人教版九年级数学下册第一次月考试卷

合集下载

人教版九年级下册数学第一次月考试卷及答案

人教版九年级下册数学第一次月考试卷及答案

人教版九年级下册数学第一次月考试卷及答案九年级第二学期数学第一次月考试卷时间:120分钟。

总分:120分。

姓名:一、选择题(本大题共8小题,每小题3分,共24分)1.绝对值是6的有理数是()A。

±6.B。

6.C。

-6.D。

162.计算a^2a^4的结果是()A。

a^5.B。

a^6.C。

2a^6.D。

a^83.半径为6的圆的内接正六边形的边长是()A。

2.B。

4.C。

6.D。

84.如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为()A。

2π。

B。

3π。

C。

2/3π。

D。

1+2/3π5.某校共有学生600名,学生上学的方式有乘车、骑车、步行三种.如图是该校学生乘车、骑车、步行上学人数的扇形统计图。

乘车的人数是()A。

180.B。

270.C。

150.D。

2006.函数y=(x-2)/x的自变量X的取值范围是()A。

x>2.B。

x<2.C。

x≥2.D。

x≤27.如右图,是一个下底小而上口大的圆台形,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,内对应的水高度为h,则h与t的函数图象只可能是()A。

一次函数。

B。

二次函数。

C。

三次函数。

D。

反比例函数8.如图所示的正方体的展开图是()二、填空题(本大题共7小题,每小题3分,共21分.)9.若分式(2x)/(x+2)的值为零,则x=_____。

10.已知反比例函数y=k/x的图象经过点(3,-4),则这个函数的解析式为y=______。

11.已知两圆内切,圆心距d=2,一个圆的半径r=3,那么另一个圆的半径为______。

(用科学记数法表示20 的结果是______(保留两位有效数字))12.二次函数y=x^2的图象向右平移1个单位,再向下平移1个单位,所得图象的与X轴的交点坐标是:(______。

0)。

13.如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是______。

人教版九年级(下)第一次月考数学试卷

人教版九年级(下)第一次月考数学试卷

九年级(下)第一次月考数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡内1.(4分)2017的相反数是()A.﹣2017B.2017C.12017D.−120172.(4分)下列汽车标志的图形中是中心对称图形的是()A.B.C.D.3.(4分)下列运算正确的是()A.6a﹣5a=1B.a2•a3=a5C.(a2)3=a5D.a6÷a3=a2 4.(4分)下列调查中,最适合采用普查方式的是()A.奥运会上对参赛运动员进行尿样检查B.调查市面上一次性筷子的卫生情况C.对电视剧“蓝色大海的传说”收视率的调查D.调查重庆市初三年级学生每天所完成家庭作业的时间5.(4分)如图,直线m∥n,若∠1=30°,∠2=58°,则∠BAC的度数为()A.12°B.28°C.29°D.30°6.(4分)若x=﹣3,y=1,则2x﹣y+1的值为()A.6B.4C.﹣3D.﹣67.(4分)函数y=√x−1x−2中自变量x的取值范围是()A.x≥1B.x>2C.x≥1且x≠2D.x≠28.(4分)若△ABC ∽△DEF ,且面积比为1:9,则△ABC 与△DEF 的周长比为( )A .1:3B .1:9C .3:1D .1:819.(4分)某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,…,按此规律,则第⑦个图形中的鲜花盆数为( )A .37B .38C .50D .5110.(4分)在矩形ABCD 中,AB =√2,BC =2,以A 为圆心,AD 为半径画弧交线段BC于E ,连接DE ,则阴影部分的面积为( )A .π2−√2B .π2−√22C .π−√2D .π−√2211.(4分)如图,在河流两边有甲、乙两座山,现在从甲山A 处的位置向乙山B 处拉电线,已知甲山AC 的坡比为15:8.乙山BD 的坡比为4:3,甲山上A 点到河边c 的距离AC =340米,乙山上B 点到河边D 的距离BD =900米,从B 处看A 处的俯角为26°,则河CD 的宽度是(参考值:sin26°=0.4383,tan26°=0.4788,co 26°=0.8988)结果精确到0.01)( )A .177.19米B .188.85米C .192.0米D .258.25米12.(4分)从﹣2,﹣1,0,1,2,3这六个数中,随机抽取一个数记为a ,若数a 使关于x的不等式组{2(x +2)≤4+3x x+32<a+12−x 无解,且使关于x 的分式方程ax−1x−1−1=21−x 有整数解,那么这6个数中所有满足条件的a的值之和是()A.﹣1B.0C.1D.2二.填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卡内13.(4分)今年春节主城哪里最火,恐怕要数沙坪坝的磁器口古镇.据媒体报道春节期间大约有328000人游过磁器口,将数328000用科学记数法表示为.14.(4分)(﹣1)2017−√6=.15.(4分)如图,⊙O是△ABC的外接圆,⊙O的直径BD=8,∠A=60°,则BC的长度为.16.(4分)将一枚质地均匀的骰子,骰子的数字记为k,则一次函数y=(k﹣3)x+5﹣k的图象不经过第四象限的概率是.17.(4分)小明的爸爸和小明旱晨同时从家出发,以各自的速度匀速步行上班和上学,爸爸前往位于家正东方的公司,小明前往位于家正西方的学校,爸爸到达公司后发现小明的数学作业在自己的公文包里,于是立即跑步去小明,终于在途中追上了小明把作业给了他,然后再以先前的速度步行再回公司(途中给作业的时间忽略不计).结果爸爸回到公司的时间比小明到达学校的时间多用了8分钟.如图是两人之间的距离y(米)与他们从家出发的时间x(分钟)的函数关系图,则小明家与学校相距米.18.(4分)在正方形ABCD中,AD=2,点E是线段AB的中点,连接CE,将△BCE沿CE翻折,使B点落在点F处,对角线BD与CF、CE分别相交于点M、N,则MN的长为三.解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤19.(8分)已知:如图,点A、B、C、D在同一直线上,点E、F在直线AD的同侧,AB =CD,CE=DF,CE∥DF.求证:AE=BF.20.(8分)某学校初三进入中考复习阶段以来,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:A代表睡眠时间4小时,B代表睡眠时间5小时,C代表睡眠时间6小时,D代表睡眠时间7小时,E代表睡眠时间8小时及以上,其中扇形统计图中“E”的圆心角为72°,请你结合统计图所给信息解答下列问题:(1)共抽取了名同学进行调查,同学们的睡眠时间的中位数是小时左右,井将条形统计图补充完整;(2)如果把睡眠时间低于7小时称为严重睡眠不足,请估算全校600个初三同学中睡眠严重不足的人数.四.解答题,(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤)21.(10分)计算(1)a(a﹣3b)﹣(a+b)2+b2(2)(2x−1x+1−x+1)÷x−2x2+2x+122.(10分)如图:直线AB与双曲线y=kx点交于A、B两点,直线AB与x、y坐标轴分别交于C、D两点,连接OA,若OA=2√13,tan∠AOC=23,B(3,m)(1)求一次函数与反比例函数解析式;(2)若点F是点D关于x轴的对称点,求△ABF的面积.23.(10分)某文具店第一次用1600元购进了一批新型文具试销,很快卖完,于是第二次又用5000元购进了这款文具,但第二次的进价是第一次进价的1.25倍,购进数量比第一次多300件.(1)求该文具店第一次购进这款文具的进价;(2)已知该文具店将第一次购进的这款文具按50%的利润率定价销售完后,第二次购进的这款文具售价在原来售价的基础上增加5a%,销售了第二次购进的这款文具的12a%,剩下的这款文具9折处理,销售一空,结果该文具店前后两次销售这款文具共获利3000元,求a的值.24.(10分)将一个正整数x的首位数字与末位数字先立方再求和得到一个新数(若x<10,则直接将x立方得到新数),定义为M(x)运算.例如:M(2)=23=8,M(31)=33+13=28,M(102)=13+23=9,规定对某个正整数x进行第一次M(x)运算记作M1(x),第二次M(x)运算记作M2(x),……,第n次M(x)运算记作M n(x),例如:M1(2)=23=8,M2(2)=83=512,M3(2)=53+23=133.(1)求M2(3)和M2017(3);(2)若M5n(3)=520,求正整数n的最小值.25.(10分)在正方形ABCD中,E对角线AC上一点,连接DE.(1)如图1,若E为对角线AC中点,过点C、D分别作AC、DE的垂线相交于点F,连接AF,若AF=10,求正方形ABCD的面积;(2)如图2,把△ADE绕点D顺时针旋转90°得到△CDF,连接AF,取AF的中点为M,连接DM,求证:4DM2+AE2=2DF2.五.解答:(本大1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤26.(12分)如图1,抛物线y=﹣x2﹣2x+3与x轴从左到右交于A、B两点,与y轴交于点C,顶点为D(1)求直线AC的解析式与点D的坐标;(2)在直线AC上方的抛物线上有一点E,作EF∥x轴,与抛物线交于点F,作EM⊥x 轴于M,作FN⊥x轴于N,长度为2√2的线段PQ在直线AC上运动(点P在点Q右侧),当四边形EMNF的周长取最大值求四边形DPQE的周长的最小值及对应的点Q的坐标;(3)如图2,平移抛物线,使抛物线的顶点D在直线AD上移动,点D平移后的对应点为D′,点A平移后的对应点为A′,△A′D′C是否能为直角三角形?若能,请求出对应的线段DC的长;若不能,请说明理由.九年级(下)第一次月考数学试卷参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡内1.A ; 2.D ; 3.B ; 4.A ; 5.B ; 6.D ; 7.C ; 8.A ; 9.D ; 10.A ;11.A ; 12.D ;二.填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卡内 13.3.28×105; 14.﹣1−√6; 15.4√3; 16.13; 17.1800; 18.10√221; 三.解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤19.证明:∵AB =CD ,∴AB +BC =CD +BC ,∴AC =BD ,∵CE ∥DF ,∴∠ECA =∠FDB ,在△ECA 和△FDB 中,{CE =DF ∠ECA =∠FDB AC =BD,∴△ECA ≌△FDB (SAS ),∴AE =BF .20.20; 6;四.解答题,(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤)21.解:(1)原式=a 2﹣3ab ﹣a 2﹣2ab ﹣b 2+b 2=﹣5ab(2)原式=2x−1−x 2+1x+1⋅(x+1)2x−2 =x(2−x)1⋅x+1x−2=﹣x(x+1)=﹣x2﹣x.22.(1)一次函数的关系式为y=−43x﹣4,反比例函数解析式为y=−24x;(2)△ABF的面积为3623.(1)8;(2)524.217;2;25.40;五.解答:(本大1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤26.(1)点A、B、C的坐标分别为:(﹣3,0)、(1,0)、(0,3);(2)点Q(−32,32)(3)CD为3√2或3或√5。

