三角形的所有性质

合集下载

直角三角形的性质

直角三角形的性质

直角三角形的性质直角三角形是一种特殊的三角形,具有独特的性质和特点。

本文将探讨直角三角形的定义、性质和相关定理,并通过数学推导和图示加以解释。

一、直角三角形的定义直角三角形是一种三边中有一个角为90度的三角形。

直角三角形的另外两个角分别为锐角和钝角。

直角三角形可以通过勾股定理来计算其边长。

二、直角三角形的性质1. 斜边:直角三角形的斜边是较长的一条边,连接直角的两个端点。

2. 直角边:直角三角形的直角边是与直角相邻的两条边,长度可以任意。

3. 高:直角三角形的高是从直角到斜边的垂直距离,可用于计算三角形的面积。

4. 面积:直角三角形的面积等于两条直角边的乘积的一半。

5. 角度:直角三角形中,一个角为90度,另外两个角的和为90度。

6. 正弦、余弦和正切:直角三角形的正弦、余弦和正切分别由其角度和边长关系确定。

三、勾股定理勾股定理是研究直角三角形的重要工具。

根据该定理,如果一个三角形的两条边的平方之和等于第三条边的平方,那么这个三角形就是直角三角形。

勾股定理的数学表示为:c^2 = a^2 + b^2其中,c表示斜边,a和b表示直角边。

四、特殊直角三角形1. 等腰直角三角形:两条直角边相等的直角三角形被称为等腰直角三角形,也是特殊的等腰三角形。

2. 45-45-90直角三角形:直角三角形的两个锐角相等时,称为45-45-90直角三角形,它的两条直角边长度相等,斜边长度为直角边长度的√2倍。

五、应用案例直角三角形的性质在实际生活和工作中有着广泛的应用。

例如,在建筑和工程测量中,通过勾股定理可以测量无法直接测量的距离或高度;在导航和航海中,通过角度和距离的关系可以确定位置和方向等。

结论直角三角形作为一种特殊的三角形,在几何学和实际应用中具有重要的地位。

通过对直角三角形的性质和相关定理的研究,我们可以更深入地理解其特点和应用,并且在解决实际问题时能够运用相关的数学知识。

三角形及其性质(基础)知识讲解

三角形及其性质(基础)知识讲解

三角形及其性质(基础)知识讲解三角形及其性质知识讲解三角形是几何学中最基本的图形之一,广泛应用于各个领域。

本文将对三角形及其性质进行详细的讲解。

一、三角形的定义三角形是由三条线段组成的图形,这三条线段相互连接,构成一个封闭的图形。

三角形的名称通常是由连接它们的顶点表示,如ABC表示由线段AB、BC和CA所形成的三角形。

二、三角形的分类根据三角形的边长关系和角度关系,我们可以将三角形分为以下几类:1. 根据边长分类(1)等边三角形:三条边的长度都相等。

每个内角都为60度。

(2)等腰三角形:两条边的长度相等。

顶角所对的两边相等。

(3)普通三角形:三条边的长度各不相等。

2. 根据角度分类(1)锐角三角形:三个内角都小于90度。

(2)直角三角形:一个内角为90度。

较长的边称为斜边,与直角所对的边称为直角边。

(3)钝角三角形:一个内角大于90度。

三、三角形的性质三角形具有以下一些重要的性质:1. 三角形的内角和定理三角形的所有内角之和等于180度。

即∠A + ∠B + ∠C = 180度。

2. 三角形的外角和定理三角形的外角等于与之相对的内角之和。

即∠D = ∠A + ∠B或∠D = ∠B + ∠C或∠D = ∠C + ∠A。

3. 三角形的角平分线三角形的角平分线是指从一个顶点出发,将相邻两边的夹角平分为两个相等的角。

三角形的角平分线相交于三角形的内心。

4. 三角形的中线三角形的中线是指连接一个顶点和对边中点的线段,三角形的三条中线交于一点,该点被称为三角形的重心。

5. 三角形的高线三角形的高线是指从一个顶点引垂线到对边上的垂足所形成的线段。

三角形的三条高线交于一点,该点被称为三角形的垂心。

6. 三角形的外心三角形的外心是指过三角形三个顶点的圆的圆心。

在任何非等边三角形中,外心都存在且唯一。

四、三角形的应用三角形的性质在实际应用中有着广泛的应用,主要包括以下几个方面:1. 三角形的距离计算通过已知的边长和角度,可以使用三角函数来计算三角形之间的距离。

