采用非递归深度优先遍历算法
深度优先遍历的算法

深度优先遍历的算法深度优先遍历(Depth-First Search,DFS)是一种用来遍历或树或图的算法。
它以一个起始节点开始,沿着路径尽可能深地,直到到达最深处或无法继续为止,然后回溯到上一个节点,继续其他路径。
DFS通过栈来实现,每次访问一个节点时,将其标记为已访问,并将其相邻的未访问节点压入栈中。
然后从栈中弹出节点,重复这个过程,直到栈为空为止。
1.创建一个栈,用来存储待访问的节点。
2.将起始节点标记为已访问,并将其压入栈中。
3.当栈不为空时,执行以下步骤:-弹出栈顶节点,并输出该节点的值。
-将该节点的未访问的相邻节点标记为已访问,并将其压入栈中。
4.重复步骤3,直到栈为空为止。
-深度优先遍历是一种先序遍历,即先访问节点本身,然后访问其子节点。
-深度优先遍历可以用来求解连通图、查找路径等问题。
-深度优先遍历的时间复杂度为O(V+E),其中V为节点数,E为边数。
1.求解连通图:深度优先遍历可以用来判断一个图是否连通,即从一个节点是否能够访问到所有其他节点。
2.查找路径:深度优先遍历可以找到两个节点之间的路径。
当遇到目标节点时,即可停止遍历,返回路径结果。
3.拓扑排序:深度优先遍历可以进行拓扑排序,即将有依赖关系的任务按一定的顺序排列。
深度优先遍历的实现可以通过递归或迭代方式来完成。
递归方式更加简洁,但在处理大规模图时可能导致栈溢出。
迭代方式则可以采用栈来避免栈溢出问题。
无论是递归方式还是迭代方式,其核心思想都是通过访问节点的相邻节点来进行深入,直至遍历完整个图或树的节点。
总而言之,深度优先遍历是一种常用的图遍历算法,它以一种深入优先的方式遍历路径。
在实际应用中,深度优先遍历可以用来求解连通图、查找路径和拓扑排序等问题,是图算法中的重要工具之一。
图的深度优先遍历(DFS)c++非递归实现

图的深度优先遍历(DFS)c++⾮递归实现深搜算法对于程序员来讲是必会的基础,不仅要会,更要熟练。
ACM竞赛中,深搜也牢牢占据着很重要的⼀部分。
本⽂⽤显式栈(⾮递归)实现了图的深度优先遍历,希望⼤家可以相互学习。
栈实现的基本思路是将⼀个节点所有未被访问的“邻居”(即“⼀层邻居节点”)踹⼊栈中“待⽤”,然后围绕顶部节点猛攻,每个节点被访问后被踹出。
读者可以⾃⼰画图分析⼀下,难度并不⼤。
代码写的⽐较随意,仅供参考。
~#include <iostream>#include <stack>using namespace std;#define MaxNode 20#define MAX 2000#define StartNode 1int map[MaxNode+1][MaxNode+1];void dfs_stack(int start, int n){int visited[MaxNode],s_top;for(int i = 0;i <= MaxNode; i++){visited[i] = 0;}visited[start] = 1;stack <int> s;cout<<start<<"";for(int i = 1; i <= n; i++){if(map[i][start] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}while(!s.empty()){s_top = s.top();visited[s_top] = 1;cout<<s_top<<"";s.pop();for(int i = 1; i <= n; i++){if(map[i][s_top] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}}}int main(int argc, const char * argv[]) {int num_edge,num_node;int x,y;cout<<"Input number of nodes and edges >"<<endl;cin>>num_node>>num_edge;for(int i =0;i<num_node;i++){for(int j=0;j<num_node;j++){map[i][j] = 0;}}for(int i = 1; i <= num_edge; i++){cin>>x>>y;map[x][y] = map[y][x] = 1;}dfs_stack(StartNode, num_node);return0;}。
北邮数据结构第六章答案详解 图(1)

1
5
1
54 3
42
5 66
图 6-8 图 G 答案:根据不同算法构造的最小生成树如图 6-9 所示的图(a)和(b)
2
④
⑤ 5
1
①
4 3
②
③
6
2
⑤
③ 5
1
①
4 3
④
②
6
(a) Prim 生成树
(b) Kruskal 生成树
图 6-9 最小生成树
5、算法设计
(1)以邻接表为存储结构,设计实现深度优先遍历的非递归算法。
int top = -1; cout<<v<<’\t’; bVisited[v] = true; stack[++top] = v;
//访问结点 v //设置访问标记 //结点 v 入栈
while (top!=-1)
{
v=stack[top];
ArcNode<T> *p = adjlist[v]. firstarc; ①
)
A.1
B. n/2
C.n-1
D.n
解析:若超过 n-1,则路径中必存在重复的顶点
答案:C
(5) 若一个图中包含有 k 个连通分量,若按照深度优先搜索的方法访问所有顶点,则必
须调用(
)次深度优先搜索遍历的算法。
A.k
B.1
C.k-1
D.k+1
