定比分点典型例题
线段的定比分点 (1)

线段的定比分点复习要求 1:理解有向线段定比分点的概念。
2:熟练运用有向线段的定比分点和中点坐标公式解决简单问题。
复习重点 定比分点公式的运用复习过程一:知识回顾1:定比分点的定义:设1P ,P 2是直线l 上的两点,点P 是l 上不同于1P ,P 2的任意一点,则存在一个实数λ,使得 p 1=2pp λ,λ叫做点P 分有向线段21P P 所成的比。
2:定比分点的坐标表示式:设P 1 (x 1 ,y 1) , P (x 2,y 2),P (x , y)且p p 1=2pp λ则 ⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x (1≠λ ) ,特别当 λ=1时,得1P ,P 2 的中点P 的坐标公式:⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 3:定比分点的向量表示式:在平面内任取一点O,设OP 1=a , OP 2=b ,则由p 1=2pp λ得OP =λλ++1 (1-≠λ) ,此式叫定比分点的向量公式。
当P 为线段 1P P 2的中点时,λ=1,此时OP 为三角形O 1P P 2的中线且OP =2+ . 二:知识的主要运用 1.求分点的坐标。
2.求定比λ的值。
3.利用线段中点公式解题。
三:基础训练1:已知点A(m,-n),B(-m,n)点C 分有向线段AB 的比为-2,则C 点的坐标为( ) A (-3m,3n ) B (m,n) C (3m,3n) D (-m,n)2.已知点P 分有向线段21P P 的比是-3,则点P 1分21P P 所成的比为( )A -34 B -32 C -21 D -23 A (4,-3) B (29,0) C (-21,3) D (6,-9)4.已知点A (2,3),点B (10,5),直线AB 上一点P P 点的坐标是( )A (322,313)B (18,7)C (322,313)或(18,7)D (-6,1)或(18,7)四:典型例题例1. 已知A (-1,1),B (1,3),C (4,6),(1)求证:A ,B ,C 三点共线;(点C 分所成的比1λ;(3)求点A 分BC 所成的比2λ例2.已知三角形ABC 的两顶点A (3,7),B (-2,5)且AC 的中点在x 轴上,BC 的中点在y 轴上,求C 点的坐标例3.知A (2,3),B (0,1),C (3,0),点D ,E 分别在AB ,AC 上,DE//BC 且DE 平分三角形ABC 的面积,求点D 的坐标五:跟踪练习1.若点C为有向线段上靠近A点的三等分点,则点B分有向线段所成的比为2.已知点A(x,5)关于点C (1,y)的对称点是B(-2,-3),则点P(x,y)到原点的距离是3.已知矩形ABCD的两相邻顶点坐标是A(-1,3),B(-2,4),若该矩形对角线交点M在x轴上,则另外两顶点坐标为五.作业巩固1.已知三点A(0,8),B(-4,0),C(5,-3),D点内分有向线段AB的比为1:3,E在BC上且使三角形BDE的面积是三角形ABC面积的一半,求E点的坐标2已知点A (1,-1),B(-4,5),点C在直线AB,求OC的坐标。
2023年高考数学二轮复习讲练测(新高考)专题13 圆锥曲线压轴解答题常考套路归类(原卷版)

专题13 圆锥曲线压轴解答题常考套路归类【命题规律】解析几何是高考数学的重要考查内容,常作为试卷的拔高与区分度大的试题,其思维要求高,计算量大.令同学们畏惧.通过对近几年高考试题与模拟试题的研究,分析归纳出以下考点:(1)解析几何通性通法研究;(2)圆锥曲线中最值、定点、定值问题; (3)解析几何中的常见模型;解析几何的核心内容概括为八个字,就是“定义、方程、位置关系”.所有的解析几何试题都是围绕这八个字的内容与三大核心考点展开.【核心考点目录】核心考点一:轨迹方程核心考点二:向量搭桥进行翻译 核心考点三:弦长、面积背景的条件翻译 核心考点四:斜率之和差商积问题 核心考点五:弦长、面积范围与最值问题 核心考点六:定值问题 核心考点七:定点问题 核心考点八:三点共线问题 核心考点九:中点弦与对称问题 核心考点十:四点共圆问题 核心考点十一:切线问题 核心考点十二:定比点差法 核心考点十三:齐次化 核心考点十四:极点极线问题【真题回归】1.(2022·浙江·统考高考真题)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求||CD 的最小值.2.(2022·全国·统考高考真题)已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.3.(2022·全国·统考高考真题)设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.4.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.5.(2022·全国·统考高考真题)已知点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【方法技巧与总结】1、直接推理计算,定值问题一般是先引入参数,最后通过计算消去参数,从而得到定值.2、先猜后证,从特殊入手,求出定点或定值,再证明定点或定值与参数无关.3、建立目标函数,使用函数的最值或取值范围求参数范围.4、建立目标函数,使用基本不等式求最值.5、根据题设不等关系构建不等式求参数取值范围.【核心考点】核心考点一:轨迹方程 【规律方法】求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.【典型例题】例1.(2022·全国·高三专题练习)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线为y =,且一个焦点到渐(1)求双曲线方程;(2)过点()0,1的直线l 与双曲线交于异支两点,,P Q OM OP OQ =+,求点M 的轨迹方程.例2.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知过定点()01P ,的直线l 交曲线2214y x -=于A ,B 两点.(1)若直线l 的倾斜角为45︒,求AB ;(2)若线段AB 的中点为M ,求点M 的轨迹方程.例3.(2022·全国·高三专题练习)在学习数学的过程中,我们通常运用类比猜想的方法研究问题. (1)已知动点P 为圆222:O x y r +=外一点,过P 引圆O 的两条切线PA 、PB ,A 、B 为切点,若0PA PB ⋅=,求动点P 的轨迹方程;(2)若动点Q 为椭圆22:194x y M +=外一点,过Q 引椭圆M 的两条切线QC 、QD ,C 、D 为切点,若0QC QD ⋅=,求出动点Q 的轨迹方程;(3)在(2)问中若椭圆方程为22221(0)x y a b a b +=>>,其余条件都不变,那么动点Q 的轨迹方程是什么(直接写出答案即可,无需过程).核心考点二:向量搭桥进行翻译 【规律方法】把几何语言转化翻译为向量语言,然后用向量知识来解决. 