一阶动态电路测试实验报告
[VIP专享]RC一阶电路的响应测试--实验报告
![[VIP专享]RC一阶电路的响应测试--实验报告](https://img.taocdn.com/s3/m/f9307514b307e87101f69666.png)
实验六 RC一阶电路的响应测试一、实验目的1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。
2. 学习电路时间常数的测量方法。
3. 掌握有关微分电路和积分电路的概念。
4. 进一步学会用虚拟示波器观测波形。
二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。
要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。
为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。
只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。
2.图6-1(b)所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。
3. 时间常数τ的测定方法用示波器测量零输入响应的波形如图6-1(a)所示。
根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。
当t=τ时,Uc(τ)=0.368U m。
此时所对应的时间就等于τ。
亦可用零状态响应波形增加到0.632U m所对应的时间测得,如图6-1(c)所示。
步骤一对应的虚拟示波器的图像如上图所示利用游标测算得时间常数τ=57*10-6.与计算得到的时间常数τ=RC=68*10-6相比,误差不大,分析其主要原因来源于仪器误差和人的生理误差。
步骤二对应的虚拟示波器的图像如上图所示电路参数满足τ>>T/2的条件,则成为积分电路。
由于这种电路电容器充放电进行得很慢,因此电阻R上的电压ur(t)近似等于输入电压ui(t),其输出电压uo(t)为:上式表明,输出电压uo(t)与输入电压ui(t)近似地成积分关系此时电路将方波转变成了三角波。
步骤三对应的虚拟示波器的图像如上图所示取RC串联电路中的电阻两端为输出端,并选择适当的电路参数使时间常数τ<<T/2。
一阶动态电路响应研究实验报告

一阶动态电路响应的研究实验目的:1.学习函数信号发生器和示波器的使用方法。
2.研究一阶动态电路的方波响应。
实验仪器设备清单:1.示波器 1台2.函数信号发生器 1台3.数字万用表 1块4. 1kΩ电阻X1 ;10kΩ电阻 X1 ;100nf电容X1 ;面包板;导线若干。
实验原理:1.电容和电感的电压与电流的约束关系是通过导数和积分来表达的。
积分电路和微分电路时RC一阶电路中典型的电路。
一个简单的RC串联电路,在方波序列脉冲的重复激励下,由R两端的电压作为输出电压,则此时该电路为微分电路,其输出信号电压与输入电压信号成正比。
若在该电路中,由C两端的电压作为响应输出,则该电路为积分电路。
2.电路中在没有外加激励时,仅有t=0时刻的非零初始状态引起的响应成为零输入响应,其取决于初始状态和电路特性,这种响应随时间按指数规律衰减。
在零初始状态时仅有在t=0时刻施加于电路的激励所引起的响应成为零状态响应,其取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。
线性动态电路的全响应为零输入响应和零状态响应之和。
实验电路图:实验内容:1.操作步骤、:(1).调节信号源,使信号源输出频率为1KHz,峰峰值为1.2VPP的方波信号。
(2).将示波器通道CH1与信号源的红色输出端相接,黑色端也相接,调示波器显示屏控制单位,使波形清晰,亮度适宜,位置居中。
(3).调CH1垂直控制单元,使其灵敏度为0.2V,即在示波器上显示出的方波的幅值在屏幕垂直方向上占6格。
(4).调CH2水平控制单元,使其水平扫描速率为0.2ms,表示屏幕水平方向每格为0.2ms。
(5).按照实验原理的电路图接线,将1K电阻和10nf电容串联,将信号源输出线的红色夹子,示波器CH1的红色夹子连电阻的一端,电容的另一端与信号源,示波器的黑色夹子连在一起,接着将CH2的输入探极红色夹子接在电容的非接地端,黑色夹子接在电容的接地端。
(6).打开信号源开关,示波器CH1,CH2通道开关,观察示波器并记录其波形。
实验九实验报告(二)--一阶动态电路的响应测试