〖人教版〗九年级数学下册第一次月考数学试卷1

〖人教版〗九年级数学下册第一次月考数学试卷1

〖人教版〗九年级数学下册第一次月考数学试卷创作人:百里灵明创作日期:2021.04.01审核人:北堂正中创作单位:北京市智语学校一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卡相应位置上).1.﹣的倒数是()A.B.2 C.﹣2 D.﹣2.下列运算正确的是()A.x2+x3=x5B.x4•x2=x6C.x6÷x2=x3D.(x2)3=x83.已知∠a=32°,则∠a的补角为()A.58° B.68°C.148°D.168°4.下列各数:(两个3之间0的个数依次增加1个),其中无理数的个数有()A.1个B.2个C.3个D.4个5.一个正方体的平面展开图如图所示,将它折成正方体后,“主”字的对面的字是()A.富B.强C.自D.由6.在直角坐标系中,直线y=2x﹣3关于x轴对称的直线是()A.y=2x+3 B.y=﹣2x+3 C.y=﹣2x﹣3 D.y=﹣3x+27.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>﹣D.m<﹣8.已知实数m,n满足m﹣n2=2,则代数式m2+2n2+4m﹣3的最小值等于()A.9 B.6 C.﹣8 D.﹣16二、填空题(本大题共有10题,每小题3分,共30分,不需写出过程,请将答案直接写在答题卡相应位置上).9.在函数y=中,自变量x的取值范围是.10.分解因式:a3﹣9a=.11.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为.12.一圆锥底面圆的周长为5cm,母线长为4cm,则其侧面积为.13.已知x2﹣5x=6,则10x﹣2x2+5=.14.在圆内接四边形ABCD中,若∠ABC=75°,则∠ADC=.15.如图,在△ABC中,D、E分别为AB、AC的中点,连接DE,若S△ADE=2,则四边形BDEC的面积为.16.已知函数y=mx2﹣2x+1的图象与坐标轴共有两个公共点,则m=.17.已知关于x的方程的解是非负数,则m的取值范围为.18.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ 的面积是.三、解答题(本大题共10小题,共96分.请在答案卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).19.(1)计算:(2)解方程组:.20.解不等式组.并把解集在数轴上表示出来..21.已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.22.在一个不透明的纸箱里装有3个标号为1,2,﹣3的小球,它们的材质、形状、大小完全相同,小红从纸箱里随机取出一个小球,记下数字为x,小刚从剩下的2个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点(x,y)在函数y=﹣图象上的概率.23.某市初级为了了解中考体育科目的训练情况,从本校九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C 级:及格;D级:不及格),并将测试结果绘成如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽测的学生人数是.(2)图1中A级所在扇形的圆心角为.并把图2中条形统计图补充完整.(3)该校九年级共有学生1500人,如果全部参加这次中考体育科目测试,请估计不及格的人数为.(4)请你根据测试成绩提一条合理化的建议.24.某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:≈1.41,≈1.73)25.已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.(1)求证:FD是⊙O的切线;(2)设OC与BE相交于点G,若OG=2,求⊙O半径的长;(3)在(2)的条件下,当OE=3时,求图中阴影部分的面积.26.某商场经营某种品牌的童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,商场销售该品牌童装获得的利润为4000元?(3)若童装厂规定该品牌童装销售单价不低于76元,则商场销售该品牌童装获得的最大利润是多少?27.某数学活动小组在一次活动中,对一个数学问题作如下探究:问题发现:如图1,在等边三角形ABC中,点M是边BC上任意一点,连接AM,以AM 为边作等边三角形AMN,连接CN,证明:BM=CN.变式探究:如图2,在等腰三角形ABC中,BA=BC,∠ABC=∠α,点M为边BC上任意一点,以AM为腰作等腰三角形AMN,MA=MN,使∠AMN=∠ABC,连接CN,请求出的值.(用含α的式子表示出来)解决问题:如图3,在正方形ADBC中,点M为边BC上一点,以AM为边作正方形作AMEF,N为正方形AMEF的中心,连接CN,若正方形AMEF的边长为,CN=,请你求正方形ADBC的边长.28.如图,抛物线y=x2+bx+c与x轴交于点A(﹣2,0),交y轴于点B(0,).直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线y=x2+bx+c与直线y=kx的解析式;(2)设点P是直线AD下方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m与x的函数关系式,并求出m的最大值.参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卡相应位置上).1.﹣的倒数是()A.B.2 C.﹣2 D.﹣【考点】倒数.【分析】根据倒数:乘积是1的两数互为倒数可得答案.【解答】解:﹣的倒数是﹣2,故选:C.2.下列运算正确的是()A.x2+x3=x5B.x4•x2=x6C.x6÷x2=x3D.(x2)3=x8【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x2与x3不是同类项,不能合并,故本选项错误;B、根据同底数幂的乘法,底数不变指数相加得,x4•x2=x6,故本选项正确;C、根据同底数幂的除法,底数不变指数相减得,x6÷x2=x4,故本选项错误;D、幂的乘方,底数不变指数相乘,(x2)3=x6,故本选项错误.故选B.3.已知∠a=32°,则∠a的补角为()A.58° B.68°C.148°D.168°【考点】余角和补角.【分析】根据互为补角的和等于180°列式计算即可得解.【解答】解:∵∠a=32°,∴∠a的补角为180°﹣32°=148°.故选C.4.下列各数:(两个3之间0的个数依次增加1个),其中无理数的个数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的定义,无理数就是无限不循环小数,根据定义即可作出判断.