解析:一次深度优先搜索可以访问一个连通分量中的所有结点,因此 k 个连通分量需要 调用 k 次深度优先遍历算法。
④
} if (p==NULL) top--;
⑤//若是找不到未访问的结点,出栈
深度优先和广度优先比较

深度优先和⼴度优先⽐较区别:1)⼆叉树的深度优先遍历的⾮递归的通⽤做法是采⽤栈,⼴度优先遍历的⾮递归的通⽤做法是采⽤队列。
2)深度优先遍历:对每⼀个可能的分⽀路径深⼊到不能再深⼊为⽌,⽽且每个结点只能访问⼀次。
要特别注意的是,⼆叉树的深度优先遍历⽐较特殊,可以细分为先序遍历、中序遍历、后序遍历。
具体说明如下:先序遍历:对任⼀⼦树,先访问根,然后遍历其左⼦树,最后遍历其右⼦树。
中序遍历:对任⼀⼦树,先遍历其左⼦树,然后访问根,最后遍历其右⼦树。
后序遍历:对任⼀⼦树,先遍历其左⼦树,然后遍历其右⼦树,最后访问根。
⼴度优先遍历:⼜叫层次遍历,从上往下对每⼀层依次访问,在每⼀层中,从左往右(也可以从右往左)访问结点,访问完⼀层就进⼊下⼀层,直到没有结点可以访问为⽌。
3)深度优先搜素算法:不全部保留结点,占⽤空间少;有回溯操作(即有⼊栈、出栈操作),运⾏速度慢。
⼴度优先搜索算法:保留全部结点,占⽤空间⼤;⽆回溯操作(即⽆⼊栈、出栈操作),运⾏速度快。
通常深度优先搜索法不全部保留结点,扩展完的结点从数据库中弹出删去,这样,⼀般在数据库中存储的结点数就是深度值,因此它占⽤空间较少。
所以,当搜索树的结点较多,⽤其它⽅法易产⽣内存溢出时,深度优先搜索不失为⼀种有效的求解⽅法。
⼴度优先搜索算法,⼀般需存储产⽣的所有结点,占⽤的存储空间要⽐深度优先搜索⼤得多,因此,程序设计中,必须考虑溢出和节省内存空间的问题。
但⼴度优先搜索法⼀般⽆回溯操作,即⼊栈和出栈的操作,所以运⾏速度⽐深度优先搜索要快些深度优先:前序遍历:35,20,15,16,29,28,30,40,50,45,55中序遍历:15,16,20,28,29,30,35,40,45,50,55后序遍历:16,15,28,30,29,20,45,55,50,40,35⼴度优先遍历:35 20 40 15 29 50 16 28 30 45 55代码:package www.hhy;import java.beans.beancontext.BeanContextChild;import java.util.*;class Binarytree {class TreeNode{int value;TreeNode left;TreeNode right;public TreeNode(int value) {this.value = value;}}//⽤递归创建⼆叉树public int i = 0;TreeNode creatTesttree(String s){TreeNode root = null;if (s.charAt(i)!='#') {root = new TreeNode(s.charAt(i));i++;root.left = creatTesttree(s);root.right = creatTesttree(s);}else{i++;}return root;}//⼆叉树的前序遍历递归void binaryTreePrevOrder(TreeNode root){if(root==null){return;}System.out.println(root.value+" ");binaryTreePrevOrder(root.left);binaryTreePrevOrder(root.right);}//⼆叉树的中序遍历递归void binaryTreeInOrder(TreeNode root){if(root==null){return;}binaryTreeInOrder(root.left);System.out.println(root.value+" ");binaryTreeInOrder(root.right);}//⼆叉树的后续遍历递归void binaryTreePostOrder(TreeNode root){if(root==null){return;}binaryTreePostOrder(root.left);binaryTreePostOrder(root.right);System.out.println(root.value+" ");}//层序遍历void binaryTreeLevelOrder(TreeNode root,int level){if(root ==null||level<1){return;}if(level==1){System.out.print(root.value+" ");}binaryTreeLevelOrder(root.left,level-1);binaryTreeLevelOrder(root.right,level-1);}void BTreeLevelOrder(TreeNode root){if (root == null)return;int dep = getHeight(root);for (int i = 1; i <= dep; i++){binaryTreeLevelOrder(root,i);}}//⼆叉树的层序遍历⾮递归void binaryTreeLevelOrder(TreeNode root) {Queue<TreeNode> queue = new LinkedList<>();if(root != null) {queue.offer(root);//LinkedList offer add}while (!queue.isEmpty()) {//1、拿到队头的元素把队头元素的左右⼦树⼊队 TreeNode