个锐角(一直角边一锐角;一斜边一锐角).要求:这是这节课的重点,让学生归纳和讨论,能让他们深刻理解解直角三角形有几种情况,必须满足什么条件能解出直角三角形,给学生展示的平台,增强学生的兴趣及自信心,使学生体会到解直角三角形的方法,“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”.四、例题例1在Rt△ABC中,∠C=90°,∠A=30°,a=5.解这个直角三角形.例2已知:在Rt△ABC中,∠C=90°,a=104,b=20.49.(1)求c的值(精确到0.01);(2)求∠A、∠B的大小(精确到0.01°).例3如图,⊙O的半径为10,求⊙O的内接正五边形的边长(精确到0.1).要求:例题讲解要根据解直角三角形定义和方法进行分析,并思考多种方法,选择最简便的方法.例2由学生独立分析,板练完成,并作自我,以掌握方法.通过例题学会灵活运用直角三角形有关知识解直角三角形,并能熟练分析问题,掌握所学基础知识及基本方法,并进一步提高学生“执果索因”的能力.五、总结1.转化的数学思想方法的应用,把实际问题转化为数学模型解决;2.解直角三角形的方法:利用直角三角形的边角关系(勾股定理、两锐角互余、锐角三角函数),在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素.六、练习1、已知:在中(1),求、(精确到0.1);(2),求(精确到0.1).2、求半径为20的圆的内接正三角形的边长和面积(精确到0.1).《7.5解直角三角形》作业与板书设计【板书设计】7.5解直角三角形知识点:例题讲解:学生版演:1、解直角三角形的概念:例1、在Rt△ABC中,∠C=90°直角三角形边角之间的关系:∠A=30°,a=5.解这个直角三角形.三边之间关系:a2+b2=c2锐角之间的关系:例2已知:在Rt△ABC中∠A+∠B=90°.∠C=90°,a=104,b=20.49.边角之间的关系:(1)求c的值(精确到0.01);(2)求∠A、∠B的大小(精确到0.01°).【作业设计】1.如图,为测量旗杆AB的高度,在C点测得A点的仰角为60°,点C到点B的距离18.4m,求旗杆的高度(精确到0.1m).第1题图第4题图2.默写直角三角形边角关系。
3.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形(边长精确到0.1,角度精确到0.1°):求:(1)a=9,b=6;(2)∠A=18°,∠C=13.如图,地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,求:B、C两地之间的距离.5.如图所示,施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB=4米,斜面距离BC=4.25米,斜坡总长DE=85米.(1)求坡角∠D的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm的长方体台阶来铺,需要铺几级台阶?(参考数据:cos20°≈0.94,sin20°≈0.34,sin18°≈0.31,cos18°≈0.95)(说明:作业1、2 、3在作业本上完成.提高题4、5自主选择完成..)一、新课导入1.课题导入如图是意大利的比萨斜塔,设塔顶中心点为B,塔身中心线与垂直中心线的交点为A ,过B点向垂直中心线引垂线,垂足为C,在Rt△ABC中,∠C=90°,BC=5.2米,AB=54.5米,你能根据上述条件求出图中∠A的度数吗?这就是我们这节课要研究的问题。
2.学习目标(1)知道解直角三角形的概念,理解直角三角形中除直角以外的五个元素之间的关系。
(2)能综合运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形。
3.学习重、难点重点:直角三角形中除直角以外的五个元素之间的关系,解直角三角形。
难点:合理选用三角函数关系式解直角三角形。
二、分层学习1.自学指导(1)自学内容:教材P72~P73例1上面的内容。
(2)自学时间:8分钟。
(3)自学要求:完成探究提纲。
(4)探究提纲:①在直角三角形中,已知有一个角是直角,我们把由直角三角形中的已知元素求出其余未知元素的过程,叫做解直角三角形。
②在直角三角形中,除直角外的五个元素之间有哪些关系?28.2.1解直角三角形课文练习基础题知识点1 已知两边解直角三角形1.在△ABC中,∠C=90°,AC=3,AB=4,欲求∠A的。
值,最适宜的做法是( )A.计算tanA的值求出B.计算sinA的值求出C.计算cosA的值求出D.先根据sinB求出∠B,再利用90°-∠B求出《28.2.1解直角三角形》基操训练第一层次学习1.自学指导(1)自学内容:教材P76例5.(2)自学时间:10分钟。
(3)自学方法:独立探索解题思路,然后同桌之间讨论,写出规范的解题过程。
(4)自学参考提纲:①如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果取整数,参考数据:cos25°≈0.91,sin25°≈0.42,tan25°≈0.47,sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)教学目标:使学生了解解直角三角形的概念,能运用直角三角形的角与角、边与边、边与角关系解直角三角形;通过学生的探索讨论发现解直角三角形所需的条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决.教学重点:直角三角形的解法.教学难点:三角函数在解直角三角形中的灵活运用.教学过程:一、课前专训1.什么是勾股定理?2.直角三角形的两锐角有什么关系?3.什么叫正弦、余弦、正切?二、复习1.什么叫正弦、余弦、正切?2.随着角度的变化,正弦值、余弦值、正切值怎样变化?3.特殊角的三角函数值?三、解直角三角形的概念,探索直角三角形中的边角关系1.新课引入,情景导入五星红旗你是我的骄傲,五星红旗我为你自豪……如何测量旗杆的高度?请同学们说说你的想法.2.实践探索活动一:(课件展示1)如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞多远?活动二:(课件展示2)如图,为测量旗杆的高度,在C点测得A点的仰角为30°,点C到点B的距离56.3,求旗杆的高度(精确到0.1m).解:略.3.归纳总结同学们回答的非常好,通过上面的两个活动,若要完整解该直角三角形,还需求出哪些元素?如图,在Rt△ABC中,∠C为直角,其余5个元素之间有以下关系:(1)三边之间关系:a2+b2=c2(勾股定理).(2)锐角之间的关系:∠A+∠B=90°(直角三角形的两个锐角互余).(3)边角之间的关系:四、例题讲解例1在Rt△ABC中,∠C=90°,∠A=30°,a=5.解这个直角三角形.例2已知:在Rt△ABC中,∠C=90°,a=104,b=20.49.(1)求c的值(精确到0.01);(2)求∠A、∠B的。