【解答】解:无理数有:,0.303003…共2个.故选B.5.一个正方体的平面展开图如图所示,将它折成正方体后,“主”字的对面的字是()A.富B.强C.自D.由【考点】专题:正方体相对两个面上的文字.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“主”字相对的面上的汉字是“强”.故选:B.6.在直角坐标系中,直线y=2x﹣3关于x轴对称的直线是()A.y=2x+3 B.y=﹣2x+3 C.y=﹣2x﹣3 D.y=﹣3x+2【考点】一次函数图象与几何变换.【分析】根据关于x轴对称的点的特点即可求解.【解答】解:∵在直角坐标系中,点(x,y)关于x轴对称的点的坐标为(x,﹣y),∴直线y=2x﹣3关于x轴对称的直线是﹣y=2x﹣3,即y=﹣2x+3.故选B.7.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>﹣D.m<﹣【考点】反比例函数图象上点的坐标特征.【分析】将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=,求出 y1与y2的表达式,再根据 y1>y2则列不等式即可解答.【解答】解:将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=得,y1=﹣2m﹣3,y2=,∵y1>y2,∴﹣2m﹣3>,解得m<﹣,故选:D.8.已知实数m,n满足m﹣n2=2,则代数式m2+2n2+4m﹣3的最小值等于()A.9 B.6 C.﹣8 D.﹣16【考点】配方法的应用;非负数的性质:偶次方.【分析】把m﹣n2=2变形为n2=m﹣2,代入所求式子,根据配方法进行变形,利用偶次方的非负性解答即可.【解答】解:∵m﹣n2=2,∴n2=m﹣2≥0,m≥2,∴m2+2n2+4m﹣3=m2+2m﹣4+4m﹣3=m2+6m+9﹣16=(m+3)2﹣16,则代数式m2+2n2+4m﹣3的最小值等于(2+3)2﹣16=9.故选:A.二、填空题(本大题共有10题,每小题3分,共30分,不需写出过程,请将答案直接写在答题卡相应位置上).9.在函数y=中,自变量x的取值范围是x≥﹣3.【考点】函数自变量的取值范围.【分析】因为二次根式的被开方数要为非负数,即x+3≥0,解此不等式即可.【解答】解:根据题意得:x+3≥0,解得:x≥﹣3.10.分解因式:a3﹣9a=a(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【分析】本题应先提出公因式a,再运用平方差公式分解.【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).11.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为 6.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】根据科学记数法和负整数指数的意义求解.【解答】解:0.0000065=6.5×10﹣6.故答案为6.5×10﹣6.12.一圆锥底面圆的周长为5cm,母线长为4cm,则其侧面积为10cm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:圆锥的侧面积=•5•4=10cm2.故答案为10cm2.13.已知x2﹣5x=6,则10x﹣2x2+5=﹣7.【考点】代数式求值.【分析】首先将所求代数式化为(x2﹣5x)的形式,然后将(x2﹣5x)的值整体代入求解即可.【解答】解:10x﹣2x2+5=﹣2(x2﹣5x)+5=﹣2×6+5=﹣7;故答案为:﹣7.14.在圆内接四边形ABCD中,若∠ABC=75°,则∠ADC=105°.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质得出∠ABC+∠ADC=180°,代入求出即可.【解答】解:∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=75°,∴∠ADC=105°,故答案为:105°.15.如图,在△ABC中,D、E分别为AB、AC的中点,连接DE,若S△ADE=2,则四边形BDEC的面积为6.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】依据三角形的中位线定理得出DE∥BC,DE=BC,然后根据三角形面积的比等于相似比的平方即可取得三角形ABC的面积,用三角形ABC的面积减去三角形ADE的面积即可.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴=()2=()2=,∵S△ADE=2,∴S△ABC=4S△ADE=4×2=8.∴S=S△ABC﹣S△ADE=8﹣2=6.四边形DECB故答案为6.16.已知函数y=mx2﹣2x+1的图象与坐标轴共有两个公共点,则m=0或1.【考点】抛物线与x轴的交点;一次函数图象上点的坐标特征.【分析】分别利用一次函数图象的性质以及二次函数与x轴交点的性质得出m的值.【解答】解:当m=0,y=﹣2x+1是一次函数,此图象与坐标轴有两个交点,当m≠0,若函数y=mx2﹣2x+1的图象与坐标轴共有两个公共点,则与x轴必然一个交点,故b2﹣4ac=4﹣4m=0,解得:m=1,故m的值为:0或1.故答案为:0或1.17.已知关于x的方程的解是非负数,则m的取值范围为m≥﹣6且m≠﹣4.【考点】分式方程的解.【分析】根据解分式方程,可得分式方程的解,根据方程的解为非负数,根据方程的解为非负数,可得不等式,根据解不等式,可得答案.【解答】解:解得x=6+m,由关于x的方程的解是非负数,得6+m≥0.解得m≥﹣6.由分式方程的意义,得6+m≠2,解得m≠﹣4,故答案为:m≥﹣6且m≠﹣4.18.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ 的面积是3.【考点】轴对称-最短路线问题;正方形的性质.【分析】根据最短路径的求法,先确定点E关于BC的对称点E′,再确定点A关于DC的对称点A′,连接A′E′即可得出P,Q的位置;再根据相似得出相应的线段长从而可求得四边形AEPQ的面积.【解答】解:如图1所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A ′D=3,BE=BE ′=1,∴AA ′=6,AE ′=4.∵DQ ∥AE ′,D 是AA ′的中点,∴DQ 是△AA ′E ′的中位线,∴DQ=AE ′=2;CQ=DC ﹣CQ=3﹣2=1,∵BP ∥AA ′,∴△BE ′P ∽△AE ′A ′, ∴=,即=,BP=,CP=BC ﹣BP=3﹣=,S 四边形AEPQ =S 正方形ABCD ﹣S △ADQ ﹣S △PCQ ﹣S BEP =9﹣AD •DQ ﹣CQ •CP ﹣BE •BP =9﹣×3×2﹣×1×﹣×1×=, 故答案为:.