cur = queue.poll();System.out.print(cur.value+" ");//2、不为空的时候才能⼊队if(cur.left != null) {queue.offer(cur.left);}if(cur.right != null) {queue.offer(cur.right);}}}//⼆叉树的前序遍历⾮递归void binaryTreePrevOrderNonR(TreeNode root){Stack<TreeNode> stack = new Stack<>();TreeNode cur = root;TreeNode top = null;while (cur != null || !stack.empty()) {while (cur != null) {stack.push(cur);System.out.print(cur.value + " ");cur = cur.left;}top = stack.pop();cur = top.right;}System.out.println();}//⼆叉树的中序遍历⾮递归void binaryTreeInOrderNonR(TreeNode root){Stack<TreeNode> stack = new Stack<>();TreeNode cur = root;TreeNode top = null;while (cur != null || !stack.empty()) {while (cur != null) {stack.push(cur);cur = cur.left;}top = stack.pop();System.out.print(top.value+" ");cur = top.right;}System.out.println();}//⼆叉树的后序遍历⾮递归void binaryTreePostOrderNonR(TreeNode root) {Stack<TreeNode> stack = new Stack<>();TreeNode cur = root;TreeNode prev = null;while (cur != null || !stack.empty()) {while (cur != null) {stack.push(cur);cur = cur.left;}cur = stack.peek();//L D//cur.right == prev 代表的是 cur的右边已经打印过了if(cur.right == null || cur.right == prev) {stack.pop();System.out.println(cur.value);prev = cur;cur = null;}else {cur = cur.right;}}}//⼆叉树的节点个数递归int getSize(TreeNode root){if(root==null){return 0;}return getSize(root.left)+getSize(root.right)+1;}//⼆叉树的叶⼦节点的个数递归int getLeafSize(TreeNode root){if(root==null){return 0;}if(root.left==null && root.right==null){return 1;}return getLeafSize(root.left)+getLeafSize(root.right); }//⼆叉树得到第K层结点的个数int getKlevelSize(TreeNode root ,int k){if(root==null){return 0;}if(k == 1){return 1;}return getKlevelSize(root.left,k-1)+getKlevelSize(root.right,k-1);}//⼆叉树查找并返回该结点递归// 查找,依次在⼆叉树的根、左⼦树、// 右⼦树中查找 value,如果找到,返回结点,否则返回 nullTreeNode find(TreeNode root, int value){if(root == null) {return null;}if(root.value == value){return root;}TreeNode ret = find(root.left,value);if(ret != null) {return ret;}ret = find(root.right,value);if(ret != null) {return ret;}return null;}//⼆叉树的⾼度int getHeight(TreeNode root){if(root==null){return 0;}int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);return leftHeight>rightHeight ? leftHeight+1:rightHeight+1;}//判断⼀个树是不是完全⼆叉树public int binaryTreeComplete(TreeNode root) {Queue<TreeNode> queue = new LinkedList<TreeNode>();if(root != null) {queue.add(root);//offer}while(!queue.isEmpty()) {TreeNode cur = queue.peek();queue.poll();if(cur != null) {queue.add(cur.left);queue.add(cur.right);}else {break;}}while(!queue.isEmpty()) {TreeNode cur = queue.peek();if (cur != null){//说明不是满⼆叉树return -1;}else{queue.poll();}}return 0;//代表是完全⼆叉树}//检查两棵树是否是相同的,如果两棵树结构相同,并且在结点上的值相同,那么这两棵树是相同返回true public boolean isSameTree(TreeNode p,TreeNode q){if((p==null&&q!