【典型例题】例4.(2023·广西南宁·南宁二中校考一模)已知椭圆2222:1(0)x y C a b a b +=>>,倾斜角为30︒的直线过椭圆的左焦点1F 和上顶点B ,且11ABF S =△A 为右顶点). (1)求椭圆C 的标准方程;(2)若过点(0,)M m 的直线l 与椭圆C 交于不同的两点P ,Q ,且2PM MQ =,求实数m 的取值范围.例5.(2023·全国·高三专题练习)已知椭圆C :22221x y a b+=(0a b >>)的离心率e =(),0A a 、()0,B b(1)求椭圆C 的标准方程;(2)若经过点(且斜率为k 的直线l 与椭圆C 有两个不同的交点P 和Q ,则是否存在常数k ,使得OP OQ +与AB 共线?如果存在,求k 的值;如果不存在,请说明理由.例6.(2023·全国·高三专题练习)已知双曲线2212:14x y bΓ-=与圆2222:4(0)x y b b Γ+=+>交于点(),(A A A x y 第一象限),曲线Γ为1Γ、2Γ上取满足A x x >的部分.(1)若A x b 的值;(2)当b =2Γ与x 轴交点记作点1F 、2F ,P 是曲线Γ上一点,且在第一象限,且18PF =,求12F PF ∠;(3)过点20,22b D ⎛⎫+ ⎪⎝⎭斜率为2b-的直线l 与曲线Γ只有两个交点,记为M 、N ,用b 表示OM ON ⋅,并求OM ON ⋅的取值范围.例7.(2022·全国·高三专题练习)已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,且128F F =,()4,6P 是C 上一点. (1)求C 的方程;(2)过点()1,1M 的直线与C 交于两点A ,B ,与直线:312l y x =-交于点N .设NA AM λ=,NB BM μ=,求证:λμ+为定值.核心考点三:弦长、面积背景的条件翻译 【规律方法】首先仍是将题目中的基本信息进行代数化,坐标化,遵循直线与圆锥曲线题目通解中的套路,即设点设线、直由联立、看判别式、韦达定理.将有关弦长、面积背景的问题进行条件翻译时,一般是应用弦长公式、点到直线的距离公式及面积公式(在圆中要用半径、半弦、弦心距组成的直角三角形求弦长)将有关弦长、面积的条件翻译为:(1)关于某个参数的函数,根据要求求出最值;(2)关于某个参数的方程,根据要求得出参数的值或两参数间的关系.【典型例题】例8.(2022春·内蒙古呼和浩特·高三呼市二中阶段练习)已知椭圆222:1(0)8x y C a a +=>的左、右焦点分别为1F ,2F ,P 为C 上一点,且当1PF x ⊥轴时,2103PF =. (1)求C 的方程;(2)设C 在点P 处的切线交x 轴于点Q ,证明:1221PF QF PF QF ⋅=⋅.例9.(2022春·江苏徐州·高三期末)已知椭圆C :()222210x y a b a b +=>>,直线l 过C 的焦点且垂直于x 轴,直线l 被C (1)求C 的方程;(2)若C 与y 轴的正半轴相交于点P ,点A 在x 轴的负半轴上,点B 在C 上,PA PB ⊥,60PAB ∠=︒,求PAB 的面积.例10.(2022春·浙江金华·高三期末)已知双曲线22:143x y C -=上一点()4,3P ,直线()0y x b b =-+<交C于A ,B 点.(1)证明:直线PA 与直线PB 的斜率之和为定值; (2)若PAB 的外接圆经过原点O ,求PAB 的面积.核心考点四:斜率之和差商积问题 【规律方法】在面对有关等角、倍角、共线、垂直等几何特征时,可设法将条件翻译成关于斜率的关系式,然后将斜率公式代入其中,得出参数间的关系式,再根据要求做进一步的推导判断.【典型例题】例11.(2022·浙江·模拟预测)已知曲线C 上的任意一点到点)F和直线x =. (1)求曲线C 的方程;(2)记曲线的左顶点为A ,过()4,0B 的直线l 与曲线C 交于P ,Q 两点,P ,Q 均在y 轴右侧,直线AP ,AQ 与y 轴分别交于M ,N 两点.若直线MB ,NB 的斜率分别为1k ,2k ,判断12k k 是否为定值.若是,求出该定值;若不是,请说明理由.例12.(2022春·云南昆明·高三昆明市第三中学校考期末)如图,已知抛物线C :24y x =,过焦点F 斜率大于零的直线l 交抛物线于A 、B 两点,且与其准线交于点D .(1)若线段AB 的长为5,求直线l 的方程;(2)在C 上是否存在点M ,使得对任意直线l ,直线,,MA MD MB 的斜率始终成等差数列,若存在求点M 的坐标;若不存在,请说明理由.例13.(2022·安徽·校联考二模)已知椭圆2222:1(0)x y C a b a b+=>>经过点12⎫⎪⎭,其右焦点为)F.(1)求椭圆C 的标准方程;(2)椭圆C 的右顶点为A ,若点,P Q 在椭圆C 上,且满足直线AP 与AQ 的斜率之积为120,求APQ △面积的最大值.例14.(2022春·云南·高三校联考阶段练习)已知椭圆C :()222210x y a b a b +=>>的离心率为2,H ⎛ ⎝⎭是C 上一点. (1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①12k k 为定值;②点M 在定直线上.核心考点五:弦长、面积范围与最值问题 【规律方法】弦长和面积的最值问题首先需要将弦长和面积表达出来,弦长可用弦长公式求出;面积的表达以直线与椭圆相交得到的OAB 为例,总结一下高考中常见的三角形面积公式.对于OAB ,有以下三种常见的表达式:①1||||2OABSAB OH =⋅(随时随地使用,但是相对比较繁琐,想想弦长公式和点到直线距离)②121||2OABSOM y y =⋅-(横截距已知的条件下使用) ③121||2OABS ON x x =⋅-(纵截距已知的条件下使用) 【典型例题】例15.(2021秋·上海普陀·高三曹杨二中阶段练习)已知椭圆22:184x y C +=,过点(0,4)P 作关于y 轴对称的两条直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与椭圆交于不同两点D ,C .(1)已知1l 经过椭圆的左焦点,求1l 的方程; (2)证明:直线AC 与直线BD 交于点(0,1)Q ; (3)求线段AC 长的取值范围.例16.(2022·四川达州·统考一模)平面直角坐标系 xOy 中, 已知椭圆22:14x C y +=, 椭圆2:16x E +214y =.设点P 为椭圆C 上任意一点, 过点P 的直线y kx m =+交椭圆E 于A B ,两点, 射线PO 交椭圆E 于点Q .(1)求 OQ OP的值;(2)求 ABQ 面积的最大值.例17.(2022春·吉林通化·高三梅河口市第五中学校考期末)已知椭圆2222:1(0)x y C a b a b +=>>短轴的两个顶点与右焦点的连线构成等边三角形,直线3460x y ++=与圆222()x y b a +-=相切.(1)求椭圆C 的方程;(2)过点)M作两条互相垂直的直线12,l l ,与椭圆C 分别交于,,,A B C D 四点,如图,求四边形ACBD 的面积的取值范围.