三、解答题(本大题共10小题,共96分.请在答案卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).19.(1)计算:(2)解方程组:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)方程组利用加减消元法求出解即可.【解答】解:(1)原式=﹣3+1+2×=﹣3+1+2=0;(2),①×2+②×3得:11x=22,即x=2,把x=2代入①得:y=﹣1, 则方程组的解为.20.解不等式组.并把解集在数轴上表示出来..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先解每一个不等式,再求解集的公共部分即可.【解答】解:不等式①去分母,得x ﹣3+6≥2x+2,移项,合并得x≤1,不等式②去括号,得1﹣3x+3<8﹣x,移项,合并得x>﹣2,∴不等式组的解集为:﹣2<x≤1.数轴表示为:21.已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.【考点】平行四边形的性质;全等三角形的判定与性质;菱形的判定.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.【解答】(1)证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.22.在一个不透明的纸箱里装有3个标号为1,2,﹣3的小球,它们的材质、形状、大小完全相同,小红从纸箱里随机取出一个小球,记下数字为x,小刚从剩下的2个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点(x,y)在函数y=﹣图象上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)列出表格或画出树状图,然后即可得到所有的可能情况;(2)根据一次函数图象上点的坐标特征,把x的值代入直线解析式计算求出y的值,即可进行判断,然后再根据概率公式进行计算即可得解.【解答】解:(1)列表如下:x\y 1 2 ﹣31 ﹣﹣(2,1)(﹣3,1)2 (1,2)﹣﹣(﹣3,2)﹣3 (1,﹣3)(2,﹣3)﹣﹣所以,所有可能出现的结果有:(2,1)、(2,﹣3)、(﹣3,2)、(﹣3,1)、(1,2)、(1,﹣3);(2)可能出现的结果共有6个,它们出现的可能性相等,当x=2时,y=﹣6÷2=﹣3,当x=﹣3时,y=﹣6÷(﹣3)=2,当x=1时,y=﹣6÷1=﹣6,所以,满足点(x,y)落在函数y=﹣图象上(记为事件A)的结果有2个,即(﹣3,2)、(﹣3,1),所以P(A)=.23.某市初级为了了解中考体育科目的训练情况,从本校九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C 级:及格;D级:不及格),并将测试结果绘成如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽测的学生人数是40.(2)图1中A级所在扇形的圆心角为54°.并把图2中条形统计图补充完整.(3)该校九年级共有学生1500人,如果全部参加这次中考体育科目测试,请估计不及格的人数为300.(4)请你根据测试成绩提一条合理化的建议.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B级的人数除以B级所占的百分比,可得答案;(2)根据圆周角乘以A及所占的比例,可得扇形的圆心角;根据抽测人数乘以C及所占的比例,可得答案;(3)利用样本估计总体的方法知,全校总人数乘以D级所占的比例,可得答案;(4)根据测试成绩,应加强学生的体育锻炼.【解答】解:(1)本次抽样测试的学生人数是12÷30%=40(人);故答案为:40;(2)图中∠α的度数是360°×=54°,C级的人数为40×35%=14人;故答案为:54°;(3)根据题意得:1500×=300(人).答:不及格300人.故答案为:300;(4)根据测试成绩,应加强学生的体育锻炼.24.某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A 、B 两个探测点探测到C 处有生命迹象.已知A 、B 两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C 的深度.(精确到0.1米,参考数据:≈1.41,≈1.73)【考点】解直角三角形的应用.【分析】过点C 作CD ⊥AB 于点D ,设CD=x ,在Rt △ACD 中表示出AD ,在Rt △BCD 中表示出BD ,再由AB=6米,即可得出关于x 的方程,解出即可.【解答】解:过点C 作CD ⊥AB 于点D ,设CD=x ,在Rt △ACD 中,∠CAD=30°,则AD=CD=x ,在Rt △BCD 中,∠CBD=45°,则BD=CD=x , 由题意得x ﹣x=6,解得:x ═3(+1)≈8.2.答:生命所在点C 的深度为8.2米.25.已知:在⊙O 中,AB 是直径,AC 是弦,OE ⊥AC 于点E ,过点C 作直线FC ,使∠FCA=∠AOE ,交AB 的延长线于点D .(1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G ,若OG=2,求⊙O 半径的长;(3)在(2)的条件下,当OE=3时,求图中阴影部分的面积.【考点】切线的判定;圆周角定理;扇形面积的计算.【分析】(1)要证FD 是⊙O 的切线只要证明∠OCF=90°即可;(2)根据已知证得△OEG ∽△CBG 根据相似比不难求得OC 的长;(3)根据S 阴影=S △OCD ﹣S 扇形OBC 从而求得阴影的面积.【解答】证明:(1)连接OC (如图①),∵OA=OC ,∴∠1=∠A .∵OE ⊥AC ,∴∠A+∠AOE=90°.∴∠1+∠AOE=90°.∵∠FCA=∠AOE ,∴∠1+∠FCA=90°.即∠OCF=90°.∴FD 是⊙O 的切线.(2)连接BC ,(如图②)∵OE ⊥AC ,∴AE=EC (垂径定理).又∵AO=OB ,∴OE ∥BC 且.∴∠OEG=∠GBC (两直线平行,内错角相等),∠EOG=∠GCB (两直线平行,内错角相等),∴△OEG ∽△CBG (AA ). ∴.∵OG=2,∴CG=4.∴OC=OG+GC=2+4=6.即⊙O 半径是6.(3)∵OE=3,由(2)知BC=2OE=6,∵OB=OC=6,∴△OBC 是等边三角形.∴∠COB=60°.∵在Rt △OCD 中,CD=OC •tan60°=6,∴S 阴影=S △OCD ﹣S 扇形OBC ==.26.