光伏发电系统逆变器的设计
逆变器选型与布置设计

逆变器选型与布置设计逆变器选型与布置设计:逆变器是将直流电能转换为交流电能的设备,广泛应用于太阳能光伏发电系统、风能发电系统和电动车等领域。
逆变器选型与布置设计是保证系统正常运行和性能优化的关键步骤。
在这里,我将为您详细介绍逆变器选型与布置设计的相关内容。
一、逆变器选型:1. 了解系统要求:在选择逆变器之前,首先需要了解光伏发电系统的总装机容量、输出电压要求、并网条件等系统要求。
根据这些要求,进行逆变器的选型。
2. 功率选择:根据光伏系统的总装机容量和预计发电功率,选择合适的逆变器功率。
一般来说,逆变器的额定功率应略大于光伏阵列的峰值功率,以确保逆变器能够正常运行。
3. 并网要求:了解所在地区电网的并网要求,如并网电压范围、频率范围、功率因数调整等。
选择符合电网要求的逆变器。
4. 品牌和可靠性:选择知名度高、质量可靠的逆变器品牌,能够提供可靠的售后服务和保修。
5. 保护功能:逆变器需要具备多种保护功能,如过温保护、短路保护、过载保护等。
确保选择的逆变器具备完善的保护功能,提高光伏系统的安全性。
6. 成本考虑:除了功能和性能要求,还要考虑逆变器的成本。
根据项目的预算,选择性价比较高的逆变器。
二、逆变器布置设计:1. 环境条件:选定逆变器后,需要考虑逆变器的布置环境条件。
逆变器应该远离高温、潮湿、尘土等环境,以确保其正常运行和寿命。
2. 通风散热:逆变器在工作过程中会产生一定的热量,因此应该选择通风良好的位置进行布置,以方便逆变器的散热,避免过热引起故障。
3. 安装位置选择:逆变器应该离光伏电池板与电网的距离尽量短,减少输电损耗。
同时,布置位置应该便于观察和维护。
4. 接线布置:逆变器的电缆布置应尽量短,减少电缆的损耗和距离带来的问题。
同时,应注意电缆的密封和固定,避免受潮、机械损坏等。
5. 接地设计:逆变器的接地设计要符合电气安全规范,确保系统的接地可靠。
与电池、电网、机壳等部件应合理接地。
6. 避雷保护:逆变器应与系统的避雷装置相连,避免雷击引起的损坏。
三电平光伏并网逆变器的设计和仿真

三电平光伏并网逆变器的设计和仿真三电平光伏并网逆变器是一种逆变器,可将光伏发电系统产生的直流电转换为交流电并注入电网中。
相较于传统的两电平逆变器,三电平逆变器具有较低的谐波畸变、较高的效率以及较低的损耗。
本文将主要介绍三电平光伏并网逆变器的设计和仿真。
首先,我们需要了解三电平光伏并网逆变器的工作原理。
该逆变器采用全桥拓扑结构,通过PWM控制技术将直流电转化为交流电。
在三电平拓扑中,单个逆变器开关可以处于三个可能的状态之一,产生三个不同的输出电平。
通过合理的控制逆变器开关状态,可以实现更接近纯正弦波形的输出。
接下来,我们需要进行三电平光伏并网逆变器的设计。
设计的关键步骤包括选择逆变器拓扑、选择开关器件以及设计控制策略。
逆变器拓扑的选择可以参考现有的研究成果和文献,如全桥拓扑、H桥拓扑等。
开关器件的选择需要考虑功率损耗、效率、成本等因素。
对于控制策略的设计,可以采用比例积分控制器,根据输入输出电流电压进行调节和控制。
设计完成后,我们可以使用电路仿真软件进行三电平光伏并网逆变器的仿真。
常用的电路仿真软件包括PSIM、Simulink等。
通过仿真,可以验证逆变器的性能以及输出波形是否满足要求。
在仿真过程中,需要输入逆变器的直流电源电压、负载的电阻值以及逆变器的控制信号等参数,以获取准确的仿真结果。
总结起来,三电平光伏并网逆变器的设计和仿真需要进行逆变器拓扑选择、开关器件选择以及控制策略设计等关键步骤,并可以通过电路仿真
软件进行验证。
这种逆变器在光伏发电系统中具有重要的应用价值,可以提高发电系统的效率和稳定性。
光伏发电逆变器结构设计的优化策略

光伏发电逆变器结构设计的优化策略
光伏发电逆变器是太阳能电池板发电系统中的核心设备,主要用于将太阳能电池板发出的直流电转换为交流电,以满足家庭、企业和工业用户的电力需求。
在逆变器的设计过程中,结构设计是至关重要的一步,其优化策略直接影响逆变器的性能和使用寿命。