=null)||(p!=null&&q==null)){}if(p==null && q==null){return true;}if(p.value!=q.value){return false;}return isSameTree(p.left,q.left)&&isSameTree(p.right,q.left);}//检查是否为⼦树public boolean isSubTree(TreeNode s,TreeNode t){if(s==null||t==null){return false;}if(isSameTree(s,t)){return true;}else if (isSubTree(s.left,t)){return true;}else if(isSubTree(s.right,t)){return true;}else{return false;}}//1.判断是否为平衡⼆叉树,左右⼦树的⾼度之差不超过 "1"(⼤根本⾝是平衡⼆叉树,左右⼦树也必须是平衡⼆叉树) // 时间复杂度为n^2//2.求复杂度为O(n)的解法public boolean isBanlanced(TreeNode root){if(root==null){return true;}else{int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);return Math.abs(leftHeight-rightHeight)<2&&isBanlanced(root.left)&&isBanlanced(root.right);}}//判断是否为对称⼆叉树public boolean isSymmetric(TreeNode root){if(root==null){return true;}return isSymmetric(root.left,root.right);}public boolean isSymmetric(TreeNode lefttree,TreeNode righttree){if((lefttree==null && righttree!=null)||(lefttree!=null && righttree ==null)){return false;}if(lefttree == null && righttree == null){return true;}return lefttree.value == righttree.value && isSymmetric(lefttree.left,righttree.right)&& isSymmetric(lefttree.right,righttree.left);}//⼆叉树创建字符串⾮递归写法public String tree2str(TreeNode t){StringBuilder sb = new StringBuilder();tree2strchild(t,sb);return sb.toString();}public void tree2strchild(TreeNode t ,StringBuilder sb){if (t==null){}sb.append(t.value);if (t.left!=null){sb.append("(");tree2strchild(t.left,sb);sb.append(")");}else {if (t.right==null){}}}//⼆叉树字符串递归写法public String CreateStr(TreeNode t){if(t==null){return "";}if(t.left==null&&t.right==null){return t.value+"";}if(t.left==null){return t.value+"()"+"("+CreateStr(t.right)+")";}if(t.right==null){return t.value+"("+CreateStr(t.left)+")";}return t.value+"("+CreateStr(t.left)+")"+"("+CreateStr(t.right)+")";}public int rob(TreeNode root) {if (root == null) return 0;return Math.max(robOK(root), robNG(root));}private int robOK(TreeNode root) {if (root == null) return 0;return root.value + robNG(root.left) + robNG(root.right);}private int robNG(TreeNode root) {if (root == null) return 0;return rob(root.left) + rob(root.right);}//⼆叉树的公共祖先public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if(root==null){return null;}if(root==p||root==q){return root;}TreeNode leftTree = lowestCommonAncestor(root.left,p,q);//p||q nullTreeNode rightTree = lowestCommonAncestor(root.right,p,q);//p||q null//3if(leftTree!