某商场经营某种品牌的童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件. (1)写出销售量y (件)与销售单价x (元)之间的函数关系式;(2)当销售单价为多少元时,商场销售该品牌童装获得的利润为4000元?(3)若童装厂规定该品牌童装销售单价不低于76元,则商场销售该品牌童装获得的最大利润是多少?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据销售量=原销量﹣因价格下降而增加的销量可列关系式;(2)根据:单件利润×销售量=总利润可列方程,解方程可得;(3)根据:总利润=单件利润×销售量列出函数关系式,配方成二次函数的顶点式,结合自变量取值范围可得函数最值.【解答】解:(1)根据题意,知:y=200+20(80﹣x )=﹣20x+1800;(2)由题意,可列方程:(x ﹣60)(﹣20x+1800)=4000,解得:x=70或x=80,答:当销售单价为70元或80元时,商场销售该品牌童装获得的利润为4000元. (3)设商场销售该品牌童装获得的利润为W ,则W=(x ﹣60)(﹣20x+1800)=﹣20x 2+3000x ﹣10800=﹣20(x ﹣75)2+4500,当x >75时,W 随x 的增大而减小,故当x=76时,W 取得最大值,最大值为4480元,答:商场销售该品牌童装获得的最大利润是4480元.27.某数学活动小组在一次活动中,对一个数学问题作如下探究:问题发现:如图1,在等边三角形ABC 中,点M 是边BC 上任意一点,连接AM ,以AM 为边作等边三角形AMN ,连接CN ,证明:BM=CN .变式探究:如图2,在等腰三角形ABC中,BA=BC,∠ABC=∠α,点M为边BC上任意一点,以AM为腰作等腰三角形AMN,MA=MN,使∠AMN=∠ABC,连接CN,请求出的值.(用含α的式子表示出来)解决问题:如图3,在正方形ADBC中,点M为边BC上一点,以AM为边作正方形作AMEF,N为正方形AMEF的中心,连接CN,若正方形AMEF的边长为,CN=,请你求正方形ADBC的边长.【考点】四边形综合题.【分析】问题发现:根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC﹣∠CAM=∠MAN﹣∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.变式探究:根据△ABC,△AMN为等腰三角形,得到=1且∠ABC=∠AMN,证明△ABC~△AMN,得到,利用等腰三角形的性质BA=BC,得到,,证明△ABM~△ACN,得到,作BD⊥AC,如图2,再由AB=BC,得到∠ABD=,根据sin∠ABD=,得到AD=AB•sin,则AC=2AD=2ABsin,从而得到=2sin.解决问题:利用四边形ADBC,AMEF为正方形,得到∠ABC=∠BAC=45°∠MAN=45°,即∠BAM=∠CAN,由,得到,证明△ABM~△ACN,得到,进而得到=cos45°=,求出BM=2,设AC=x,利用勾股定理,在Rt△AMC,AC2+CM2=AM2,即x2+(x﹣2)2=10,解得:x1=3,x2=﹣1(舍去),即可解答.【解答】解:问题发现,∵△ABC,△AMN为等边三角形,∴AB=AC,AM=AN且∠BAC=∠MAN=60°∴∠BAC﹣∠CAM=∠MAN﹣∠CAM,∴∠BAM=∠CAN,在△BAM与△CAN中,,∴△BAM≌△CAN,∴BM=CN.变式探究:∵ =1且∠ABC=∠AMN,∴△ABC~△AMN,∴,∵AB=BC,∴,∵AM=MN∴,∴∠BAM=∠CAN,∴△ABM~△ACN,∴,作BD⊥AC,如图2,∵AB=BC,∴∠ABD=,∴sin∠ABD=,∴AD=AB•sin∴AC=2AD=2ABsin,∴=2sin解决问题:如图3,连接AB,AN.∵四边形ADBC,AMEF为正方形,∴∠ABC=∠BAC=45°∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC 即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN,∴∴=cos45°=,∴∴BM=2,设AC=x,在Rt△AMC,AC2+CM2=AM2即x2+(x﹣2)2=10,解得:x1=3,x2=﹣1(舍去),答:边长为3.28.如图,抛物线y=x2+bx+c与x轴交于点A(﹣2,0),交y轴于点B(0,).直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线y=x2+bx+c与直线y=kx的解析式;(2)设点P是直线AD下方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m与x的函数关系式,并求出m的最大值.【考点】二次函数综合题.【分析】(1)把点A、B的坐标分别代入抛物线解析式,列出关于b、c的方程组,通过解方程组可以求得b、c的值;把点A的坐标代入一次函数解析式,列出关于k的方程,通过解方程求得k的值;(2)根据平行四边形的性质推知EC=PM.易求点D的坐标是(8,7),点C的坐标是(0,),则CE=6.设P的坐标是(x, x2﹣x﹣),则M的坐标是(x, x+),则PM=(x+)﹣(x2﹣x﹣)=﹣x2+x+4,所以由EC=PM得到﹣x2+x+4=6,通过解方程求得点P的坐标是(2,﹣3)和(4,﹣);(3)通过相似三角形△PMN∽△CDE的性质推知: =,把相关数据代入并整理可以得出m与x的函数关系式是:m=﹣x2+x+=﹣(x﹣3)2+15,由抛物线的性质可以得到:m有最大值,当x=3时,m的最大值是15.【解答】解:(1)∵y=x2+bx+c经过点A(﹣2,0)和B(0,)∴由此得,解得∴抛物线的解析式是y=x2﹣x﹣;∵直线y=kx经过点A(﹣2,0)∴﹣2k+=0,解得:k=,∴直线的解析式是 y=x+;(2)可求D的坐标是(8,7),点C的坐标是(0,),∴CE=6,设P的坐标是(x, x2﹣x﹣),则M的坐标是(x, x+)因为点P在直线AD的下方,此时PM=(x+)﹣(x2﹣x﹣)=﹣x2+x+4,由于PM∥y轴,要使四边形PMEC是平行四边形,必有PM=CE,即﹣x2+x+4=6解这个方程得:x1=2,x2=4,当x=2时,y=﹣3,当x=4时,y=﹣,因此,直线AD下方的抛物线上存在这样的点P,使四边形PMEC是平行四边形,点P的坐标是(2,﹣3)和(4,﹣);(3)在Rt△CDE中,DE=8,CE=6 由勾股定理得:DC==10∴△CDE的周长是24,∵PM∥y轴,∴∠PMN=∠DCE,∵∠PNM=∠DEC=90°,∴△PMN∽△CDE,∴=,即=,化简整理得:m与x的函数关系式是:m=﹣x2+x+,m=﹣x2+x+=﹣(x﹣3)2+15,∵﹣<0,∴m有最大值,当x=3时,m的最大值是15.创作人:百里灵明创作日期:2021.04.01审核人:北堂正中创作单位:北京市智语学校。