目前,光伏发电逆变器结构设计的优化策略主要包括以下几个方面:
1. 整体结构优化:采用优化的机械结构,包括散热器、机箱、电路板等,以提高整机的散热能力和抗干扰能力,同时减小设备的体积和重量,降低运输和安装成本。
2. 模块化设计:将逆变器的各个功能模块独立设计,实现模块化组装,以增强系统的可维护性和可升级性,同时提高系统的运行稳定性和安全性。
3. 电路设计优化:通过优化电路板的布局、元件的选择和参数的调整,实现更高的转换效率和更低的能耗,同时保证电路的稳定性和可靠性。
4. 控制算法优化:采用先进的控制算法,如MPPT、PID等,在保证逆变器输出稳定的同时最大化太阳能电池板的发电效率,进一步提高整个光伏发电系统的性能。
总之,光伏发电逆变器结构设计的优化策略应该综合考虑各个方面的因素,以实现更高的效率、更低的成本和更长的使用寿命。
- 1 -。
光伏发电系统中逆变器方案的设计

光伏发电系统中逆变器方案的设计随着可再生能源的不断发展和应用,光伏发电系统已成为一种重要的清洁能源发电方式。
而光伏发电系统中的逆变器作为转换直流电能为交流电能的关键设备,在系统设计中起着至关重要的作用。
本文将从光伏发电系统逆变器的基本原理、设计要求和技术方案等几个方面展开,探讨光伏发电系统中逆变器方案的设计。
一、光伏发电系统逆变器的基本原理光伏发电系统中的太阳能电池板将太阳能转换成直流电能,而交流电力系统则需求交流电能,因此就须要借助逆变器将光伏发电的直流电能转化为电能输出。
逆变器的作用是通过改变电压、频率和相位,将直流电转换为交流电。
逆变器的工作原理主要包括开关元件的控制和功率电子器件的转换过程。
二、光伏发电系统逆变器的设计要求1.效率高:光伏发电系统逆变器的效率对系统的发电量和经济性影响较大,因此要求逆变器的效率尽可能高。
2.稳定性好:光伏发电系统在日常运行中会受到日照、温度等环境因素的影响,因此逆变器需要具有良好的稳定性,能够适应不同的工作环境。
3.可靠性高:作为光伏发电系统的核心部件之一,逆变器的可靠性对系统的发电效率和稳定性至关重要。
4.通信便捷:逆变器需要实时监测光伏发电系统的工作状态、数据参数等信息,并与其他设备进行通信,以实现对系统的有效监控和管理。
三、光伏发电系统中逆变器的技术方案1. 多级逆变器技术方案:多级逆变器是一种将直流电能分阶段进行逆变的技术方案,能够有效降低开关器件的损耗,提高系统的整体效率。
在光伏发电系统中采用多级逆变器技术方案,可以有效提高系统的功率密度和可靠性,从而实现更好的发电效果。
2. 智能控制技术方案:智能控制技术方案是指通过先进的控制算法和通信技术,实现对逆变器的精准控制和实时监测。
通过智能控制技术,可以对光伏发电系统的运行状态进行精准调节,提高系统的稳定性和效率。
3. 模块化设计技术方案:模块化设计技术方案是指将逆变器设计为多个功能模块组成的结构,可以根据实际需要进行灵活组合和扩展。
光伏发电并网逆变器设计及其控制实现

光伏发电并网逆变器设计及其控制实现光伏发电并网逆变器是一种将光伏电池组发出的直流电能转换为交流电能并与电网连接的装置。
它在光伏发电系统中起着重要的作用,能够将光伏电池组产生的直流电能转化为交流电能供电网使用,从而实现将太阳能转化为电能的目的。
本文将对光伏发电并网逆变器的设计原理及其控制实现进行详细介绍。
光伏发电并网逆变器的设计原理是将光伏电池组发出的直流电能经过逆变器的转换,变为符合电网要求的交流电能。
其主要功能包括功率调节、电网电压频率跟踪以及电网短路保护等。
在设计过程中,需要考虑逆变器的效率、可靠性以及控制精度等因素。
光伏发电并网逆变器的组成主要包括直流侧和交流侧两个部分。
直流侧主要由光伏电池组、直流输入滤波电路和直流侧逆变器构成。
交流侧主要由交流输出滤波电路、逆变桥和输出变压器构成。
在设计中,需要对每个部分进行设计和参数选择,以保证逆变器的正常运行。
光伏发电并网逆变器的控制实现主要包括两个方面:MPPT(Maximum Power Point Tracking,最大功率点跟踪)控制和电网逆变控制。