实验九 :一阶动态电路的响应测试(二)一、实验目的:1、 观测RC 一阶电路的方波响应;2、 通过对一阶电路方波响应的测量,练习示波器的读数;二、实验内容:1、研究RC 电路的方波响应。
选择T/RC 分别为10、5、1时,电路参数: R=1K Ω,C=0.1µF 。
2、观测积分电路的Ui(t)和Uc(t)的波形,记录频率对波形的影响,从波形图上测量时间常数。
积分电路的输入信号是方波,Vpp=5V 。
3、观察微分电路的Ui(t)和U R (t)的波形,记录频率对波形的影响。
微分电路的输入信号也是方波,Vp-p=1V 。
三、实验环境:面包板一个,导线若干,电阻一个(1k Ω),DS1052E 示波器一台,电解电容一个(0.1μF ),EE1641C 型函数信号发生器一台。
四、实验原理:1. 方波激励:•电路图:•方波波形:(调整方波电压范围在0~5V ) 2. 积分电路:一个简单的RC 串联电路,在方波脉冲的重复激励下,当满足τ=RC>>T/2时(T 为方波脉冲的重复周期),且由C 两端的电压作为响应输出,则该电路就是一个积分电路。
此时电路的输出信号电压与输入信号电压的积分成正比。
•电路图:(以f=1000Hz 为例)C1100nF•仿真波形:(以f=1000Hz为例)3. 微分电路:一个简单的RC串联电路,在方波脉冲的重复激励下,当满足τ=RC<<T/2时(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,则该电路就是一个微分电路。
因此此时电路的输出信号电压与输入信号电压的微分成正比。
•电路图:(以f=1000Hz为例)•仿真波形:(以f=1000Hz为例)五、实验数据:1.时间常数的计算:6-4;•U i(t)和U c(t)的波形及波形数据:①③3.微分电路:•U i(t)和U R(t)的波形及波形数据:①②③④六、数据分析总结:1.注意事项:(1)将方波波形底端定为基准,使方波激励电压范围在0~5V之间;(2)微分电路图中,若以积分电路的电路只改变示波器的通道连接,要注意不要将电容短路;(3)函数信号发生器的频率调节要结合档位,不换档位可能调不到所要的频率。
动态电路的实验报告

一、实验目的1. 理解动态电路的基本原理和特性。
2. 掌握动态电路的时域分析方法。
3. 学习使用示波器、信号发生器等实验仪器进行动态电路实验。
4. 通过实验验证动态电路理论,加深对电路原理的理解。
二、实验原理动态电路是指电路中含有电容或电感的电路。
动态电路的特点是电路中的电压、电流随时间变化,其响应具有延时特性。
本实验主要研究RC一阶动态电路的响应。
RC一阶动态电路的零输入响应和零状态响应分别由电路的初始状态和外加激励决定。
零输入响应是指在电路没有外加激励的情况下,由电路的初始状态引起的响应。
零状态响应是指在电路初始状态为零的情况下,由外加激励引起的响应。
三、实验仪器与设备1. 示波器:用于观察电压、电流随时间的变化。
2. 信号发生器:用于产生方波、正弦波等信号。
3. 电阻:用于构成RC电路。
4. 电容:用于构成RC电路。
5. 电源:提供实验所需的电压。
6. 导线:用于连接电路元件。
四、实验步骤1. 构建RC一阶动态电路,连接好实验仪器。
2. 设置信号发生器,输出方波信号,频率为1kHz,幅度为5V。
3. 使用示波器分别观察电容电压uc和电阻电压ur的波形。
4. 改变电路中的电阻R和电容C的值,观察电路响应的变化。
5. 记录实验数据,分析实验结果。
五、实验结果与分析1. 当电阻R和电容C的值确定后,电路的零输入响应和零状态响应分别如图1和图2所示。
图1 零输入响应图2 零状态响应从图中可以看出,零输入响应和零状态响应均呈指数规律变化。
在t=0时刻,电容电压uc和电阻电压ur均为0。
随着时间的推移,电容电压uc逐渐上升,电阻电压ur逐渐下降,最终趋于稳定。
2. 当改变电阻R和电容C的值时,电路的响应特性发生变化。
当电阻R增大或电容C减小时,电路的响应时间延长,即电路的过渡过程变慢;当电阻R减小或电容C增大时,电路的响应时间缩短,即电路的过渡过程变快。
3. 通过实验验证了动态电路理论,加深了对电路原理的理解。
RC一阶电路的响应测试实验报告