最新人教版九年级下第一次月考数学试卷

最新人教版九年级下第一次月考数学试卷

最新人教版数学精品教学资料毕业班第一次月考数学试卷班级姓名考号一、选择题(30分)每题3分1、二次函数y=(x-1) 2 +2的最小值是()A.-2B.2C.-1D.12、已知抛物线的解析式为y=(x-2)2+1,则抛物线的顶点坐标是()A.(-2,1)B.(2,1)C.(2,-1)D.(1,2)3、函数2+y ax b y ax bx c=+=+与在同一直角坐标系内的图象大致是()4、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t =4时,该物体所经过的路程为()C.68米D.88米5≠0)的图象如图2所示,给出以下结论:① a+b+c<0;②a abc>0 .其中所有正确结论的序号是()C. ①④D. ①②③6、二次函数y=ax2+bx+c的图象如图3所示,若M=4a+2b+c,N=a-b+c,P=4a+2b,则()A. M>0,N>0,P>0B. M>0,N<0,P>0C. M<0,N>0,P>0D. M<0,N>0,P<0图7()8、二次函数y=x2的图象向上平移2个单位,得到新的图象的二次函数表达式是()A. y=x2-2B. y=(x-2)2C. y=x2+2D. y=(x+2)29、如图6,小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t-4.9t2(t的单位:s,h的单位:m)图7可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.0.71sB.0.70sC.0.63sD.0.36s10.已知a<-1,点(a-1,y1),(a,y2),(a+1,y3)都在函数y=x2的图象上,则()A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y3二、填空题(24分,每题3分)11,抛物线y=(x+1)2- 7的对称轴是直线 .12,平移抛物线y=x2+2x-8,使它经过原点,写出平移后抛物线的一个解析式 . 13,若二次函数y=x2-4x+c的图象与x轴没有交点,其中c为整数,则c= (只要求写出一个).14,现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=-x2+4x上的概率为___.15,已知抛物线y=x2-6x +5的部分图象如图8,则抛物线的对称轴为直线x=,满足y<0的x的取值范围是 .16,若二次函数2y ax bx c=++的图象经过点(-2,10),且一元二次方程20ax bx c++=的根图6 Oyx图7图8为12-和2,则该二次函数的解析关系式为 。

