c语言算法--贪婪算法---01背包问题
贪心算法之背包问题

贪⼼算法之背包问题问题描述:给定n种物品,1个背包,背包容量为c,每个物品i的价值为vi,重量为wi,如何选择装⼊物品能使背包的总价值最⼤?注意:与0-1背包问题不同,在选择物品i装⼊背包时,可以选择物品i的⼀部分,⽽不⼀定要全部装⼊背包,1<=i<=n形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量A=(x1,x2,…,xn), 0<=xi<=1【0~1表⽰取物品的某⼀部分】,1<=i<=n,使得 ∑wixi≤c【物品的重量和⼩于背包总容量】⽽且∑ vixi达到最⼤。
算法思路:将物品按照单位重量价值进⾏排序(从⼤到⼩),将尽可能多的单位重量价值最⾼的物品装⼊背包,若将这种物品全部装⼊背包后,背包还有多余容量,则选择单位重量价值次⾼的并尽可能多地装⼊背包。
如果最后⼀件物品⽆法全部装⼊,则计算可以装⼊的⽐例,然后按⽐例装⼊。
代码实现:数据结构:结构体1 #include <iostream>2 #include <algorithm>3using namespace std;4struct item{5int weight;//物品的重量6int value;//物品的价值7float bi;//物品单位重量的价值8float rate;//使⽤率:1代表物品完整放⼊,⼩于1代表被分割后放⼊9 }items[100];10bool cmp(const item &a,const item &b){11return a.bi>b.bi;12 }13int main(){14int n;//n件物品15float c;//背包容量为c16 cout<<"输⼊物品件数和背包容量:"<<endl;17 cin>>n>>c;18 cout<<"依次输⼊每件物品的价值和重量:"<<endl;19float v[n],w[n];//v[n]:n件物品的价值,w[n]:n件商品的重量20for(int i=0;i<n;i++){21 cin>>items[i].value>>items[i].weight;22 items[i].bi=items[i].value/items[i].weight;//计算单位重量价值23 items[i].rate=0;//初始化每件物品的使⽤率24 }25 sort(items,items+n,cmp);//按照单位重量的价值排序26int sum=0,j=0;27for(j=0;j<n;j++){28if(items[j].weight<=c){//选择单位价值重量最⼤的并且不超过背包容量的29 items[j].rate=1;30 sum+=items[j].weight;31 c-=items[j].weight;32 cout<<"重:"<<items[j].weight<<"、价值:"<<items[j].value<<"的物品被放⼊了背包"<<endl<<"放⼊⽐例:"<<items[j].rate<<endl;33 }34else break;35 }36if(j<n){//物品未装完37 items[j].rate=c/items[j].weight;//背包容量还剩c,计算出未装⼊的物品能装多少的⽐例38 sum+=items[j].rate*items[j].weight;//加上装⼊部分⽐例物品的重量39 cout<<"重:"<<items[j].weight<<"、价值:"<<items[j].value<<"被放⼊了背包"<<endl<<"放⼊⽐例:"<<items[j].rate<<endl;40 }41return0;424344 }。
贪心算法-01背包问题

贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。
2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。
若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。
显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。
3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。
由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。
此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。
c语言-01背包问题

c语⾔-01背包问题01背包问题问题:有N件物品和⼀个容量为V的背包。
第i件物品的费⽤是c[i],价值是w[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
分析:这是最基础的背包问题,特点是:每种物品仅有⼀件,可以选择放或不放。
⽤⼦问题定义状态:即f[i][v]表⽰前i件物品恰放⼊⼀个容量为v的背包可以获得的最⼤价值。
则其状态转移⽅程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个⽅程⾮常重要,基本上所有跟背包相关的问题的⽅程都是由它衍⽣出来的。
所以有必要将它详细解释⼀下:“将前i件物品放⼊容量为v的背包中”这个⼦问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为⼀个只牵扯前i-1件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放⼊容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放⼊剩下的容量为v-c[i]的背包中”,此时能获得的最⼤价值就是f[i-1][v-c[i]]再加上通过放⼊第i件物品获得的价值w[i]。