核心考点六:定值问题 【规律方法】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 【典型例题】例18.(2022春·广东肇庆·高三肇庆市第一中学校考阶段练习)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率是2,直线l 过双曲线C 的右焦点F ,且与双曲线C 的右支交于,A B 两点.当直线l 垂直于x 轴时,6AB =.(1)求双曲线C 的标准方程.(2)记双曲线C 的左、右顶点分别是,D E ,直线AD 与BE 交于点P ,试问点P 是否恒在某直线上?若是,求出该直线方程;若不是,请说明理由.例19.(2022春·湖南株洲·高三校联考阶段练习)已知椭圆C :()222210x y a b a b +=>>的右焦点为F ,上顶点为1B ,下顶点为2B ,12B FB △为等腰直角三角形,且直线1FB 与圆221x y +=相切. (1)求椭圆C 的方程;(2)过()0,2P 的直线l 交椭圆C 于D ,E 两点(异于点1B ,2B ),直线1B E ,2B D 相交于点Q .证明:点Q 在一条平行于x 轴的直线上.例20.(2022春·北京丰台·高三北京丰台二中校考阶段练习)已知椭圆2222:1(0)x y E a b a b+=>>过点为()()2,0,0,1A B -.(1)求椭圆E 的方程及其焦距;(2)过点()2,1P -的直线与椭圆E 交于不同的两点,C D ,直线,BC BD 分别与x 轴交于点,M N ,求AM AN的值.核心考点七:定点问题 【规律方法】求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明. 【典型例题】例21.(2023·河南郑州·高三阶段练习)已知抛物线2:2C y px =(其中6p >-F ,点M 、N 分别为抛物线C 上两个动点,满足以MN 为直径的圆过点F ,设点E 为MN 的中点,当MN EF ⊥时,点E 的坐标为()3-. (1)求抛物线C 的方程;(2)直线MF 、NF 与抛物线的另一个交点分别为A 、B ,点P 、Q 分别为AM 、BN 的中点,证明:直线PQ 过定点.例22.(2023春·甘肃兰州·高三兰化一中校考阶段练习)已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,右顶点为A ,上顶点为B ,右焦点为F ,斜率为2的直线经过点A ,且点F (1)求椭圆C 的标准方程;(2)若直线l :y kx m =+与椭圆C 交于E 、F 两点(E 、F 两点与A 、B 两点不重合),且以EF 为直径的圆过椭圆C 的右顶点,证明:直线l 过定点,并求出该定点坐标.例23.(2023·江苏苏州·苏州中学校考模拟预测)已知动圆M 与圆(22:4A x y +=及圆(22:4B x y +=中的一个外切,另一个内切.(1)求动圆圆心M 的轨迹C 的方程;(2)若直线l 与轨迹C 相交于P 、Q 两点,以线段PQ 为直径的圆经过轨迹C 与x 轴正半轴的交点D ,证明直线l 经过一个不在轨迹C 上的定点,并求出该定点的坐标.核心考点八:三点共线问题 【规律方法】证明共线的方法:(1)斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;(2)距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;(3)向量法:利用向量共线定理证明三点共线;(4)直线方程法:求出过其中两点的直线方程,在证明第3点也在该直线上;(5)点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.(6)面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”.【典型例题】例24.(2023·全国·高三专题练习)已知2222:1(0,0)x y E a b a b -=>>的右焦点为2F ,点2F 到E 的一条渐近线2F 的直线与E 相交于,A B 两点.当AB x ⊥轴时,||AB = (1)求E 的方程.(2)若3,02M ⎛⎫⎪⎝⎭,N 是直线1x =上一点,当,,B M N 三点共线时,判断直线AN 的斜率是否为定值.若是定值,求出该定值;若不是定值,说明理由.例25.(2023·全国·高三专题练习)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,且离心(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =例26.(2023·全国·高三专题练习)已知椭圆()2222:10x y E a b a b +=>>经过点()0,1C O 为坐标原点.(1)求椭圆E 的方程;(2)设A 、B 分别为椭圆E 的左、右顶点,D 为椭圆E 上一点(不在坐标轴上),直线CD 交x 轴于点P ,Q 为直线AD 上一点,且4OP OQ =⋅,求证:C 、B 、Q 三点共线.核心考点九:中点弦与对称问题 【规律方法】对于中点弦问题常用点差法解决. 【典型例题】例27.(2023·全国·高三专题练习)已知椭圆E :()222210x y a b a b+=>>的离心率为12,点A ,B 分别为椭圆E 的左右顶点,点C 在E 上,且ABC 面积的最大值为 (1)求椭圆E 的方程;(2)设F 为E 的左焦点,点D 在直线x =﹣4上,过F 作DF 的垂线交椭圆E 于M ,N 两点.证明:直线OD 平分线段MN .例28.(2023春·江苏南京·高三统考阶段练习)已知O 为坐标原点,点⎛ ⎝⎭在椭圆C :()222210x y a b a b +=>>上,直线l :=+y x m 与C 交于A ,B 两点,且线段AB 的中点为M ,直线OM 的斜率为12-.(1)求C 的方程;(2)若=1m ,试问C 上是否存在P ,Q 两点关于l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.例29.(2023·全国·高三专题练习)已知抛物线C :()220y px p =>的焦点为F ,准线为l ,记准线l 与x 轴的交点为A ,过A 作直线交抛物线C 于()11,M x y ,()22,N x y (21x x >)两点.(1)若122x x p +=,求MF NF +的值;(2)若M 是线段AN 的中点,求直线MN 的方程;(3)若P ,Q 是准线l 上关于x 轴对称的两点,问直线PM 与QN 的交点是否在一条定直线上?请说明理由.核心考点十:四点共圆问题 【规律方法】 证明四点共圆的方法:方法一:从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,则可肯定这四点共圆.方法二:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,则可肯定这四点共圆(根据圆的性质一一同弧所对的圆周角相等证).