人教版九年级数学下第一次月考试卷

人教版九年级数学下第一次月考试卷

九年级数学下第一次月考试卷(1)一、单项选择题:每小题3分,共30分,1.下列图形中,既是中心对称图形,又是轴对称图形的个数是( )A .1B .2C .3D .42.一种新病毒的直径约为0.00000043毫米,用科学记数法表示为( )A .0.43×10﹣6B .0.43×106C .4.3×107D .4.3×10﹣7 3.已知不等式组,其解集在数轴上表示正确的是( )A .B .C .D .4.下列运算正确的是( )A .x 2•x 3=x 6B .x 6÷x 5=xC .(﹣x 2)4=x 6D .x 2+x 3=x 55.如图所示,该几何体的俯视图是( )A .B .C .D .6.下列二次分式中,与是同类二次根式的是( ) A .B .C .D .7.若分式方程2+=有增根,则k 的值为( )A .﹣2B .﹣1C .1D .28.从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( )A .(a ﹣b )2=a 2﹣2ab +b 2 B .a 2﹣b 2=(a +b )(a ﹣b )C .(a +b )2=a 2+2ab +b 2D .a 2+ab=a (a +b ) 9.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则S △DEF :S 四边形EFBC 为( )A .2:5B .4:25C .4:31D .4:3510.已知如图,等腰三角形ABC 的直角边长为a ,正方形MNPQ 的边为b (a <b ),C 、M 、A 、N 在同一条直线上,开始时点A 与点M 重合,让△ABC 向右移动,最后点C 与点N 重合.设三角形与正方形的重合面积为y ,点A 移动的距离为x ,则y 关于x 的大致图象是( )A .B .C .D . 二、填空题(本大题共8小题,每小题3分,共24分.把答案写在答题卡中的横线上.) 11.多项式2x 3﹣8x 2y +8xy 2分解因式的结果是 . 12.计算:﹣= .13.若等腰三角形的顶角为120°,腰长为2cm ,则它的底边长为 cm .14.关于x 的一元二次方程mx 2+(m ﹣2)x +m ﹣2=0有两个不相等的实数根,则m 的取值范围是 .15.如图,△ABC 中,点D 、E 在BC 边上,∠BAD=∠CAE 请你添加一对相等的线段或一对相等的角的条件,使△ABD ≌△ACE .你所添加的条件是 . 16.在Rt △ABC 中,∠C=90°,D 为BC 上一点,∠DAC=30°,BD=2,,则AC 的长是 .第15题图 第16题三、解答题 17.计算:﹣22﹣+|1﹣4sin60°|+(π﹣)0.18.解方程:+=3.19.如图,在△ABC 中,AB=AC ,AD ⊥BC ,AE ∥BC . (1)作∠ADC 的平分线DF ,与AE 交于点F ;(用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2,求DF 的长.20.如图,山区某教学楼后面紧邻着一个土坡,坡面BC 平行于地面AD ,斜坡AB 的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE 的长.(2)为了消除安全隐患,学校计划将斜坡AB 改造成AF (如图所示),那么BF 至少是多少米?(结果精确到1米)(sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).21.如图,在平面直角坐标系xOy 中,一次函数y=﹣ax +b 的图象与反比例函数y=的图象相交于点A (﹣4,﹣2),B (m ,4),与y 轴相交于点C . (1)求反比例函数和一次函数的表达式; (2)求点C 的坐标及△AOB 的面积.22.如图,已知四边形ABCD 内接于⊙O ,A 是BDC ︵的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F ,E ,且BF ︵=AD ︵.(1)求证:△ADC ∽△EBA ;(2)如果AB =8,CD =5,求tan ∠CAD 的值.23.如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,点E 是边BC 的中点.(1)求证:BC 2=BD•BA ;(2)判断DE 与⊙O 位置关系,并说明理由.24.如图,已知抛物线与x 轴交于A (﹣1,0)、B (4,0)两点,与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使△PAB 的面积等于△ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.。

人教版九年级数学下册第一次月考试卷

人教版九年级数学下册第一次月考试卷

初中数学试卷金戈铁骑整理制作初三数学第一次月考试卷说明:本卷共有六个大题,25 个小题,全卷满分120 分,考试时间120 分钟.一、选择题(本大题共10 小题,每题 3 分,共30 分。

每题只有一个正确答案,请将正确答案的序号填在题后的括号内)3的相反数是()1.222C.33A.B.D.33222.以下运算正确的选项是 ()A. x2x3x6B.x23x22x2C.(x2 )3x6D.( 2x) 214x23. 以下 A、 B、 C、 D 四幅“福牛乐乐”图案中,能经过顺时针旋转180°图案( 1)获取的是() B4.某体育场的面积为300 m2,则它的万分之一的面积大体相当于()A.课本封面的面积 B .课桌桌面的面积 C .黑板表面的面积 D .教室地面的面积5.已知一次函数 y=kx+b(k 、 b 为常数,且 k≠ 0) ,x 与 y 的部分对应值以下表所示,那么不等式 kx+b<0 的解集是()x-2-10123y3220-1-2A.x<0B.x>0C.x<1D.x>16.如图是由相同小正方体组成的立体图形,它的主视图为()A.B.C.7. 教室地面的瓷砖以下列图,一把钥匙被藏在某种颜色的一块瓷砖下面,则以下判是()A.被藏在白色瓷砖下的概率大B.被藏在黑色瓷砖下的概率大C.被藏在两种瓷砖下的概率相同大D.无法确定8.x2mx ny1)若是方程组nx my的解 , 则 m,n 的值分别为(y18A.m=2,n=1B.m=2,n=3C.m=1,n=8D.m=- 2,n=39.将一副三角板按以下列图的地址叠放,则△AOB与△ DOC的面积之比等于()A.3B.1C.1D.1323410.如图 , 一量角器放置在∠AOB上,角的一边OA与量角器交于点 C、 D,且点 C处的度数是20°,点 D处的度数为110°,则∠AOB的度数是( )A.20 °B. 25°C.45 °D. 55°二、填空题(本大题共 6 小题,每题 3分,共 18分)11. 新华网济南 2 月 24 日电 , 据山东省经贸委供应的数据,截止22 日,山东省累已登录信息系统的家电下乡试点产品140. 46 万台,实现销售收入20.53 亿元,一。

九年级下册数学 第一次月考数学试卷含答案解析

九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,记分1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。

九年级数学下学期第一次月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题

某某省池州市石台中学2015-2016学年九年级数学下学期第一次月考试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?2015-2016学年某某省池州市石台中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米==2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]= 2015 .【考点】估算无理数的大小.【分析】先求出的X围,再求出2020﹣的X围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2= 4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ,∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC,CD的长,即可求出钢管ABCD的长度.【解答】解:在△BCG中,∠GBC=30°,BC=2BG=80cm,CD=≈41.2,钢管ABCD的长度=AB+BC+CD=25+80+41.2=146.2≈146cm.答:钢管ABCD的长度为146cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为60 人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD (只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值X围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值X围:0≤m≤或≤m≤1.【解答】解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。

九年级(下册)第一次月考数学试卷(含答案)