三角形的所有性质

三角形的所有性质

三角形的性质1.三角形的任何两边的和一定大于第三边,由此亦可证明得三角形的任意两边的差一定小于第三边。

2.三角形内角和等于180度3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。

4.直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。

直角三角形斜边的中线等于斜边的一半。

5.三角形共有六心:三角形的内心、外心、重心、垂心、欧拉线内心:三条角平分线的交点,也是三角形内切圆的圆心。

性质:到三边距离相等。

外心:三条中垂线的交点,也是三角形外接圆的圆心。

性质:到三个顶点距离相等。

重心:三条中线的交点。

性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。

垂心:三条高所在直线的交点。

性质:此点分每条高线的两部分乘积旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点性质:到三边的距离相等。

界心:经过三角形一顶点的把三角形周长分成1:1的直线与三角形一边的交点。

性质:三角形共有3个界心,三个界心分别与其对应的三角形顶点相连而成的三条直线交于一点。

欧拉线:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。

6.三角形的外角(三角形内角的一边与其另一边的延长线所组成的角)等于与其不相邻的内角之和。

7.一个三角形最少有2个锐角。

8.三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线9.等腰三角形中,等腰三角形顶角的平分线平分底边并垂直于底边。

10.勾股定理逆定理:如果三角形的三边长a,b,c有下面关系那么a??+b??=c??那么这个三角形就一定是直角三角形。

三角形的边角之间的关系(1)三角形三内角和等于180°;(2)三角形的一个外角等于和它不相邻的两个内角之和;(3)三角形的一个外角大于任何一个和它不相邻的内角;(4)三角形两边之和大于第三边,两边之差小于第三边;(5)在同一个三角形内,大边对大角,大角对大边. (6)三角形中的四条特殊的线段:角平分线,中线,高,中位线. (7)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等. (8)三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等. (9)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。

初二常靠的数学热点:三角形的性质

初二常靠的数学热点:三角形的性质

初二常靠的数学热点:三角形的性质初二常靠的数学热点:三角形的性质春蚕到死丝方尽,人至期颐亦不休。

一息尚存须努力,留作青年好范畴。

下面是小编为大家整理,数学知识点,希望对大家有所帮助,欢迎阅读,仅供参考!等腰三角形1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)理解:已知等腰三角形的一线就可以推知另两线。

2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)等边三角形1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。

2、等边三角形的判定:①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

全等三角形定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变通过上面对全等三角形知识点的讲解学习,相信同学们对全等三角形的知识已经能很好的掌握了吧,后面我们进行更多知识点的巩固学习。