=null && rightTree!=null){return root;}//左边找到else if (leftTree!=null ){return leftTree;}//右边找到else if(rightTree!=null){return rightTree;}//都没找到的情况下return null;}//⼆叉搜索树,若他的左⼦树不为空,左⼦树上的所有节点都⼩于根节点,//如果他的右⼦树不为空,右⼦树上的所有节点都⼤于根节点//最终他的中序排列都是有序结果//输⼊⼀棵⼆叉搜索树,将该⼆叉搜索树转换成⼀个排序的双向链表。
5 回溯法

29
批处理作业调度问题的一个常见例子是在计算机
系统中完成一批n个作业,每个作业都要完成先计
算、然后将计算机结果打印输出这两项任务。
完成,否则继续试探,直到找到某一个或者多个解。
这种“试探着走”的思想也就是回溯法的基本思想。
如果试的成功则继续下一步试探。如果试的不成功则 退回一步,再换一个办法继续试。如此反复进行试探 性选择与返回纠错的过程,直到求出问题的解。
6
“马”每一步的跳法共有四个方向可供选择:右下1, 右下2,右上1, 右上2。 •从起点A出发,按跳法1试走一步
•解空间: • 比较装载该集装箱和不装该集装箱引起 的装载方案的区别。 初始状态
装入第一个 装入第二个 不装第二个 不装第一个 不装第二个
装入第二个
23
•
约束函数(选择装入当前元素):
w x
i 1 i
n
i
c1
•
限界函数(不选择装入当前元素):
•
设bestw为当前已经计算出的最优装载重量,Cw 是装载到目前为止的总量。
就有若干个可供选择的后继结点。没有任何“必
定行”的暗示,只好走着瞧。不行了回溯上一层
结节(此时需要恢复该结点有关数据),换一种
方法,继续试。
8
首先暂时放弃关于问题规模大小的限制,并将问
题的候选解(部分解)按某种顺序逐一枚举和检 验。
当发现当前候选解不可能是解时,就选择下一个
候选解;倘若当前候选解除了还不满足问题规模 要求外,满足所有其他要求时,继续扩大当前候 选解的规模,并继续试探。
n皇后问题

n 后问题1 问题描述:N 皇后问题是一个古老而著名的问题。
该问题是十九世纪著名的数学家高斯1850年提出的。
八皇后问题要求在一个N *N 的棋盘上放上N 个皇后,使得每一个皇后既攻击不到另外N-1个皇后,也不被另外N-1个皇后所攻击.按照国际象棋的规则,一个皇后可以攻击与之处在同一行或同一列或同一斜线上的其他任何棋子,问有多少种不同的摆法?并找出所有的摆法。
因此,N 皇后问题等于要求N 个皇后中的任意两个不能被放在同一行或同一列或同一斜线上。
2 回朔法回溯法有“通用的题解法”之称。
从问题的某种可能情况出发,搜索所有能到达的可能情况,然后以其中一种可能的情况为新的出发点,继续向下探索,当所有可能情况1 2 3 4 5 6 7 8 1 2 3 4 5 6 78都探索过且都无法到达目标的时候,再回退到上一个出发点,继续探索另一个可能情况,这种不断回头寻找目标的方法称为“回溯法”。
适用于解组合是较大的问题。
回朔法思想:1针对所给问题,定义问题的解空间。
2.确定易于搜索的解空间结构。
3.以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。
在搜索过程中,通常采用两种策略避免无效搜索:一是用约束函数剪去得不到可行解的子树;二是用限界函数剪去得不到最优解的子树。
这两类函数统称为剪枝函数。
回溯算法的一个显著的特性是在搜索过程中动态产生问题的解空间。
在任何时刻,只保存从根结点到当前扩展结点的路径。
因此,回溯算法的空间需求为o(n),(n为从根结点起最长路径的长度)。
而显式地存储整个解空间则需要o(2n)或o(n!)内存空间。
回溯法对解空间作深度优先搜索,因此,在一般情况下用递归方法实现回溯法。
void backtrack (int t){if (t>n) output(x);elsefor (int i=f(n,t);i<=g(n,t);i++){x[t]=h(i);if (constraint(t)&&bound(t)) backtrack(t+1);}}采用树的非递归深度优先遍历算法,可将回溯法表示为一个非递归迭代过程。
实现图的遍历算法实验报告

实现图的遍历算法实验报告实现图的遍历算法实验报告⼀实验题⽬: 实现图的遍历算法⼆实验要求:2.1:(1)建⽴如图(p126 8.1)所⽰的有向图 G 的邻接矩阵,并输出之(2)由有向图G的邻接矩阵产⽣邻接表,并输出之(3)再由(2)的邻接表产⽣对应的邻接矩阵,并输出之2.2 (1)输出如图8.1所⽰的有向图G从顶点0开始的深度优先遍历序列(递归算法)(2)输出如图8.1所⽰的有向图G从顶点0开始的深度优先遍历序列(⾮递归算法)(3)输出如图8.1所⽰的有向图G从顶点0开始的⼴度优先遍历序列三实验内容:3.1 图的抽象数据类型:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。