优化:以上⽅法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。
先考虑上⾯讲的基本思路如何实现,肯定是有⼀个主循环i=1..N,每次算出来⼆维数组f[i][0..V]的所有值。
那么,如果只⽤⼀个数组 f[0..V],能不能保证第i次循环结束后f[v]中表⽰的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1] [v-c[i]]两个⼦问题递推⽽来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1] [v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态 f[i-1][v-c[i]]的值。
背包问题解析(一)-贪心算法

背包问题解析(⼀)-贪⼼算法⼀、题⽬:有N件物品和⼀个容量为V的背包。
第i件物品的重量是w[i],价值是v[i]。
求解将哪些物品装⼊背包可使这些物品的重量总和不超过背包容量,且价值总和最⼤。
⼆、解决思路:本题刚开始的解题的时候,想采取贪⼼算法来解决,也就是将放⼊的物品的性价⽐按照从⾼到低进⾏排序,然后优先放优先级⾼的,其次优先级低的。
三、代码实现(python)1# 重量w=[5,4,3,2]2# 价值v=[6,5,4,3]3 b=[]4 m=int(input("请输⼊背包的最⼤重量:"))5 n=int(input("请输⼊商品的数量:"))6for i in range(n):7 a=input("请分别输⼊重量和价值,以空格隔开:")8 a=a.split("")9for i in range(len(a)):10 a[i]=int(a[i])11 b.append(a)12print("加载初始化:",b)13for i in range(len(b)):14for j in range(i+1,len(b)):15if b[i][1]/b[i][0]<b[j][1]/b[j][0]:16 b[i],b[j]=b[j],b[i]17print("性价⽐排序:",b)18 v=019 c=[]20for i in range(len(b)):21if m-b[i][0]>0:22 m=m-b[i][0]23 c.append(b[i])24 v+=b[i][1]25print("放⼊背包:",c)26print("最⼤价值为:",v)打印结果:四、算法分析:贪⼼选择是指所求问题的整体最优解可以通过⼀系列局部最优的选择,即贪⼼选择来达到。
01背包贪心算法

0—1背包问题一、实验目的学习掌贪心算法法思想。
二、实验内容用分支限定法求解0—1背包问题,并输出问题的最优解。
0—1背包问题描述如下:给定n种物品和一背包。
物品i的重量是Wi,其价值为Vi,背包的容量是c,问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
三、实验条件Jdk1.5以上四、需求分析对于给定n种物品和一背包。
在容量最大值固定的情况下,要求装入的物品价值最大化。
五、基本思想:总是对当前的问题作最好的选择,也就是局部寻优。
最后得到整体最优。
总是选择单位价值最高的物品六、详细设计package sunfa;/**** @author Administrator*/import java.util.*;public class Greedy_Algorithm {static Element dd[];static int CurrentV ;static int CurrentC;static StringBuffer stb= new StringBuffer();public static int knapasck(int c, int[] w, int[] v, int[] x) {int n = v.length;Element d [] = new Element[n];for(int i = 0 ;i< n; i++){d[i]=new Element(w[i],v[i],i+1);}//按单位重量价值升序排序Arrays.sort(d);dd =d;/*for(int i = 0; i<d.length ;i++){System.out.println("重量" +d[i].ww+ "单位价值"+d[i].wv);}*/int i = 0;int MaxV2 = 0;for(i=0;i<n;i++)x[i] = 0;for(i=0;i<n;i++){if(d[i].ww>c)break;else{x[i] = d[i].tag; //x【】中存的是原元素的序号MaxV2 = MaxV2+d[i].value;c = c -d[i].ww;CurrentC =c ;stb.append("选择第" + d[i].tag + "个当前价值:"+MaxV2+ "剩余容量:"+c+"\n");}}return MaxV2;}}class Element implements Comparable{int ww; //物品重量int value; //物品价值double wv;//物品单位重量的价值int tag;//物品的标志是第一个物品public Element(int w ,int vv ,int tag){this.tag = tag;this.ww = w;this.value = vv;wv = (double)vv/w;}//对象比较的方法public int compareTo(Object x){Element temp = (Element)x;double rate = (double)ww/value;double temprate = (double)temp.ww/temp.value;if(rate<temprate)return -1;if(rate==temprate)return 0;elsereturn 1;}}运行结果(用列一)用列二上述结果显示:贪心算法不是总是最优的.动态规划与贪心算法比较;动态规划法又和贪婪算法有些一样,在动态规划中,可将一个问题的解决方案视为一系列决策的结果。