方法三:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其中一个外角等于其内对角时,则可肯定这四点共圆(根据圆的性质一一圆内接四边形的对角和为180︒,并且任何一个外角都等于它的内对角).方法四:证明被证共圆的四点到某一定点的距离都相等,或证明被证四点连成的四边形其中三边中垂线有交点),则可肯定这四点共圆(根据圆的定义:平面内到定点的距离等于定长的点的轨迹为圆).【典型例题】例30.(2022春·山西运城·高三校考阶段练习)已知点(4,4)M 在抛物线2:2x py Γ=上,过动点P 作抛物线的两条切线,切点分别为A 、B ,且直线PA 与直线PB 的斜率之积为2-. (1)证明:直线AB 过定点;(2)过A 、B 分别作抛物线准线的垂线,垂足分别为C 、D ,问:是否存在一点P 使得A 、C 、P 、D 四点共圆?若存在,求所有满足条件的P 点;若不存在,请说明理由.例31.(2022·浙江丽水·高三统考竞赛)如图,已知抛物线24x y =的焦点为F ,直线:l y m =与抛物线交于,D E 两点,过,D E 分别作抛物线的切线12,l l ,12,l l 交于点A .过抛物线上一点M (在l 下方)作切线3l ,交12,l l 于点,B C .(1)当=1m 时,求ABC 面积的最大值; (2)证明A B F C 、、、四点共圆.例32.(2022·全国·高三专题练习)在平面直角坐标系xOy 中,已知()1,1A ,()1,1B -,动点P 满足OP mOA nOB =+,且1mn =.设动点P 形成的轨迹为曲线C .(1)求曲线C 的标准方程;(2)过点()2,2T 的直线l 与曲线C 交于M ,N 两点,试判断是否存在直线l ,使得A ,B ,M ,N 四点共圆.若存在,求出直线l 的方程;若不存在,说明理由.核心考点十一:切线问题 【规律方法】(1)若点()00,P x y 是圆222x y r +=上的点,则过点P 的切线方程为0x x +20y y r =.(2)若点()00,P x y 是圆222x y r +=外的点,由点P 向圆引两条切线,切点分别为A ,B ,则弦AB 所在直线方程为200x x y y r +=.(3)若点()00,P x y 是椭圆22221x y a b +=上的点,则过点P 的切线方程为00221x x y ya b+=.(4)若点()00,P x y 是椭圆22221x y a b+=外的点,由点P 向椭圆引两条切线,切点分别为A ,B ,则弦AB 所在直线方程为00221x x y ya b+=. 【典型例题】例33.(2023·全国·高三校联考阶段练习)如图,在平面直角坐标系xOy 中,已知椭圆22143x y +=的左、右顶点分别为,A B ,过左焦点1F 的直线与椭圆交于点,P Q (点Q 在点P 的上方).(1)求证:直线,AP AQ 的斜率乘积为定值;(2)过点,P Q 分别作椭圆的切线,设两切线交于点M ,证明:1MF PQ ⊥.例34.(2023·全国·高三专题练习)已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为(1,0)F,且点P 在椭圆C 上,O 为坐标原点 (1)求椭圆C 的标准方程(2)过椭圆22122:153x y C a b +=-上异于其顶点的任一点Q ,作圆224:3O x y +=的切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 的横纵截距分别为m ,n ,求证:22113m n +为定值例35.(2023·全国·高三专题练习)已知中心在原点的椭圆1Γ和抛物线2Γ有相同的焦点(1,0),椭圆1Γ的离心率为12,抛物线2Γ的顶点为原点.(1)求椭圆1Γ和抛物线2Γ的方程;(2)设点P 为抛物线2Γ准线上的任意一点,过点P 作抛物线2Γ的两条切线PA ,PB ,其中,A B 为切点.设直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k 为定值.核心考点十二:定比点差法 【典型例题】例36.已知椭圆2222:1x y C a b+=(0a b >>,过右焦点F 且斜率为k (0k >)的直线与C 相交于A ,B 两点,若3AF FB =,求k例37.已知22194x y +=,过点(0,3)P 的直线交椭圆于A ,B (可以重合),求PA PB 取值范围.例38.已知椭圆22162x y +=的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11PF F A λ=,22PF F B μ=若2λ=,求μ的值.核心考点十三:齐次化 【典型例题】例39.已知抛物线2:4C y x =,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:90POQ ︒∠=.例40.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q(均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.例41.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.核心考点十四:极点极线问题 【典型例题】例42.(2022·全国·高三专题练习)已知椭圆()2222:10x y C a b a b +=>>的离心率为12,短轴长为(1)求椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,若过点()4,0P 且斜率不为0的直线l 与椭圆C 交于M 、N 两点,直线AM 与BN 相交于点Q .证明:点Q 在定直线上.例43.(2022·全国·高三专题练习)已知A ,B 分别是双曲线22:14y E x -=的左,右顶点,直线l (不与坐标轴垂直)过点()2,0N ,且与双曲线E 交于C ,D 两点.(1)若3CN ND =,求直线l 的方程;(2)若直线AC 与BD 相交于点P ,求证:点P 在定直线上.例44.(2022·全国·高三专题练习)已知椭圆()2222:10,0x y C a b a b +=>>与y 轴的交点,A B (点A 位于点B的上方),F 为左焦点,原点O 到直线FA 2. (1)求椭圆C 的离心率;(2)设2b =,直线4y kx =+与椭圆C 交于不同的两点,M N ,求证:直线BM 与直线AN 的交点G 在定直线上.【新题速递】1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系xOy 中,已知点()1,0F ,直线l :=1x -,P 为平面上的动点,过点P 作直线l 的垂线,垂足为点Q ,分别以PQ ,PF 为直径作圆1C 和圆2C ,且圆1C 和圆2C 交于P ,R 两点,且PQR PFR ∠=∠.(1)求动点P 的轨迹E 的方程;(2)若直线1l :x my a =+交轨迹E 于A ,B 两点,直线2l :1x =与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线2l 两侧,直线1l 与2l 交于点N 且MA BN AN MB ⋅=⋅,求MAB △面积的最大值.2.