拓展:初中数学三角形全等的性质定理公式句全等三角形指的就是两个全等的三角形,全等三角形是几何中全等的一种。

三角形全等的性质1.全等三角形的对应角相等。

2.全等三角形的对应边相等。

3.全等三角形的对应边上的高对应相等。

4.全等三角形的对应角的角平分线相等。

5.全等三角形的对应边上的中线相等。

6.全等三角形面积相等。

7.全等三角形周长相等。

8.全等三角形的对应角的三角函数值相等。

正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。

正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。

三角形的基本概念与性质

三角形的基本概念与性质

三角形的基本概念与性质三角形是几何学中的基本图形之一,它由三条边和三个角组成。

在三角形中,有许多重要的概念和性质,本文将详细介绍这些内容。

一、概念1. 边:三角形有三条边,分别连接三个顶点。

2. 顶点:三角形有三个顶点,每个顶点是两条边的交点。

3. 角:三角形有三个角,分别由两条边组成,角的大小可以通过度数或弧度来表示。

4. 顶角:三角形的顶点所对应的角叫做顶角。

5. 底边:底边是三角形的一个边,另外两边的起点和终点都在底边上。

二、性质1. 内角和:三角形的内角和等于180度。

即三个内角的度数之和等于180度。

2. 外角和:三角形的外角和等于360度。

即三个外角的度数之和等于360度。

3. 等边三角形:如果一个三角形的三条边长度相等,则这个三角形是等边三角形。

等边三角形的三个内角都是60度。

4. 等腰三角形:如果一个三角形的两条边的长度相等,则这个三角形是等腰三角形。

等腰三角形的两个底角相等。

5. 直角三角形:如果一个三角形的一个角是90度,则这个三角形是直角三角形。

直角三角形中一边的长度可以通过勾股定理计算。

6. 锐角三角形:如果一个三角形的三个内角都小于90度,则这个三角形是锐角三角形。

7. 钝角三角形:如果一个三角形的一个内角大于90度,则这个三角形是钝角三角形。

8. 等腰直角三角形:如果一个三角形的一个角是90度,并且另外两条边的长度相等,则这个三角形是等腰直角三角形。

9. 角平分线:三角形的内角平分线将一个角分为两个相等的角。

每个内角都有一个对应的内角平分线。

10. 中线:三角形的三条中线将三角形分为三个相等的小三角形。

每条中线都通过三角形的一个顶点和对边的中点。

11. 高线:三角形的三条高线分别从一个顶点垂直向对边,与对边相交于一个点。

三角形的三条高线交于一点,这个点叫做三角形的垂心。

12. 外心:外接圆是一个三角形的三条边的延长线所确定的唯一圆。

这个圆的圆心叫做三角形的外心。

13. 内心:内切圆是一个三角形的三条边的内部所确定的唯一圆。

知识点1、全等三角形的性质

知识点1、全等三角形的性质

知识点1、全等三角形的性质
(1)性质:全等三角形中,对应边相等,对应角相等。

(对边、对角的区别)(2)全等三角形的对应线段(对应边上的中线,对应边上的高,对应角的平分线)相等。

(3)全等三角形的周长相等,面积相等。

知识点2、全等三角形的判定
(1)“边边边”(SSS):三边对应相等的两个三角形全等。

(2)“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

(3)“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

(4)“角角边”(AAS):两个角和其中一个角的对边对应相等的两个三角形全等。

(5)“斜边,直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

注意问题:
(1)在判定两个三角形全等时,至少有一边对应相等;
(2)不能证明两个三角形全等的是:①三个角对应相等,即AAA;②有两边和其中一角对应相等,即SSA。

知识点3、全等三角形的证明思路。

三角形的概念与性质

三角形的概念与性质

三角形的概念与性质三角形是我们常见的几何图形之一,它由三条边和三个顶点组成。

三角形在许多领域中都有着重要的应用,因此对于三角形的概念和性质的掌握非常重要。

本文将介绍三角形的定义、分类以及一些重要的性质和应用。

一、三角形的定义三角形是由三条线段连接而成的图形,其中每条线段称为边,而它们的交点称为顶点。

三角形的名称通常以其边的长度和角的大小来命名,例如等边三角形、直角三角形等。

根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形;根据角的大小,三角形可以分为直角三角形、钝角三角形和锐角三角形。