MPPT控制是为了保证光伏电池组能够始终工作在最大功率点上,通过调整光伏电池组的工作电压和电流,以获得最大功率输出。
电网逆变控制是为了保证逆变器能够将直流电能转换为符合电网要求的交流电能,包括电压和频率的跟踪控制。
在MPPT控制方面,一般采用模拟控制和数字控制相结合的方式。
模拟控制主要通过比较光伏电池组输出电压和电流与最大功率点的关系,通过调整控制信号来实现。
数字控制是采用数字信号处理器(DSP)等处理器实现的,能够实时采集光伏电池组的输出电压和电流,并进行计算和调整。
在电网逆变控制方面,主要包括电网电压跟踪和频率控制两个方面。
电网电压跟踪是通过测量电网电压和逆变器输出电压的差值,并通过调整逆变器的控制信号来实现电网电压的稳定。
频率控制是通过测量电网频率和逆变器输出频率的差值,并通过调整逆变器的控制信号来实现电网频率的跟踪。
小型离网光伏发电系统逆变器的研制

小型离网光伏发电系统逆变器的研制1. 本文概述随着全球对可再生能源的需求不断增长,光伏发电系统作为其中一种重要的能源形式,正受到越来越多的关注。
在众多光伏发电系统中,小型离网光伏发电系统因其安装灵活、维护简便等优点,被广泛应用于偏远地区、户外活动以及紧急电源供应等领域。
小型离网光伏发电系统的核心组件——逆变器,其性能的优劣直接影响到整个系统的效率和稳定性。
本文旨在研制一种高效、稳定的小型离网光伏发电系统逆变器。
通过对现有逆变器技术的深入分析,明确了当前逆变器在小型离网光伏系统中存在的问题和挑战。
接着,本文提出了一种新型的逆变器设计方案,该方案在提升转换效率、降低能耗、增强系统稳定性等方面具有显著优势。
本文的主要内容包括:逆变器的工作原理和关键技术研究、新型逆变器的设计与实现、以及逆变器的性能测试与分析。
通过这些研究,本文不仅为小型离网光伏发电系统提供了一种高效的逆变器解决方案,而且也为逆变器技术的进一步发展提供了新的思路和方向。
2. 文献综述小型离网光伏发电系统作为可再生能源利用的重要组成部分,在全球范围内得到了广泛的关注和发展。
逆变器作为该系统中的核心组件,负责将光伏板产生的直流电转换为交流电,以供家庭或小型社区使用。
随着技术的进步,逆变器的设计和效率成为研究的热点。
过去几年,研究人员在逆变器效率提升方面取得了显著进展。
高效能的半导体材料如硅碳(SiC)和氮化镓(GaN)的使用,显著降低了逆变器的能量损耗。
新型拓扑结构和控制策略也被提出以优化逆变器性能。
离网光伏系统通常安装在偏远地区,因此逆变器的长期稳定运行至关重要。
文献中对于提高逆变器在高温、潮湿等恶劣环境下的可靠性进行了广泛研究,包括热管理技术、故障诊断和预测维护等方面。
随着智能电网的发展,逆变器在电网交互方面的作用日益重要。
研究集中在逆变器的电网支持功能,如频率和电压调节,以及与储能系统的集成。
尽管在逆变器技术上取得了进步,但仍存在一些挑战。
分布式光伏发电系统的并网型逆变器设计与控制

分布式光伏发电系统的并网型逆变器设计与控制摘要:随着可再生能源的快速发展,分布式光伏发电系统成为了一个受到广泛关注的领域。
在分布式光伏发电系统中,逆变器的设计与控制是关键的环节之一。
本文将介绍分布式光伏发电系统的基本原理,然后重点讨论并网型逆变器的设计与控制方法。
同时,将探讨当前存在的一些问题,并提出可能的解决方案。
1. 引言分布式光伏发电系统是一种将太阳能转化为电能的系统。
该系统将太阳能电池板转化的直流电能通过逆变器转化为交流电能,并输入到电网中。
逆变器是实现这一转换的核心设备之一。
并网型逆变器允许光伏发电系统与电网之间的双向电能流动。
当光伏发电系统产生的电能超过负载需求时,多余的电能将被输送到电网中,从而实现电能的共享与利用。
然而,为了确保安全稳定地将电能输送到电网中,逆变器的设计与控制变得尤为重要。
2. 分布式光伏发电系统的基本原理分布式光伏发电系统主要由太阳能电池板、逆变器、电网和负载组成。
太阳能电池板将太阳能转化为直流电能,逆变器将直流电能转化为交流电能,然后输入到电网中,最后供给负载使用。
光伏发电系统的工作过程如下:1) 太阳能电池板将太阳光转化为直流电能。