RC 一阶电路的响应测试实验目的1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。
2. 学习电路时刻常数的测量方式。
3. 把握有关微分电路和积分电路的概念。
4. 进一步学会用示波器观测波形。
实验电路原理说明1. 电路中某时刻的电感电流和电容电压称为该时刻的电路状态。
t=0时电感的初始电流i L (0)和电容电压u c (0)称为电路的初始状态。
在没有外加鼓励时,仅由t=0零时刻的非零初始状态引发的响应称为零输入响应称为,它取决于初始状态和电路特性(通过时刻常数τ=RC 来表现),这种响应时随时刻按指数规律衰减的。
在零初始状态时仅由在t 0时刻施加于电路的鼓励引发的响应称为零状态响应,它取决于外加鼓励和电路特性,这种响应是由零开始随时刻按指数规律增加的。
线性动态电路的完全响应为零输入响应和零状态响应之和。
含有耗能元件的线性动态电路的完全响应也能够为暂态响应与稳态响应之和,实践中以为暂态响应在t=5τ时消失,电路进入稳态,在暂态还存在的这段时刻就成为“过渡进程”。
2. 动态网络的过渡进程是十分短暂的单次转变进程。
要用一般示波器观看过渡进程和测量有关的参数,就必需使这种单次转变的进程重复显现。
为此,咱们利用信号发生器输出的方波来模拟阶跃鼓励信号,即利用方波输出的上升沿作为零状态响应的正阶跃鼓励信号;利用方波的下降沿作为零输入响应的负阶跃鼓励信号。
只要选择方波的重复周期远大于电路的时刻常数τ,那么电路在如此的方波序列脉冲信号的鼓励下,它的响应就和直流电接通与断开的过渡进程是大体相同的。
CC3. 时刻常数τ的测定方式:用示波器测量零输入响应的波形如图9-1(b)所示。
依照一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ。
当t =τ时,Uc(τ)=。
现在所对应的时刻就等于τ。
亦可用零状态响应波形增加到所对应的时刻测得,如图9-1(c)所示。
(b) 零输入响应 (a) RC 一阶电路 (c) 零状态响应图 9-14. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。
一阶动态电路的响应测试实验报告

一阶动态电路的响应测试实验报告1.实验摘要1、研究RC电路的零输入响应和零状态响应。
用示波器观察响应过程。
电路参数:R=100K、C=10uF、Vi=5V2.从响应波形图中测量时间常数和电容的充放电时间2.实验仪器5V电源,100KΩ电阻,10uF电容,示波器,导线若干2.实验原理(1)RC电路的零输入响应和零状态响应(i)电路中某时刻的电感电流和电容电压称为该时刻的电路状态。
t=0时,电容电压uc(0)称为电路的初始状态。
(ii)在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。
(iii)在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。
(iiii)线性动态电路的完全响应为零输入响应和零状态响应之和动态网络的过渡过程是十分短暂的单次变化过程。
要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。
为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。
只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的2.时间常数τ的测定方法:用示波器测量零输入响应的波形,根据一阶微分方程的求解得知uc=Um*e-t/RC=Um*e-t/τ,当t=τ时,即t为电容放电时间,Uc(τ)=0.368Um。
此时所对应的时间就等于τ。
亦可用零状态响应波形增加到0.632Um 所对应的时间测得,即电容充电的时间t.(2)测量电容充放电时间的电路图如图所示,R=100KΩ,us=5V,c=10uF,单刀双掷开关A.4实验步骤和数据记录(i)按如图所示的电路图在连接好电路,测量电容C的两端电压变化,即一阶动态电路的响应测试。
rc一阶电路的动态过程研究实验报告

rc一阶电路的动态过程研究实验报告
实验原理:RC一阶电路由电阻R和电容C组成,当电路受到外部信号刺激时,电容器内的电荷会发生变化,电压也会随之变化。
在电路刚开始受到刺激时,电容器内的电压会迅速上升,但随着时间的推移,电容器内的电压将会越来越接近于稳定值。
这种电路的动态过程可以用RC电路的响应特性来描述。
实验步骤:
1. 将电阻R和电容C按照电路图连接,连接方法为并联式连接。
2. 将信号发生器输出方波信号,并调节幅度和频率。
3. 将示波器的探头接入电路中,调节示波器的时间基准和输入放大倍数。
4. 记录电路的动态响应过程,包括电压的上升和下降过程,以及电压稳定后的波形。
5. 改变电阻和电容的数值,重复实验步骤4,比较不同参数对电路响应的影响。
实验结果:实验结果表明,RC一阶电路的动态响应过程与电阻和电容的数值有关。
当电容值较小时,电路响应较快,电容值较大时,电路响应较慢。
当电阻值较小时,电路的稳态响应较小,电阻值较大时,电路的稳态响应较大。
此外,频率和幅度的变化也会影响电路的响应特性。
在实验中,我们观察到电路响应的波形是指数衰减的,这是由RC电路的特性所决定的。
结论:通过实验研究,我们深入了解了RC一阶电路的动态响应
过程特性及其参数对电路响应的影响。
这对于工程应用和电路设计具有重要意义。
一阶动态电路响应实验报告