贪心法求解01背包问题

贪心法的关键是度量标准,这个程序的度量标准有三个占用空间最小物品效益最大物品效益/占用空间最大程序实现如下:至于文件的操作不加论述。
#include <stdio.h>#include <stdlib.h>typedef struct{char name[10];int weight;int price;}Project;Project *Input(Project *wp,int TotalNum,int TotalWeight) {int i,j,Way,GoBack,RealWeight,RealPrice,TotalPrice;Project temp;do{printf("请选择:\n");printf(" 1.空间最优\n");printf(" 2.价格最优\n");printf(" 3.价格空间比最优\n");scanf("%d",&Way);switch(Way){case 1:for(i=0;i<TotalNum;i++)for(j=0;j<TotalNum-i-1;j++){if(wp[j].weight>wp[j+1].weight){temp=wp[j];wp[j]=wp[j+1];wp[j+1]=temp;}}break;case 2:for(i=0;i<TotalNum;i++)for(j=0;j<TotalNum-i-1;j++){if(wp[j].price<wp[j+1].price){temp=wp[j];wp[j]=wp[j+1];wp[j+1]=temp;}}break;case 3:for(i=0;i<TotalNum;i++)for(j=0;j<TotalNum-i-1;j++){if((float)wp[j].price/(float)wp[j].weight<(float)wp[j+1].price/(float)wp[j+1].weight){temp=wp[j];wp[j]=wp[j+1];wp[j+1]=temp;}}break;default:{printf("输入错误!\n");exit(1);}}i=0;RealWeight=wp[0].weight;TotalPrice=wp[0].price;printf("被装入背包的物品是:\n(物品名价格重量)\n");while(RealWeight<TotalWeight&&i<TotalNum){printf("%s %d %d\n",wp[i].name,wp[i].price,wp[i].weight);i++;RealWeight+=wp[i].weight;TotalPrice+=wp[i].price;}RealWeight-=wp[i].weight;TotalPrice-=wp[i].price;printf("求解结束!背包所装物品总重量:%d,总价值:%d\n",RealWeight,TotalPrice);printf("退出本次测试请按0!\n");scanf("%d",&GoBack);}while(GoBack!=0);return wp;}void main(){int InputWay,TotalNum,i,TotalWeight,RealWeight,Goon,TotalPrice;Project *Array;FILE *fp;do{printf("请选择数据录入方式!\n");printf(" 1.文件读入\n");printf(" 2.键盘输入\n");scanf("%d",&InputWay);switch(InputWay){case 1:printf("请输入背包最大容量:");scanf("%d",&TotalWeight);fp=fopen("data.txt","r");fscanf(fp,"%d\n",&TotalNum);if((Array=(Project*)malloc(TotalNum*sizeof(Project)))==NULL){printf("内存已满,申请空间失败!\n");exit(1);}else{for(i=0;i<TotalNum;i++){fscanf(fp,"%s %d %d\n",&Array[i].name,&Array[i].price,&Array[i].weight);}}fclose(fp);Array=Input(Array,TotalNum,TotalWeight);break;case 2:printf("请输入物品数量及背包容量\n");scanf("%d%d",&TotalNum,&TotalWeight);if((Array=(Project*)malloc(TotalNum*sizeof(Project)))==NULL){printf("内存已满,申请空间失败!\n");exit(1);}else{printf("请输入:物品名价格重量\n");for(i=0;i<TotalNum;i++)scanf("%s%d%d",&Array[i].name,&Array[i].price,&Array[i].weight);}Array=Input(Array,TotalNum,TotalWeight);break;default:{printf("输入错误!\n");exit(1);}}printf("继续其他数据测试请按1\n");scanf("%d",&Goon);}while(Goon==1);delete Array;}。