(2023·北京·高三专题练习)已知椭圆C 中心在原点O 为()0,1F .(1)求椭圆C 的标准方程;(2)过点F 且不与坐标轴垂直的直线l 与椭圆相交于,A B 两点,直线,OA OB 分别与直线2y =相交于,M N 两点,若MON ∠为锐角,求直线l 斜率k 的取值范围.3.(2023·青海海东·统考一模)已知函数()32ln 13x f x x x x =-+-.(1)求曲线()y f x =在1x =处的切线方程;(2)若()y f x =在点A 处的切线为1l ,函数()e e x xg x -=-的图象在点B 处的切线为2l ,12l l ∥,求直线AB 的方程.4.(2023春·重庆·高三统考阶段练习)已知椭圆22122:1(0)x y C a b a b +=>>的左右焦点分别为12,F F ,右顶点为A ,上顶点为B ,O 为坐标原点,||2||OA OB =.(1)若12BF F △的面积为1C 的标准方程;(2)如图,过点(1,0)P 作斜率(0)k k >的直线l 交椭圆1C 于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线SN 交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使OM ON OQ +=,记四边形OMQN 的面积为1S ,求21OT OQ S k⋅-的最大值.5.(2023·全国·高三专题练习)已知椭圆C :22221(0)x y a b a b+=>>的右顶点为A ,过左焦点F 的直线1(0)x ty t =-≠交椭圆于M ,N 两点,交y 轴于P 点,PM MF λ=,PN NF μ=,记OMN ,2OMF △,2ONF △(2F 为C 的右焦点)的面积分别为123,,S S S .(1)证明:λμ+为定值;(2)若123S mS S μ=+,42λ-≤≤-,求m 的取值范围.6.(2023·四川成都·统考二模)已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,离心率2e =,22a c=. (1)求椭圆的标准方程;(2)过点1F 的直线l 与该椭圆交于M N 、两点,且222263F M F N +=l 的方程.7.(2023·全国·高三专题练习)设12,F F 分别是椭圆2222:1(0)x y D a b a b +=>>的左、右焦点,过2F 作倾斜角为π3的直线交椭圆D 于,A B 两点,1F 到直线AB 的距离为3,连接椭圆D 的四个顶点得到的菱形面积为4. (1)求椭圆D 的方程;(2)已知点()1,0M -,设E 是椭圆D 上的一点,过,E M 两点的直线l 交y 轴于点C ,若CE EM λ=,求λ的取值范围;(3)作直线1l 与椭圆D 交于不同的两点,P Q ,其中P 点的坐标为()2,0-,若点()0,N t 是线段PQ 垂直平分线上一点,且满足4NP NQ ⋅=,求实数t 的值.8.(2023·全国·高三专题练习)如图所示,,A B 为椭圆2222:1(0)x y E a b a b+=>>的左、右顶点,焦距长为P 在椭圆E 上,直线,PA PB 的斜率之积为14-.(1)求椭圆E 的方程;(2)已知O 为坐标原点,点()2,2C -,直线PC 交椭圆E 于点(,M M P 不重合),直线,BM OC 交于点G .求证:直线,AP AG 的斜率之积为定值,并求出该定值.9.(2023·全国·高三专题练习)已知F ,F '分别是椭圆221:171617C x y +=的上、下焦点,直线1l 过点F '且垂直于椭圆长轴,动直线2l 垂直1l 于点G ,线段GF 的垂直平分线交2l 于点H ,点H 的轨迹为2C . (1)求轨迹2C 的方程;(2)若动点P 在直线:20l x y --=上运动,且过点P 作轨迹2C 的两条切线PA 、PB ,切点为A 、B ,试猜想PFA ∠与PFB ∠的大小关系,并证明你的结论的正确性.10.(2023春·江西·高三校联考阶段练习)已知椭圆22x a +22y b =1(a >b >0),右焦点F (1,0),离心率为F 作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.11.(2023·全国·高三专题练习)如图,椭圆22:12+=x E y ,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆22162x y +=的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11PF F A λ=,22PF F B μ=,若2λ=,求μ的值.13.(2023·全国·高三专题练习)已知椭圆22122:1(0)x y C a b a b+=>>的离心率为12,且直线1:1x y l a b +=被椭圆1C . (1)求椭圆1C 的方程;(2)以椭圆1C 的长轴为直径作圆2C ,过直线2:4l y =上的动点M 作圆2C 的两条切线,设切点为,A B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求||||CD AB ⋅的取值范围.14.(2023·全国·高三专题练习)已知椭圆22122:1(0)x y C a b a b +=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得1290F PF ∠=︒的点P 恰有两个,动点P 到焦点1F 的距离的最大值为2(1)求椭圆1C 的方程;(2)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求弦||CD 长的取值范围.15.(2023·全国·高三专题练习)已知1F 、2F 分别为椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,且右焦点2F 的坐标为(1,0),点(P 在椭圆C 上,O 为坐标原点.(1)求椭圆C 的标准方程(2)若过点2F 的直线l 与椭圆C 交于,A B 两点,且||AB =l 的方程;。
直线与圆知识点与典型例题.许兴华

直线与圆知识点与典型例题一、考试内容1.有向线段。
两点间的距离。
线段的定比分点。
2.直线的方程。
直线的斜率。
直线的点斜式、斜截式、两点式、截距式方程。
直线方程的一般式。
3.两条直线平行与垂直的条件。
两条直线所成的角。
两直线交点。
点到直线的距离。
4.圆的标准方程和一般方程。
二、考试要求1.理解有向线段的概念。
掌握有向线段定比分点坐标公式,熟练运用两点间的距离公式和线段的中点坐标公式。
2.理解直线斜率的概念,掌握过两点的直线的斜率公式。
熟练掌握直线方程的点斜式,掌握直线方程的斜截式、两点式、截距式以及直线方程的一般式。
能够根据条件求出直线的方程。
3.掌握两条直线平行与垂直的条件,能够根据直线的方程判定两条直线的位置关系。
会求两条相交直线的夹角和交点。