一阶动态电路响应实验报告一阶动态电路响应实验报告引言:动态电路是电子学中的基础实验之一,通过对电路中的电流和电压的变化进行观察和分析,可以更好地理解电路的特性和响应。
本实验旨在研究一阶动态电路的响应特性,通过实验数据的分析,探索电路中的电流和电压的变化规律。
实验目的:1. 研究一阶动态电路的响应特性。
2. 掌握实验仪器的使用方法,如示波器、信号发生器等。
3. 学习数据采集和分析的方法。
实验原理:一阶动态电路是由电容和电阻组成的简单电路,其特点是电流和电压的变化具有指数衰减的趋势。
当电路中的电容充电或放电时,电流和电压的变化可以用指数函数来描述。
实验步骤:1. 搭建一阶动态电路实验电路,包括电容、电阻和信号发生器。
2. 将示波器连接到电路中,用于观察电流和电压的变化。
3. 设置信号发生器的频率和振幅,观察电路中电流和电压的响应。
4. 记录实验数据,包括电流和电压的变化情况。
5. 对实验数据进行分析,绘制电流和电压的变化曲线。
实验结果与分析:根据实验数据,我们可以得到一阶动态电路中电流和电压的变化曲线。
通过观察和分析曲线,我们可以得出以下结论:1. 在电容充电时,电流和电压的变化呈指数衰减的趋势,随着时间的增加,电流和电压逐渐趋于稳定。
2. 在电容放电时,电流和电压的变化也呈指数衰减的趋势,但是其衰减速度比充电时要快。
3. 电容的充电和放电时间常数与电阻和电容的数值有关,可以通过实验数据计算得出。
实验结论:通过本次实验,我们研究了一阶动态电路的响应特性,了解了电容充电和放电过程中电流和电压的变化规律。
实验结果表明,一阶动态电路中的电流和电压变化可以用指数函数来描述,而电容的充放电时间常数与电阻和电容的数值有关。
实验总结:本次实验通过实际操作和数据分析,深入理解了一阶动态电路的响应特性。
同时,我们也掌握了实验仪器的使用方法,如示波器和信号发生器。
通过实验的过程,我们不仅加深了对电路特性的理解,还培养了数据采集和分析的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验八一阶动态电路测试实验报告
姓名:学号:班级:
一、实验目的
1.测定RC一阶电路的零输入响应,零状态响应及完全响应。
2.学习电路时间常数的测量方法。
3.掌握有关微分电路和积分电路的概念。
4.进一步学会用示波器测绘图形。
二、实验内容
1.在面包板上搭接RC电路,用开关控制零输入和零状态,用
示波器观察其相应过程
2.研究RC电路的方波响应,选择T/RC为10,5,2时UIT和
UCT波形,记录RC对波形的影响,输入VPP=2V
3.R=100K,C=10uf
三.数据分析
电路图如下:
零输入响应从图中可以看出电路的时间常数τ=Δx=500ms
零状态响应
用示波器测量零输入响应的波形如图9-1(b)所示。
根据一阶微分方程的求解得知uc=Ume-t/RC
=Ume
-t/τ。
当t=τ时,Uc(τ)=0.368Um。
此时所对应的时间就等于τ。
亦可用零状态响应波形增加到
0.632Um所对应的时间测得,
RC>>2T,则该RC电路称为积分电路。
因为此时电路的输出信号电压与输入信号电压的
积分成正比
四.实验注意事项
1. 调节电子仪器各旋钮时,动作不要过猛。
实验前,尚需熟读双踪示波器使用说明,特别是观察双踪时,要特别注意哪些开关、旋钮的操作与调节。
2. 信号源的接地端与示波器的接地端要连在一起(称共地),以防外界干扰而影响测量的准确性。
3. 示波器的辉度不应过亮,尤其是光点长期停留在荧光屏上不动时,应将
辉度调暗,以延长示波管的使用寿命。
分析误差原因:1,测量误差 2,电源内阻影响 3,可能电源的波动影响(如果不是所有参数同时测量的) 4,连接线路的电阻和结点的接触电阻及缩小误差猜想
可以利用示波器信号输入替代万用表触头灵敏度下降的问题
由于读数时万用表的数字晃动,导致取数不准,出粗估量是由于电源波动影响。
误差猜想由于测电流时,不停断路,导致还原时未将触头很好接入,导致接触不良,电流时断时续,影响读数
解决方法:检查、分析电路的简单故障
电路常见的简单故障一般出现在连线或元件部分。
连线部分的故障通常有连线接错,接触不良而造成的断路等;元件部分的故障通常有接错元件、元件值错,电源输出数值(电压或电流)错等。
实验心得体会:
做电路实验时须得耐心加细心,很多次,因为自己的粗心导致实验数据出现误差,好在用心请教他人,有条不紊才是真理,一步一个脚印。