2) 逆变器将直流电能转化为交流电能。
3) 交流电能通过变压器升压之后,输入到电网中。
4) 电网将电能供给给负载使用。
3. 并网型逆变器的设计由于并网型逆变器需要将直流电能转化为交流电能并输入到电网中,因此其设计需要满足以下要求:1) 高效性:逆变器的转换效率应尽可能高,以最大程度地减少能源损耗。
2) 可靠性:逆变器需要具备稳定、可靠的运行能力,以确保电能的安全输送。
3) 控制性能:逆变器需要具备灵活、精确的控制能力,以应对电能输出的要求。
4. 并网型逆变器的控制并网型逆变器的控制包括全局控制和局部控制两个方面。
全局控制主要是通过监测电网的运行状态和负载需求来控制逆变器的电能输出,以实现对电网功率的调节。
局部控制主要是通过反馈控制回路来调整逆变器的输出特性,以保持稳定的输出电压和频率。
光伏并网发电系统中逆变器的设计与控制方法

相关研究综述
太阳能光伏并网发电系统是将太阳能转化为电能并直接接入电网的系统。近年 来,针对该系统的研究主要集中在提高效率、扩大规模、降低成本以及改善并 网控制策略等方面。已有的研究成果包括对光伏电池模型的改进、并网逆变器 的设计以及系统优化配置等。实验研究方面,研究者们通过构建不同规模的实 验系统对各种控制策略和优化方法进行了验证和比较。
逆变器的基本原理
逆变器是一种将直流电转换为交流电的装置,其在光伏并网发电系统中起着重 要的作用。当太阳能电池板产生直流电时,逆变器将其转换为交流电,以便与 电网连接并进行电力交换。逆变器的主要组成部分包括整流器、逆变桥和滤波 器,其工作原理是基于半导体开关器件的开关动作来实现电流的逆变。
逆变器的设计方法
光伏并网发电系统中逆变器的设计与控 制方法
目录
01 引言
03 逆变器的设计方法
02 逆变器的基本原理 04 逆变器的控制方法
目录
05 逆变器的应用场景
07 参考内容
06 结论
引言
随着全球能源危机的加剧和环境问题的日益突出,光伏并网发电系统作为一种 清洁、可再生的能源形式,越来越受到人们的。逆变器作为光伏并网发电系统 的核心部件之一,其设计与控制方法对整个系统的性能和稳定性具有至关重要 的影响。本次演示将详细介绍逆变器的设计与控制方法在光伏并网发电系统中 的应用。
3、采用滤波技术:滤波技术是解决电磁兼容问题的重要手段之一。通过在系 统中加入滤波器,可以有效地滤除电网中的谐波和电磁噪声,提高系统的电磁 兼容性。
三、方法与技术
本次演示采用仿真和实验相结合的方法对光伏并网发电系统的电磁兼容性进行 研究。首先,利用仿真软件对不同因素引起的电磁干扰进行模拟分析,探讨其 传播途径和危害程度。同时,通过实验测试不同措施对提高系统电磁兼容性的 效果,为优化系统设计提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光伏发电系统逆变器的设计
摘要:本文根据光伏电池阵列和逆变电路的特点,研究比较了常见的光伏逆变器拓扑结构,本文针对光伏发电系统,设计了一种并网逆变器。
选择由前级DC-DC电路和后级DC-AC电路组成的双极式系统;比较分析了各种DC-DC电路最终选择了Boost电路作为升压电路,后级的DC-AC电路采用了基本全桥逆变器。
在设计光伏并网逆变器的基础上,利用Matlab对系统的各个控制环节以及主电路进行了仿真,最终验证了控制的正确定性。
【关键词】Boost电路电流跟踪逆变器
1 逆变器或电源控制器(PCU)在并网太阳能发电系统中起着非常重要的作用
PCU的主要作用就是将发电系统中产生的直流电转换为可以入网的标准交流电,当供电部门中止供电的时候,PCU 会自动切断电源。
当太阳能光伏发电系统输出的电能超过系统负载实际所需的电量时,将多余的电量传输给公共电网。
在阴雨天或者夜晚,太阳能光伏发电系统输出的电能小于系统负荷实际所需的电能,可通过公共电网补充系统负载所需要的电能。
同时也要保证在公共电网故障或者维修的时候,太阳能光伏发电系统将不会把电能亏送到公共电网上,以使
系统运行稳定可靠。
如图1所示。
2 Boost电路工作原理