掌握点到直线的距离公式。
4.熟练掌握圆的标准方程和一般方程。
能够根据条件求出圆的标准方程和一般方程。
掌握直线和圆的位置关系的判定方法。
三、考点简析1.有向线段。
有向线段是解析几何的基本概念,可用有向线段的数量来刻划它,而在数轴上有向线段AB 的数量AB=x B -x A 。
2.两点间的距离公式。
不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|。
3.定比分点公式。
定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y)之间数量关系的一个公式,其中λ的值是起点到分点,分点到终点的有向线段的数量之比。
这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了。
若以A 为起点,B 为终点,P 为分点,则定比分点公式是⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x 。
当P 点为AB 的中点时,λ=1,此时中点公式是⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 。
高一数学;线段的定比分点

教学目标1.理解点P分有向线段所成的比λ的含义,能确定λ的正负号;2.掌握有向线段的定比分点和中点的坐标公式,并能熟练运用这两个公式解决实际问题;3.向学生渗透数形结合的思想,培养学生的思维能力,发现事物间的变化规律.教学建议知识结构重点难点分析本节重点线段的定比分点和中点坐标公式的应用.线段的定比分点和中点的坐标公式,在向量运算以及解析几何中会经常用到,因此首先要学生掌握它们的应用.其中对λ值的确定是正确运用定比分点公式的关键,尤其符号的确定.本节难点是利用线段定比分点坐标公式解题时确定λ的值.由于是有向线段的比,涉及到方向问题,要通过λ的正负来确定,学生求λ值时经常出现错误,要讲清确定λ的方法,先确定有向线段的起点、分点、终点,在确定比值和正负(即方向问题).教法建议1.本节课通过共线向量引入来介绍,一点分一条有向线段所成比的概念,结合图形讲清λ的符号情况,让学生理解符号正负的确定是由方向确定的,另外要注意比值的顺序始点、分点、终点,λ值是求解线段定比分点坐标的关键.2.本节是运用已有知识推导出新的结论,因此可以以学生推导、分析、总结为主,培养学生运用数学概念分析问题、解决问题的能力.对“数形结合”这一数学思想的渗透贯穿于本节课的始终,作为本节课的一条主线.3.通过具体例题及练习让学生掌握公式的应用,尤其是λ值的确定.让学生通过例题练习归纳总结规律.教学设计示例一.教学目标1.理解点P分有向线段所成的比λ的含义,能确定λ的正负号;2.掌握有向线段的定比分点和中点的坐标公式,并能熟练运用这两个公式解决实际问题;3.向学生渗透数形结合的思想,培养学生的思维能力,发现事物间的变化规律.二.教学重点线段的定比分点和终点的坐标公式的应用.教学难点用线段的定比分点坐标公式解题时区分λ>0还时λ<0.三.教学具准备投影仪,直尺.四.教学过程1.设置情境已知线段的两个端点、,为线段所在直线上任一点,由共线向量知识,必有.我们能否解决这样的问题,(1)已知及、,求P点坐标;(2)已知、及,求值.本节课就来讨论上述两个问题,(板书课题——线段的定比分点)2.探索研究(1)师:请同学们回忆叙述向量的加、减、实数与向量的积的坐标运算法则.生:两个向量的和(差)的坐标,等于这两个向量的相应的坐标的和(差);实数与向量的积的坐标,等于这个实数与这个向量的相应坐标的积.师:已知直线l上两点、,在直线l上取不同于、的任一点P,则P点的位置有哪几种情形?生:有三种情形,P在之间;P在的延长线上,P在的延长线上.师:请得很好,下面我们就P在直线上的三种情况给出定义:设、是直线l上的两点,点P是l上不同于、的任意一点,若存在一个实数使,则叫做点P分有向线段所成的比.你能根据P点的三种不同的位置和实数与向量的积的向量方向确定的取值范围吗?(启发学生从向量的方向上考虑)生:当P在之间时,与方向相同,所以;当点P在的延长线上时,;若点P在的延长线上时,同理可得.下面我们利用平面向量的坐标运算推导定比分点坐标公式师:设,,P分所成的比为,如何求P点的坐标呢?(按以下思路引导学生进行思考)师:设,你能用坐标表示等式吗?生:师:由两个向量相等的条件,可以得出什么结论呢?生:师:对!这就是线段的定比分点P的坐标公式,特别地,当时,得中点P的坐标公式:(2)例题分析【例1】已知两点,,求点分所成的比及y的值.解:由线段的定比分点坐标公式得【例2】如图所示,的三个顶点的坐标分别为,,,D是边AB的中点,G是CD上的一点,且,求点G的坐标.解:∵D是AB的中点∴点D的坐标为∵∴由定比分点坐标公式可得G点坐标为:即点G的坐标为,也就是的重心的坐标公式.3.演练反馈(投影)(1)如图所示,点B分有向线段的比为,点C分有向线段的比为,点A分有向线段的比为.(2)连结A(4,1)和B(-2,4)两点的直线,和x 轴交点的坐标是,和y轴交点的坐标是.(3)如图所示,中,AB的中点是D(-2,1),AC的中点是E(2,3),重心是G(0,1),求A、B、C的坐标.参考答案:(1);(2)(6,0)、(0,3);(3)用三角形基法作图得:A(0,5),B(-4,-3),C(4,1)4.总结提炼(1)定比分点的几种表达方式:……向量式……坐标式……公式形式(2)中点公式,重心公式要熟记.(3)定比分点公式也是判定或证明两向量是否共线、平行的有效方法.五.板书设计1.定比分点的定义(1)内分点3.例1(2)外分点a.b.2.分点坐标公式4.演练反馈a.5.总结提炼b.典型例题例1.已知,,且,,求点、的坐标.分析:借助线段的定比分点式求解.解:设, .由,可得,即, .运用定比点公式可知仿上可求得,综上可知,欲求、两点坐标为, .小结:对于本题欲求点的坐标时,也可以由,得到,从而由定比公点公有得,. 同理,也可以由求得点坐标,这表明,我们在利用定点比分点公式时,既要注意使用公式的前提,同时也要注意灵活地使用公式。
26.第二十六讲 典型应用题 分数、比例应用题

第二十六讲典型应用题分数、比例应用题知识点汇总:例题练习:1、某运输队运一批大米,第一天运走总数的15多60袋,第二天运走总数的14少60袋,还剩下220袋没有运走,这批大米原来一共有多少袋?2、甲乙二人欲买一件商品,按照标价,甲带的钱差40元,乙带的钱少14。
经过讨价最后可以按9折购买,于是他们合买了一件,结果剩下28元。
这件商品标价为多少元?3、北京中学生运动会男女运动员比例为19∶12,组委会决定增加女子艺术体操项目,这样男女运动员比例变为20∶13;后来又决定增加男子象棋项目,男女比例变为30∶19,已知男子象棋项目运动员比女子艺术体操运动员多15人,则现在总运动员人数为多少?4、如图所示,B与C的面积之和等于A面积的45,且A中的阴影部分面积占A面积的16,B的阴影部分面积占B面积的15,C的阴影部分面积占C面积的13。
求A、B、C的面积之比5、路闯倒满一杯纯牛奶,第一次喝了13,然后加入纯净水,将杯子斟满并搅拌均匀,第二次,又喝了13,继续用纯净水斟满并搅拌均匀,重复上述过程,那么第4次,路闯喝的纯牛奶占所有牛奶的几分之几?6、甲乙两种商品成本共200元。