C语言版贪心算法背包问题

C语言版贪心算法背包问题#include#define N 100typedef struct bao{int num;float w;float v;};typedef struct avg{int num;float val;float w;float v;};struct bao b[N];struct avg d[N];int n;float c;void Sort(){int i,j,k;struct avg temp[N];for(i=0;i<n-1;i++)< p="">{k = i;for(j=i+1;j<n;j++)< p="">if(d[k].valif(k != i){temp[i]=d[i];d[i]=d[k];d[k]=temp[i];}}}float knapsack(){int i;float x[N],sum = 0;for(i=0;ifor(i=0;i<n;i++){< p="">if(d[i].w>c) break;x[d[i].num] = 1;sum += d[i].v;c -= d[i].w;}if(i<n){< p="">x[d[i].num] = c/d[i].w;sum += x[d[i].num] * d[i].v;}return sum;}int main(){int i,j,k;float sum;printf("请输入物品总数:");scanf("%d",&n);printf("\n请输入背包容量:");scanf("%f",&c);printf("\n请输入各物品重量及价值(格式:xx,xx):");for(i=0;i<n;i++){< p=""> scanf("%f,%f",&b[i].w,&b[i].v); }for(i=0;i<="" p="">for(i=0;i<n;i++){< p="">d[i].val = b[i].v/b[i].w;d[i].v = b[i].v;d[i].w = b[i].w;}Sort();sum = knapsack();printf("%.2f\n",sum);}</n;i++){<></n;i++){<></n){<></n;i++){<></n;j++)<></n-1;i++)<>。
贪心算法之背包问题

贪⼼算法之背包问题贪⼼算法之背包问题1.与动态规划的区别通过研究解决经典的组合优化问题,来说明⼆者的差别。
即0-1背包问题与背包问题0-1背包问题:给定n中物品和⼀个背包。
物品i的重量为W i,其价值为V i,背包的容量为C。
应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?对于每种物品i只有俩种选择,即装⼊背包或不装⼊背包背包问题:与0-1背包问题类似,不同在于选择物品i装⼊背包时,可以选择物品i的⼀部分,⽽不⼀定要全部装⼊背包,1≤i≤n。
这2类问题都具有最优⼦结构性质,极为相似。
背包问题可以⽤贪⼼算法求最优解,0-1背包不能使⽤贪⼼求解。
2.贪⼼解决背包问题步骤贪⼼策略:每次选择单位重量价值最⾼的物品装⼊背包计算每种物品单位重量的价值V iW i,按单位重量的价值从⼤到⼩将n中物品排序。
以排序后的次序依次将物品装⼊背包。
直⾄全部物品都装⼊或者因背包容量不⾜不能装⼊为⽌如果背包尚有容量,将最后不能完全装⼊物品切割⼀部分装满背包算法结束3.代码实现/*** n 物品数* M 背包容量* v[] 物品价值数组* w[] 物品重量数组* x[] 保存最优解路径数组,为1则表⽰该物品完全装⼊,否则装⼊该物品的⼀部分**/void Knapsack(int n, float M, float v[], float w[], float x[]) {// 按照物品单位重量的价值递减排序Sort(n, v, w);int i;for (i = 1; i <= n; i++)x[i] = 0;float c = M;for (i = 1; i <= n; i++) {if (w[i] > c)break;x[i] = 1;c -= w[i];}if (i <= n)x[i] = c / w[i];}Processing math: 100%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c语言算法--贪婪算法---0/1背包问题
在0 / 1背包问题中,需对容量为c 的背包进行装载。
从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。
对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即n ?i=1pi xi 取得最大值。
约束条件为n ?i =1wi xi≤c 和xi?[ 0 , 1 ] ( 1≤i≤n)。
在这个表达式中,需求出xt 的值。
xi = 1表示物品i 装入背包中,xi =0 表示物品i 不装入背包。
0 / 1背包问题是一个一般化的货箱装载问题,即每个货箱所获得的价值不同。
货箱装载问题转化为背包问题的形式为:船作为背包,货箱作为可装入背包的物品。
例1-8 在杂货店比赛中你获得了第一名,奖品是一车免费杂货。