二、三角形的分类1. 根据边的长度分类- 等边三角形:三条边的长度相等。

- 等腰三角形:两条边的长度相等。

- 普通三角形:三条边的长度都不相等。

2. 根据角的大小分类- 直角三角形:其中一个角为直角(90°)。

- 钝角三角形:其中一个角大于90°。

- 锐角三角形:其中所有角都小于90°。

三、三角形的性质1. 三角形内角和性质三角形的三个内角之和为180°。

设三角形的三个内角分别为A、B 和C,则有以下等式成立:A + B + C = 180°。

这个性质在解决三角形相关问题时非常有用。

2. 三角形的外角性质三角形的外角等于其对应的两个内角的和。

设三角形的三个内角分别为A、B和C,对应的外角分别为A'、B'和C',则有以下等式成立:A' = B + C,B' = A + C和C' = A + B。

3. 三角形的边长关系a) 等边三角形的三条边长度相等,即a = b = c。

b) 等腰三角形的两个底边长度相等,即a = c。

c) 直角三角形中,较短两条边的平方和等于最长边的平方,即a² + b² = c²(或b² + c² = a²,c² + a² = b²)。

三角形的特征与性质知识点总结

三角形的特征与性质知识点总结

三角形的特征与性质知识点总结三角形是几何学中最基本的图形之一,其特征与性质是我们学习和应用几何学的基础。

本文将对三角形的特征与性质进行总结,并介绍其相关知识点。

一、三角形的定义与基本特征三角形是由三条线段构成的图形,它有三个顶点、三条边和三个内角。

三角形的基本特征包括:1. 三角形的边:三角形有三条边,用线段统一表示为AB、BC和CD。

2. 三角形的顶点:三角形有三个顶点,用大写字母A、B和C表示。

3. 三角形的内角:三角形有三个内角,用小写字母a、b和c表示。

二、三角形的分类根据三角形的特征和性质,我们可以将三角形分为以下几类:1. 根据边的长度分类:a. 等边三角形:三条边的长度相等,如ABC为等边三角形。

b. 等腰三角形:两条边的长度相等,如AB=AC的三角形。

c. 普通三角形:三条边的长度都不相等,如AB≠BC≠CA的三角形。

2. 根据角的大小分类:a. 直角三角形:其中一个内角为直角(90度),如∠A=90°的三角形。

b. 钝角三角形:其中一个内角为钝角(大于90度),如∠A>90°的三角形。

c. 锐角三角形:三个内角都为锐角(小于90度),如∠A、∠B 和∠C都小于90°的三角形。

三、三角形的性质三角形具有一些重要的性质,它们对于解决几何问题非常有用。

以下是一些重要的三角形性质:1. 三角形内角和性质:三角形的三个内角之和为180度,即a + b +c = 180°。

2. 三角形的外角性质:三角形的每个外角等于其对应内角的补角。

3. 三角形的边长关系性质:a. 三角形两边之和大于第三边,即AB + BC > AC,AC + BC > AB,AB + AC > BC。

b. 两边之差小于第三边,即|AB - BC| < AC,|AC - BC| < AB,|AB - AC| < BC。

4. 三角形的角度关系性质:a. 在锐角三角形中,最大的角所对的边也最长,最小的角所对的边也最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