商品甲按30%的利润定价,商品乙按20%的利润定价。
后来两种商品都按定价的九折销售,结果仍获得利润27.7元。
问甲种商品的成本是多少元?【本讲重要内容回顾】小试牛刀1.孙悟空给小猴分桃子,第一天分了全部的25,第二天分了剩下的13,第二天比第一天少分20个桃子,那么孙悟空分的桃子一共有几个?2.叮叮和铛铛两个人一共有48个苹果,叮叮又买来12个苹果,铛铛又买来自己苹果的17,此时他们的苹果数相同,那么原来叮叮有几个苹果?3.育英小学六年级学生分成三批去参观科技馆,第一批和第二批的的人数比是5∶4,第二批与第三批的比是3∶2,已知第一批比第二、三批人数的总和少15人,求六年级参观的有多少人?4.玲玲倒满一杯纯豆浆,第一次喝了14,然后加入牛奶,将杯子斟满并搅拌均匀,第二次玲玲又喝了14,继续用牛奶将杯子斟满并搅拌均匀,重复上述过程,那么第3次后,玲玲共喝了一杯纯豆浆的( )(用分数表示)。
六年级数学下册典型例题系列之第二单元比例的应用部分(解析版)(北师大)

六年级数学下册典型例题系列之第二单元比例的应用部分(解析版)编者的话:《六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第二单元比例的应用部分。
本部分内容主要考察比例的应用,包括比例的一般应用题和图形的放大与缩小等内容,内容和题型较少,更多有关比例应用题的内容请参考编者《第四单元正比例和反比例的应用部分基础篇》与《第四单元正比例和反比例的应用部分提高篇》,一共划分为四个考点,建议作为本章重点进行讲解,欢迎使用。
【考点一】根据对应边的比,列方程解决问题。
【方法点拨】该类题型主要考察图形的放大与缩小,要以对应边的比为等量建立方程求解。
【典型例题】将下图左边的三角形按比例缩小后得到右边的三角形,求未知数x。
解析:解:3.2∶1.6=4.8∶x3.2x=1.6×4.8x=7.68÷3.2x=2.4【对应练习1】下图中小平行四边形按比放大后得到大平行四边形,求大平行四边形的高。
(单位:分米)解析:解:设大平行四边形的高为x分米。
3.2∶1.2=12.8∶x3.2x=1.2×12.83.2x=15.36x=15.36÷3.2x=4.8答:大平行四边形的高是4.8分米。
【对应练习2】把左边的长方形按比例放大后得到右边的图形,右边长方形的宽是多少?(单位:厘米)解析:解:设右边长方形的宽是x厘米。
20∶12=50∶x20x=12×5020x=600x=30答:边长方形的宽是30厘米。
【对应练习3】将下图的三角形一定的比缩小后得到右边的三角形,求未知数x的值。
(单位∶厘米)解析4.5∶x=6∶3.6解:6x=4.5×3.66x=16.2x=16.2÷6x=2.7答:未知数x的值是2.7厘米。
北师大版小学数学六年级上册《比的应用》知识点讲解总结练习解析

比的应用知识精讲1.按比分配在生产和生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配方法通常叫按比分配。
2.比的应用比的应用主要是指按比分配。
3.平均分平均分是按比1∶1来分配,是按比分配的特例。
名师点睛1.按比分配的标准形式是:已知总量(即各分量的和)和分量的比,求各分量。
例:140个橘子,按3∶2分给大、小两个班,每个班各分多少个?这里140个是总量(大、小两个班所分橘子的总数),3∶2是分量之比(大班分到橘子的个数与小班分到橘子的个数之比),要求两个班各分多少个就是要求各分量。
标准解法有两种:解法一:3+2=5。
140÷5=28(个)。
——求出每份的个数(此解法的关键)大班:28×3=84(个);——注明分量名称,不易出错小班:28×2=56(个)或140-84=56(个)。
解法二:3+2=5。
大班:140×35= 84(个)。
——明确各分量占总量的几分之几(此解法的关键)小班:140×25= 56(个)或140-84 = 56(个)。
解题思想主要有两个:一是求出每份的个数;二是找到各分量占总量的几分之几。
2.按比分配应用问题的标准形式可以演变出以下几种形式。
①已知分量和的倍数与分量比,求各分量。
只要将分量和的倍数÷倍数,得到分量和,就转化为标准形式了。
例:长方形的周长÷2 =长+宽;长方体的棱长和÷4 =长+宽+高。
②已知分量的平均数与分量比,求各分量。
先由分量的平均数算出分量和,然后转化为按比分配的标准形式。
③已知分量差与分量比,求各分量。
根据分量比,先用减法算出分量份数的差,再用分量差÷分量的份数差,得到一份的数量,各分量就好求了。
④已知一个分量和分量比,求另一分量。
此时用:已知分量÷对应份数,求出一份的数量,后面就好求了。
3.多个分量的按比分配,方法与两个分量的按比分配相同。
线段的定比分点

l P2
P
点P是l上不同于P1,P2任意一点,提问:
1º向量P1P与PP2之间位置上有何关系?(共线向量 )
2º既然是共线向量,它们之间的等量
关系是什么?(P1P= λ PP2 )
这时, λ叫做点P分有向线段P1P2所成的比。(写出课题)
(3). λ 符号
返回
Байду номын сангаас
2.推导公式
若把直线l放在坐标系中,设P1(x1,y1),P2(x2,y2),点P分有向线段P1P2所成 的比为λ,那么点P的坐标如何表示呢?由向量的坐标等于终点的坐标减去
返回
三.学法指导
1.引导学生回顾共线向量,过渡到建立新概 念上来。
2.让学生运用已掌握的向量的坐标运算, 推导出公式,学会数学过程中会学数学,提高 数学“再发现”能力。
3.在运用公式解题中,深化对公式中各个 量的涵义的理解,尤其是λ,加强思维的创新 性、深刻性、灵活性训练。
返回
四.教学重点、难点
3
3
注:这是一个重要结论,要求学生记忆。
返回
4.课堂检测
1.点P在直线MN上,PM
1 2
PN
,
则点P分MN所成的比为( C )
1
(A)2
(B)1 2
( C) 1 (D)2或 1
2
2
2.设线段P1P2的长为5cm,点P在线段P2P1的延长线上,PP1 1cm
则点P分有向线段 P1P2 所成的比为 -6
起点的坐标得:
P1P=(x-x1,y-y1), PP2=(x2-x,y2-y)
∵ P1P= λPP2 ∴ (x-x1,y-y1)= λ(x2-x,y2-y)
∴ x-x1= λ(x2-x) 解得 y-y1= λ(y2-y)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定比分点定理典型例题
例1.已知P 外分BA 的比为λ求点B 分AP 所成的比。
错解:由BP PA λ= ,不妨设1PA = ,则BP λ= ,1AB λ=- ,
所以B 分AP 的比为 1AB BP λλ-= 。
错因分析:错因是把定比理解为是分得的两线段的长度之比.实质上
AP PB λ= 中λ是有向线段AP 与PB 的数量之比. λ可以转化为有向线段的长度之比,但需加
一个正负号,即P 为AB 的内分点时AP PB λ= ,当P 为AB 的外分点时, AP PB λ=- ,
故求定比时一定要记住向量具有方向性.