店中有n 种不同的货物。
规则规定从每种货物中最多只能拿一件,车子的容量为c,物品i 需占用wi 的空间,价值为pi 。
你的目标是使车中装载的物品价值最大。
当然,所装货物不能超过车的容量,且同一种物品不得拿走多件。
这个问题可仿照0 / 1背包问题进行建模,其中车对应于背包,货物对应于物品。
0 / 1背包问题有好几种贪婪策略,每个贪婪策略都采用多步过程来完成背包的装入。
在每一步过程中利用贪婪准则选择一个物品装入背包。
一种贪婪准则为:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。
这种策略不能保证得到最优解。
例如,考虑n=2, w=[100,10,10], p =[20,15,15], c = 1 0 5。
当利用价值贪婪准则时,获得的解为x= [ 1 , 0 , 0 ],这种方案的总价值为2 0。
而最优解为[ 0 , 1 , 1 ],其总价值为3 0。
另一种方案是重量贪婪准则是:从剩下的物品中选择可装入背包的重量最小的物品。
虽然这种规则对于前面的例子能产生最优解,但在一般情况下则不一定能得到最优解。
考虑n= 2 ,w=[10,20],
p=[5,100], c= 2 5。
当利用重量贪婪策略时,获得的解为x =[1,0], 比最优解[ 0 , 1 ]要差。
还可以利用另一方案,价值密度pi /wi 贪婪算法,这种选择准则为:从剩余物品中选择可
装入包的pi /wi 值最大的物品,这种策略也不能保证得到最优解。
利用此策略试解n=
3 ,w=[20,15,15], p=[40,25,25], c=30 时的最优解。
我们不必因所考察的几个贪婪算法都不能保证得到最优解而沮丧,0 / 1背包问题是一个N P-复杂问题。
对于这类问题,也许根本就不可能找到具有多项式时间的算法。
虽然按pi /wi 非递(增)减的次序装入物品不能保证得到最优解,但它是一个直觉上近似的解。
我们希望它是一个好的启发式算法,且大多数时候能很好地接近最后算法。
在6 0 0个随机产生的背包问题中,用这种启发式贪婪算法来解有2 3 9题为最优解。
有5 8 3个例子与最优解相差1 0 %,所有6 0 0个答案与最优解之差全在2 5 %以内。
该算法能在O (nl o gn)时间内获得如此好的性能。
我们也许会问,是否存在一个x (x<1 0 0 ),使得贪婪启发法的结果与最优值相差在x%以内。
答案是否定的。
为说明这一点,考虑例子n =2, w = [ 1 ,y], p= [ 1 0 , 9y], 和c= y。
贪婪算法结果为x=[1,0], 这种方案的值为1 0。
对于y≥1 0 / 9,最优解的值为9 y。
因此,贪婪算法的值与最优解的差对最优解的比例为( ( 9y - 1 0)/9y* 1 0 0 ) %,对于大的y,这个值趋近于1 0 0 %。
但是可以建立贪婪启发式方法来提供解,使解的结果与最优解的值之差在最优值的x% (x<100) 之内。
首先将最多k 件物品放入背包,如果这k 件物品重量大于c,则放弃它。
否则,剩余的容量用来考虑将剩余物品按pi /wi 递减的顺序装入。
通过考虑由启发法产生的解法中最多为k 件物品的所有可能的子集来得到最优解。
例13-9 考虑n =4, w=[2,4,6,7], p=[6,10,12,13], c = 11。
当k= 0时,背包按物品价值密度非递减顺序装入,首先将物品1放入背包,然后是物品2,背包剩下的容量为5个单元,剩下的物品没有一个合适的,因此解为x = [ 1 , 1 , 0 , 0 ]。
此解获得的价值为1 6。
现在考虑k = 1时的贪婪启发法。
最初的子集为{ 1 } , { 2 } , { 3 } , { 4 }。
子集{ 1 } , { 2 }产生与k= 0时相同的结果,考虑子集{ 3 },置x3 为1。
此时还剩5个单位的容量,按价值密度非递增顺序来考虑如何利用这5个单位的容量。
首先考虑物品1,它适合,因此取x1 为1,这时仅剩下3个单位容量了,且剩余物品没有能够加入背包中的物品。
通过子集{ 3 }开始求解得结果为x = [ 1 , 0 , 1 , 0 ],获得的价值为1 8。
若从子集{ 4 }开始,产生的解为x = [ 1 , 0 , 0 , 1 ],获得的价值为1 9。
考虑子集大小为0和1时获得的最优解为[ 1 , 0 , 0 , 1 ]。
这个解是通过k= 1的贪婪启发式算法得到的。
若k= 2,除了考虑k< 2的子集,还必需考虑子集{ 1 , 2 } , { 1 , 3 } , { 1 , 4 } , { 2 , 3 } , { 2 , 4 }和{ 3 , 4 }。
首先从最后一个子集开始,它是不可行的,故将其抛弃,剩下的子集经求解分别得到如下结果:[ 1 , 1 , 0 , 0 ] , [ 1 , 0 , 1 , 0 ] , [ 1 , 0 , 0 , 1 ] , [ 0 , 1 , 1 , 0 ]和[ 0 , 1 , 0 , 1 ],这些结果中最后一个价值为2 3,它的值比k= 0和k= 1时获得的解要高,这个答案即为启发式方法产生的结果。
这种修改后的贪婪启发方法称为k阶优化方法(k - o p t i m a l)。
也就是,若从答案中取出k 件物品,并放入另外k 件,获得的结果不会比原来的好,而且用这种方式获得的值在最优值的( 1 0 0 / (k + 1 ) ) %以内。
当k= 1时,保证最终结果在最佳值的5 0 %以内;当k= 2时,则在3 3 . 3 3 %以内等等,这种启发式方法的执行时间随k 的增大而增加,需要测试的子集数目为O (nk ),每一个子集所需时间为O (n),因此当k >0时总的时间开销为O (nk+1 )。
实际观察到的性能要好得多。