为了满足并网的要求,升压电路需要将光伏阵列的输出电压上升为比电网峰值更高的直流电压。
图2为Boost的电路结构。
其中US为输入电压,VT为开关管,C为储能电容,L为升压电感。
VT为快速开关管,使用PWM控制。
根据升压电感电流的连续与否,Boost有两种工作方式,连续和断续状态。
为了保证电能质量,光伏并网系统中要求Boost必须工作在连续状态,这样才能保证输出电流不为脉冲状态。
Boost电路有两个工作过程,储能和放电。
我们选择Boost变换器为二级非隔离型逆变器的DC-DC环节变换器。
选择全桥逆变器为DC-AC电路。
其主电路结构如下:采用的光伏并网系统主电路如图3所示,并网逆变器选用两级式非隔离型。
本系统中的前级DC/DC 升压电路选择Boost电路,后级为全桥逆变电路。
我们选择开关频率为fs=12.8kHz,所以逆变器输出电压的实际载频率为2fs=25.6kHz。
我们采用DSP作为实现控制的硬件结构,使用TMS320LF2407DSP芯片作为本文控制系统核心。
3 基于DSP的并网控制系统
并网系统的整体硬件结构框图如图4所示。
逆变器数字并网控制系统以TMS320LF2407芯片为控制
核心,充分利用了DSP的硬件资源,如全比较单元PWM1/2,PWM3/4,捕获口CAP2,A/D采样,以及外部中断XINT1等。
LF2407芯片采集外部电压、电流信号并进行A/D转换,通过DSP内部的控制算法计算PWM脉宽,控制逆变器桥臂开关开通或关断,锁定电网电压的频率和相位,控制输出电流单位功率因数并网。
4 全桥逆变器控制方式和PI整定
我们采用三角波比较的方式对逆变器进行控制,并利用PI整定作为放大器。
PI的参数决定了三角波控制方式的跟踪特性,三角波载波的频率越高,输出波形谐波更易滤除。
加入PI整定环节后的三角波控制方式如图5。
本文将光伏系统设置为二阶系统,其目的是提高光伏发电系统的动态性能,提高响应速度。
并利用最佳的二阶系统工程方式对PI参数进行整定
PI 参数整定后光伏发电系统开环传递函数为:
加入PI 调节能大幅度提升动态性性能,系统响应速度加快。
其中Tpwm=78us
我们选择了单极性调制作为逆变器的调制方式,那么必须获得逆变器的输出参考电流才能对系统进行调制,逆变器的参考电流由电网电压和系统的输出功率等条件获得。
参考电流的获取过程原理如图6。
Upv光伏发电系统Boost输出直流电压,Ipv光伏发电系
统Boost输出直流电流,Ugird是电网电压的有效值,Ppv是光伏器件的输出功率。
其中Ppv=Upv×Ipv,在不考虑电路损耗的情况下IERF=Ppv/Ugird。
光伏电池的最大功率输出保持
在3200W 左右,与电网电压平均幅值220v 相除,得到逆变器输出电流的幅值,幅值乘以正弦,即得到给定电流。
5 仿真结果
我们利用Matlab对控制方式和电路进行了仿真。
电流采样仿真如图7所示。
电流采样的结果如图8。
其中上幅为采样电流;下幅为
d-q转换后的dv和电压波形对比。
逆变器仿真
逆变器的仿真结构如图9。
逆变器仿真结果如10所示。
图10中第一层示出采样电流波形,第二层示出逆变器
的电流,第三幅为电网电压波形。
由图可以看出,逆变转变后的电流波形与电网电压同相。
6 结论
本文针对光伏发电系统设计了一种并网逆变器,重点选择和研究了主电路和控制方法,选择了主电路的拓扑结构,设计了前级的Boost和后级的全桥逆变电路,分析了主电路
各个部分的工作原理,并对主电路各个器件参数进行了计算。
参考文献
[1]王爱超.光伏发电系统中单相并网逆变器的研究[D].曲
阜:曲阜师范大学,2012.96-105.
[2]日本光发电协会编,刘树民,宏伟译.太阳能光伏发电系统的设计与施工[M].北京:科学出版社,2006:58-72.
[3]赵争鸣,陈剑,孙晓瑛.太阳能光伏发电最大功率点跟踪系统[M].北京:电子工业出版社,2011:389-400.
作者简介
赵若静(1985-),女,山西省临汾市人。
现为山西农业大学信息学院教师。
研究方向为信号处理。
作者单位
山西农业大学信息学院山西省太谷县市030800。