正确解法: 因P 外分AB 的比为λ,0λ∴<.
设1PA = ,则BP λ=- ,1AB λ=-- .又由于AB 与BP 反向,所以B 分AP 的比为
111AB BP λλλ---=-=--- .
例2 已知点12(2,1),(4,3)P
P -.求出下列情况下,点P 分有向线段12PP
所成的比λ及P 点的坐标:
(1)点P 在12PP 上且11234PP PP = ;
(2)点P 在12PP 的延长线上,且1123PP PP = ;
(3) 点P 在12PP 的反向延长线上,且2123P P PP = ;
分析:本题主要考查向量定比分点公式的应用.要注意,起点、分点、终点是相对
而言的, 起点、分点、终点不同时, λ一般是不同的.
解 (1)∵1233PP
PP λ=∴=
由定比分点公式,得234713213(3)213x y +⨯⎧==⎪⎪+⎨+⨯-⎪==-⎪+⎩
所以P 点坐标为7(,2)2-. (2)
123322PP PP λ=-∴=- 32()42831()231()(3)21131()2x y ⎧+-⨯⎪==⎪⎪+-⎪∴⎨⎪+-⨯-⎪==-⎪+-⎪⎩
所以P 点坐标为(8,11)-.
(3)
122233PP PP λ=-∴=- 22()43221()321()(3)3921()3x y ⎧+-⨯⎪==-⎪⎪+-⎪∴⎨⎪+-⨯-⎪==⎪+-⎪⎩
所以P 点坐标为(2,9)-.
说明 有关定比分点问题中的定比λ最好画出草图来确定.本题计算量大,容易出现计算错误,如坐标公式中计算出现错误和定比λ计算错误等.本题也可以利
用向量的坐标运算,由12PP
PP λ=
代入坐标的方程组,求出分点P 的坐标.这样可不必死记定比分点坐标公式.
例 3 设ABCD 的顶点A 的坐标为(2,1)-,一组对边AB 、CD 的中点分别为(3,0),(1,2)M N --,求其余顶点坐标.
分析:本题考查中点坐标公式及用向量方法解决问题的能力.
解法1: 设其余三个顶点的坐标分别为112233(,),(,),(,)B x y C x y D x y
M 是AB 的中点, 11232102x y -+⎧=⎪⎪∴⎨+⎪=⎪⎩
118(8,1)1x B y =⎧∴∴-⎨=-⎩
有MN 的中点(1,1)P -且P 是AC 的中点,
22212112x y -+⎧=⎪⎪∴⎨+⎪=-⎪⎩
224(4,3)3x C y =⎧∴∴-⎨=-⎩
由N 为CD 的中点,得3333416231
22x x y y +⎧=-⎪=-⎧⎪∴∴⎨⎨-+=-⎩⎪=-⎪⎩
所以顶点坐标分别为(8,1),(4,3),(6,1)B C D ----
解法2:设B 点坐标为(,)x y ,则AM MB = .
(5,1)(3,).
351x y x y ∴-=--=⎧∴⎨=-⎩
8(8,1)1x B y =⎧∴∴-⎨=-⎩ 同理由AM DN NC ==
,得(4,3),(6,1)C D ---
所以ABCD 其余顶点坐标为(8,1),(4,3),(6,1)B C D ----.
说明 利用线段的定比分点公式与向量式运算是相一致的.前者需要记忆,后者需要思维的灵活性和深刻性,而不需记忆,要求较高.
例4 已知三点(0,8),(4,0),(5,3)A B C --,D 内分AB 的比为13,E 点在BC 边上,且使
BDE 的面积是ABC 面积的一半,求DE 中点坐标.
分析 将面积转化为线段的比,利用定比分点坐标公式来求. 解:设BDE 边BE 以及ABC 的边BC 的高分别为1,h h , 由已知有13AD DB = ,所以34DB AB = ,134h h = 又1=,
2BDE ABC S S
111212
2BE h BC h ∴=
1223BE h h BC ∴==
由点E 在BC 上 2BE EC ∴=
∴点E 分BC 所成的比为2λ=
由定比分点坐标公式有42521202(3)212E E x y -+⨯⎧==⎪⎪+⎨+⨯-⎪==-⎪⎩+
即(2,2)E -
又由10(4)3111386113D D x y ⎧+⨯-⎪==-⎪⎪+⎨⎪==⎪⎪+⎩
即(1,6)D -
即线段DE 的中点为(,)M x y ,则2(1)1222622E x y +-⎧==⎪⎪⎨-+⎪==⎪⎩
1(,2)2M ∴即为所求.
说明:线段比的平方等于面积的比.。