数据关系R:R={VR}VR={|v,w∈V且P(v,w),表⽰从v到w的弧,谓词P(v,w)定义了弧的意义或信息}基本操作:CreateGraph( &G, V, VR )初始条件:V是图的顶点集,VR是图中弧的集合。
操作结果:按V和VR的定义构造图G。
DestroyGraph( &G )初始条件:图G存在。
操作结果:销毁图G。
LocateVex( G, u )初始条件:图G存在,u和G中顶点有相同特征。
操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返回其它信息。
GetVex( G, v )初始条件:图G存在,v是G中某个顶点。
操作结果:返回v的值。
PutVex( &G, v, value )初始条件:图G存在,v是G中某个顶点。
初始条件:图G存在,v是G中某个顶点。
操作结果:返回v的第⼀个邻接顶点。
若顶点在G中没有邻接顶点,则返回“空”。
NextAdjVex( G, v, w )初始条件:图G存在,v是G中某个顶点,w是v的邻接顶点。
操作结果:返回v的(相对于w的)下⼀个邻接顶点。
若w是v 的最后⼀个邻接点,则返回“空”。
InsertVex( &G, v )初始条件:图G存在,v和图中顶点有相同特征。
先序遍历的非递归算法

数据结构1、先序遍历的非递归算法。
用c语言写。
void PreOrderUnrec(Bitree t){SqStack s;StackInit(s);p=t;while (p!=null || !StackEmpty(s)){while (p!=null) //遍历左子树{visite(p->data);push(s,p);p=p->lchild;}//endwhileif (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历{ p=pop(s);p=p->rchild;}//endif}//endwhile}//PreOrderUnrec/////////////////////////////////#include "stdio.h"#include "stdlib.h"#include "string.h"#define null 0struct node{char data;struct node *lchild;struct node *rchild;};//先序,中序建树struct node *create(char *pre,char *ord,int n){struct node * head;int ordsit;head=null;if(n<=0){return null;}else{head=(struct node *)malloc(sizeof(struct node)); head->data=*pre;head->lchild=head->rchild=null;ordsit=0;while(ord[ordsit]!=*pre){ordsit++;}head->lchild=create(pre+1,ord,ordsit);head->rchild=create (pre+ordsit+1,ord+ordsit+1,n-ordsit-1); return head;}}//中序递归遍历void inorder(struct node *head){if(!head)return;else{inorder(head->lchild );printf("%c",head->data );inorder(head->rchild );}}//中序非递归遍历void inorder1(struct node *head) {struct node *p;struct node *stack[20];int top=0;p=head;while(p||top!=0){while (p){stack[top++]=p;p=p->lchild ;}p=stack[--top];printf("%c ",p->data );p=p->rchild ;}}/////////////////////////////////////////////////////////////////// ////////////////////二叉树前序、中序、后序三种遍历的非递归算法1.先序遍历非递归算法void PreOrderUnrec(Bitree *t){Stack s;StackInit(s);Bitree *p=t;while (p!=NULL || !StackEmpty(s)){while (p!=NULL) //遍历左子树{visite(p->data);push(s,p);p=p->lchild;}if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历{p=pop(s);p=p->rchild;}//endif}//endwhile}2.中序遍历非递归算法void InOrderUnrec(Bitree *t){Stack s;StackInit(s);Bitree *p=t;while (p!=NULL || !StackEmpty(s)){while (p!=NULL) //遍历左子树{push(s,p);p=p->lchild;}if (!StackEmpty(s)){p=pop(s);visite(p->data); //访问根结点p=p->rchild; //通过下一次循环实现右子树遍历}//endif }//endwhile}3.