之袁州冬雪创作
三角形的性质
1.三角形的任何双方的和一定大于第三边,由此亦可证明得三角形的任意双方的差一定小于第三边.
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合
一.
4.直角三角形的两条直角边的平方和等于斜边的平方--勾股定理.直角三角形斜边的中线等于斜边的一半.
5.三角形共有六心:三角形的心坎、外心、重心、垂心、欧拉线心坎:三条角平分线的交点,也是三角形内切圆的圆心.性质:到三边间隔相等.外心:三条中垂线的交点,也是三角形外接圆的圆心.性质:到三个顶点间隔相等.重心:三条中线的交点.性质:三条中线的三等分点,到顶点间隔为到对边中点间隔的2倍.垂心:三条高所在直线的交点.性质:此点分每条高线的两部分乘积旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点性质:到三边的间隔相等.界心:颠末三角形一顶点的把三角形周长分成1:1的直线与三角形一边的交点.性质:三角形共有3个界心,三个界心分别与其对应的三角形顶点相连而成的三条直线交于一点.欧拉线:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线.
6.三角形的外角(三角形内角的一边与其另外一边的延长线所组成的角)等于与其不相邻的内角之和.
7.一个三角形最少有2个锐角.
8.三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线
9.等腰三角形中,等腰三角形顶角的平分线平分底边并垂直于底边.
10.勾股定理逆定理:如果三角形的三边长a,b,c有下面关系那末a??+b??=c??那末这个三角形就一定是直角三角形.三角形的边角之间的关系(1)三角形三内角和等于180°;(2)三角形的一个外角等于和它不相邻的两个内角之和;(3)三角形的一个外角大于任何一个和它不相邻的内角;(4)三角形双方之和大于第三边,双方之差小于第三边;(5)在同一个三角形内,大边对大角,大角对大边. (6)三角形中的四条特殊的线段:角平分线,中线,高,中位线. (7)三角形的角平分线的交点叫做三角形的心坎,它是三角形内切圆的圆心,它到各边的间隔相等. (8)三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的间隔相等. (9)三角形的三条中线的交点叫三角形的重心,它到每一个顶点的间隔等于它到对边中点的间隔的2倍.(10)三角形的三条高的交点叫做三角形的垂心.(11)三角形的中位线平行于第三边且等于第三边的1/2.注意:①三角形的心坎、重心都在三角形的外部.②钝角三角形垂心、外心在三角形外部.
③直角三角形垂心、外心在三角形的边上.(直角三角形的垂心为直角顶点,外心为斜边中点.)④锐角三角形垂心、外心在三角形外部.特殊三角形
1.相似三角形(1)形状相同但大小分歧的两个三角形叫做相似三角形(2)相似三角形性质相似三角形对应边成比例,对应角相等相似三角形对应边的比叫做相似比相似三角形的周长比等于相似比,面积比等于相
似比的平方相似三角形对应线段(角平分线、中线、高)相等(3)相似三角形的断定【1】三边对应成比例则这两个三角形相似【2】双方对应成比例及其夹角相等,则两三角形相似【3】两角对应相等则两三角形相似
2.全等三角形(1)可以完全重合的两个三角形叫做全等三角形. (2)全等三角形的性质.全等三角形对应角(边)相等.全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等.(3)全等三角形的断定
① SAS ②ASA ③AAS ④SSS ⑤HL (RT三角形)
3.等腰三角形等腰三角形的性质:(1)两底角相等;(2)顶角的角平分线、底边上的中线和底边上的高互相重合;等腰三角形的断定:(1)等角对等边;(2)两底角相等;
4.等边三角形等边三角形的性质:(1)顶角的角平分线、底边上的中线和底边上的高互相重合;(2)等边三角形的各角都相等,而且都等于60°.等边三角形的断定:(1)三个角都相等的三角形是等边三角形;(2)有一个角等于60°的等腰三角形是等边三角形.三角形的面积公式
(1)S△=1/2*ah(a是三角形的底,h是底所对应的高)
(2)S△=1/2*ac*sinB=1/2*bc*sinA=1/2*ab*sinC(三个角为∠A∠B∠C,对边分别为a,b,c,拜见三角函数)
(3)S△=√〔s*(s-a)*(s-b)*(s-c)〕【s=1/2(a+b+c)】
(4)S△=abc/(4R)【R是外接圆半径】
(5)S△=1/2*(a+b+c)*r 【r是内切圆半径】
(6) | a b 1 |
S△=1/2 * | c d 1 |
| e f 1 | 【| a b 1 |
| c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC
| e f 1 |选区取最好按逆时针顺序从右上角开端取,因为这样取得出的成果一般都为正值,如果不按这个规则取,可以会得到负值,但不妨,只要取相对值便可以了,不会影响三角形面积的大小!】生活中的三角形物品雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边沿线、蝴蝶翅膀、火箭、竹笋、浮图、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等.三角形全等的条件注意:只有三个角相等无法推出两个三角形全等(1)三边对应相等的两个三角形相等,简写为“SSS”.(2)两角和它们的夹边对应相等的两个三角形全等,简写成“ASA”.(3)两角和其中一角的对边对应相等的两个三角形全等,简写成“AAS”.(4)双方和它们的夹角对应相等的两个三角形全等,简写成“SAS”.(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“HL”.全等三角形的性质全等三角形的对应角相等,对应边也相等.三角形中的线段中线:顶点与对边中点的连线,平分三角形.高:顶点到对边垂足的连线.角平分线:顶点到双方间隔相等的点所构成的直线.中位线:任意双方中点的连线.三角形相关定理重心定理三角形的三条中线交于一点,这点到顶点的间隔是它到对边中点间隔的2倍.上述交点叫做三角形的重心.外心定理三角形的三边的垂直平分线交于一点.这点叫做三角形的外心.垂心定理三角形的三条高交于一点.这点叫做三角形的垂心.心坎定理三角形的
三内角平分线交于一点.这点叫做三角形的心坎.旁心定理三角形一内角平分线和别的两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.三角形的重心、外心、垂心、心坎、旁心称为三角形的五心.它们都是三角形的重要相关点.中位线定理三角形的中位线平行于第三边且等于第三边的一半.三边关系定理三角形任意双方之和大于第三边,任意双方之差小于第三边.勾股定理在Rt三角形ABC 中,A≤90度,则
AB·AB+AC·AC=BC·BC A〉90度,则
AB·AB+AC·AC>BC·BC梅涅劳斯定理梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的.它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那末(AF/FB)×(BD/DC)×(CE/EA)=1.证明:过点A作AG‖BC交DF的延长线于G,则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG.三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且知足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线.操纵这个逆定理,可以断定三点共线.塞瓦定理设O是△ABC内任意一点,
AO、BO、CO分别交对边于D、E、F,则 BD/DC*CE/EA*AF/FB=1证法简介(Ⅰ)本题可操纵梅涅劳斯定理证明:∵△ADC被直线BOE所截,∴ CB/BD*DO/OA*AE/EC=1 ①而由△ABD被直线COF所截,∴ BC/CD*DO/OA*AF/BF=1②
②÷①:即得:BD/DC*CE/EA*AF/FB=1(Ⅱ)也可以操纵面积关系证明∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S
△COD)=S△AOB/S△AOC ③同理CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤
③×④×⑤得BD/DC*CE/EA*AF/FB=1 操纵塞瓦定理证明三角形三条高线必交于一点:设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/
[(AE*ctgB)]=1,所以三条高CD、AE、BF交于一点.。

相关文档
最新文档