后序遍历非递归算法typedef enum{L,R} tagtype;typedef struct{Bitree ptr;tagtype tag;}stacknode;typedef struct{stacknode Elem[maxsize];int top;}SqStack;void PostOrderUnrec(Bitree t) {SqStack s;stacknode x;StackInit(s);p=t;do{while (p!=null) //遍历左子树{x.ptr = p;x.tag = L; //标记为左子树push(s,x);p=p->lchild;}while (!StackEmpty(s) && s.Elem[s.top].tag==R){x = pop(s);p = x.ptr;visite(p->data); //tag为R,表示右子树访问完毕,故访问根结点} if (!StackEmpty(s)){s.Elem[s.top].tag =R; //遍历右子树p=s.Elem[s.top].ptr->rchild;}}while (!StackEmpty(s));}//PostOrderUnrec二。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007-05-27 晴
//采用非递归深度优先遍历算法,可以将回溯法表示为一个非递归过程
#include<iostream>
using namespace std;
class Knap
{
friend int Knapsack(int p[],int w[],int c,int n ); //设置友元函数
public:
void print() //定义类内函数打印结果
{
for(int m=1;m<=n;m++)
{
cout<<bestx[m]<<" ";
}
cout<<endl;
};
private:
int Bound(int i);
void Backtrack(int i);
int c; //背包容量
int n; //物品数
int *w; //物品重量数组int *p; //物品价值数组int cw; //当前重量
int cp; //当前价值
int bestp; //当前最优值int *bestx; //当前最优解int *x; //当前解
};
int Knap::Bound(int i) //装满背包
if(i<=n)
b+=p/w*cleft;
return b;
}
void Knap::Backtrack(int i) {
if(i>n)
{
if(bestp<cp)
{
for(int j=1;j<=n;j++)
bestx[j]=x[j];
bestp=cp;
}
return;
}
if(cw+w<=c) //搜索左子树{
x=1;
cw+=w;
cp+=p;
Backtrack(i+1);
cw-=w;
cp-=p;
}
if(Bound(i+1)>bestp) //搜索右子树
{
x=0;
Backtrack(i+1);
}
}
class Object
{
friend int Knapsack(int p[],int w[],int c,int n); public:
int operator<=(Object a)const
{
return (d>=a.d);
}
private:
int ID;
float d;
};
int Knapsack(int p[],int w[],int c,int n) {
//为Knap::Backtrack初始化
int W=0;
int P=0;
int i=1;
Object *Q=new Object[n];
for(i=1;i<=n;i++)
{
Q[i-1].ID=i;
Q[i-1].d=1.0*p/w;
P+=p;
W+=w;
}
if(W<=c)
return P; //装入所有物品
float f;
for( i=0;i<n;i++) //依物品单位重量排序
for(int j=i;j<n;j++)
{
if(Q.d<Q[j].d)
{
f=Q.d;
Q.d=Q[j].d;
Q[j].d=f;
}
}
Knap K;
K.p = new int[n+1];
K.w = new int[n+1];
K.x = new int[n+1];
K.bestx = new int[n+1]; K.x[0]=0;
K.bestx[0]=0;
for( i=1;i<=n;i++)
{
K.p=p[Q[i-1].ID];
K.w=w[Q[i-1].ID];
}
K.cp=0;
K.cw=0;
K.c=c;
K.n=n;
K.bestp=0;
//回溯搜索
K.Backtrack(1);
K.print(); //打印结果delete [] Q;
delete [] K.w; delete [] K.p; return K.bestp;
}
void main()
{
int *p;
int *w;
int c=0;
int n=0;
int i=0;
int k;
do
{
cout<<"请输入背包容量(c):"<<endl;
cin>>c;
cout<<"请输入物品的个数(n):"<<endl;
cin>>n;
p=new int[n+1];
w=new int[n+1];
p[0]=0;
w[0]=0;
cout<<"请输入物品的价值(p):"<<endl;
for(i=1;i<=n;i++)
cin>>p;
cout<<"请输入物品的重量(w):"<<endl;
for(i=1;i<=n;i++)
cin>>w;
cout<<"最优解(bestx)与最优值(bestp):"<<endl; cout<<Knapsack(p,w,c,n)<<endl;
cout<<"按 [1] 重新开始,其他键结束"<<endl; cin>>k;
}while(k==1);
}.。