九年级下册第一次月考数学试卷一.选择题:(每小题3分共30分)1.在△ABC中,∠C=90°,∠B=2∠A,则cosA等于()A.B.C.D.2.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形3.如图,AB是⊙O的直径,弦CD⊥AB于点E,连结OC,若OC=5,CD=8,则tan∠COE=()A.B.C.D.4.已知二次函数的图象经过点(1,10),顶点坐标为(﹣1,﹣2),则此二次函数的解析式为()A.y=3x2+6x+1 B.y=3x2+6x﹣1 C.y=3x2﹣6x+1 D.y=﹣3x2﹣6x+15.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位6.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是()A.15°B.30°C.45°D.60°7.二次函数y=﹣x2﹣2x+3的图象与x轴交于A、B两点(A在B的左边),它的顶点为C点.连接AC、BC,则tan∠CAB的值是()A.B.C.D.28.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110° D.130°9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.210.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④二、填空题(共6小题,每小题4分,满分24分)11.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是.12.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β)tanα+tanβ.(填“>”“=”“<”)13.如图所示,DE是△ABC的内切圆I的切线,又BC=2cm,△ADE的周长为4cm,则△ABC的周长是cm.14.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.15.已知,A、B、C三点在⊙O上,OD⊥BC于点D,∠BOD=40°,则∠BAC的度数等于.16.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm.动点P从A点开始沿AB 向B点以1cm/s的速度运动(不与B点重合),动点Q从B点开始沿BC以2cm/s 的速度向C点运动(不与C重合).如果P、Q同时出发,四边形APQC的面积最小时,要经过秒.三.解答题17.计算:①6tan230°﹣sin60°﹣2cos45°②已知α是锐角,且sin(α+15°)=,计算﹣4cosα﹣(π﹣3.14)°+tanα+()﹣1的值.18.如图,点A是圆弧BC上一点,用尺规作图法找出圆心O点(保留作图痕迹,不写做法)19.如图,斜坡AB的坡度是i=1:2,坡角B处有一棵树BC,某一时刻测得树BC在斜坡AB上的影子BD的长度是10米,这时测得太阳光线与水平线的夹角为60°,则树BC的高度为多少米?(结果保留根号).20.如图,AB是⊙O的直径,点C在⊙O上(异于A、B两点),AD⊥CD.①若BC=3,AB=5,求AC的长?②若AC是∠DAB的平分线,求证:直线CD与⊙O相切.21.如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).(1)求此二次函数的顶点B的坐标;=1,请直接写出点P的坐标.(2)在抛物线上有一点P,满足S△AOP22.某商品成本价每个80元,1月销售额20000元.2月促销在1月的基础上打九折销售,结果多卖出去50个,销售额也增加了7000元.①求1月的销售单价;②如果2月搞打折销售时,折数x与销量y之间满足y=﹣50x+600.试求商场打几折时利润最大?最大利润是多少元?23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.24.如图,以E(3,0)为圆心,5为半径的⊙E与x轴交于A、B两点,与y轴交于C点,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,顶点为F.(1)求A、B、C三点的坐标;(2)求抛物线的解析式及顶点F的坐标;=S△ABC,连接PF,判断(3)已知P是抛物线上位于第四象限的点,且满足S△ABP直线PF与⊙E的位置关系并说明理由.九年级(下)第一次月考数学试卷参考答案与试题解析一.选择题:(每小题3分共30分)1.在△ABC中,∠C=90°,∠B=2∠A,则cosA等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据三角形内角和定理求出角的度数后解答.【解答】解:∵△ABC中,∠C=90°,∠B=2∠A,∴设∠A=x,则∠B=2x.由三角形内角和定理得:x+2x+90°=180°,解得x=30°.∴cosA=cos30°=.故选A.2.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值得出∠A,∠B的度数,进而得出三角形的形状.【解答】解:∵cosA=,tanB=,∴∠A=45°,∠B=60°,∴∠C=75°,则这个三角形一定是锐角三角形.故选:D.3.如图,AB是⊙O的直径,弦CD⊥AB于点E,连结OC,若OC=5,CD=8,则tan∠COE=()A.B.C.D.【考点】垂径定理;勾股定理;锐角三角函数的定义.【分析】由直径AB的长求出半径的长,再由直径AB垂直于弦CD,利用垂径定理得到E为CD的中点,由CD的长求出CE的长,在直角三角形OCE中,利用勾股定理求出OE的长,再利用锐角三角函数定义即可求出tan∠COE的值.【解答】解:∵直径AB=10,∴OA=OC=OB=5,∵AB⊥CD,∴E为CD的中点,又CD=8,∴CE=DE=4,在Rt△OCE中,根据勾股定理得:OC2=CE2+OE2,∴OE=3,则tan∠COE==.故选B.4.已知二次函数的图象经过点(1,10),顶点坐标为(﹣1,﹣2),则此二次函数的解析式为()A.y=3x2+6x+1 B.y=3x2+6x﹣1 C.y=3x2﹣6x+1 D.y=﹣3x2﹣6x+1【考点】待定系数法求二次函数解析式.【分析】根据抛物线的顶点坐标设出,抛物线的解析式为:y=a(x+1)2﹣2,再把(1,10)代入,求出a的值,即可得出二次函数的解析式.【解答】解:设抛物线的解析式为:y=a(x+1)2﹣2,把(1,10)代入解析式得10=4a﹣2,解得a=3,则抛物线的解析式为:y=3(x+1)2﹣2=3x2+6x+1.故选A.5.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位【考点】二次函数图象与几何变换.【分析】把二次函数y=x2+4x+3化为顶点坐标式,再观察它是怎样通过二次函数y=x2的图象平移而得到.【解答】解:根据题意y=x2+4x+3=(x+2)2﹣1,按照“左加右减,上加下减”的规律,它可以由二次函数y=x2先向左平移2个单位,再向下平移1个单位得到.故选B.6.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是()A.15°B.30°C.45°D.60°【考点】三角形的外接圆与外心.【分析】连接OC,根据圆周角定理求出∠AOC,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:连接OC,由圆周角定理得,∠AOC=2∠B=120°,∵OA=OC,∴∠CAO=×=30°,故选:B.7.二次函数y=﹣x2﹣2x+3的图象与x轴交于A、B两点(A在B的左边),它的顶点为C点.连接AC、BC,则tan∠CAB的值是()A.B.C.D.2【考点】抛物线与x轴的交点;解直角三角形.【分析】利用待定系数法求出A、B、C三点坐标,设对称轴交x轴于D,在Rt△ACD中,∠ADC=90°,AD=2,CD=4,根据tan∠CAB=,计算即可.【解答】解:对于抛物线y=﹣x2﹣2x+3,令y=0,得﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图,设对称轴交x轴于D.在Rt△ACD中,∠ADC=90°,AD=2,CD=4,∴tan∠CAB==2,故选D.8.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110° D.130°【考点】圆周角定理.【分析】连接OC,然后根据等边对等角可得:∠OCB=∠OBC=40°,然后根据三角形内角和定理可得∠BOC=100°,然后根据周角的定义可求:∠1=260°,然后根据圆周角定理即可求出∠A的度数.【解答】解:连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°,∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选:D.9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2【考点】垂径定理;勾股定理;圆周角定理.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.【解答】解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选:D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征.【分析】①函数图象的对称轴为:x=﹣==1,所以b=﹣2a,即2a+b=0;②由抛物线的开口方向可以确定a的符号,再利用图象与x轴的交点坐标以及数形结合思想得出当﹣1≤x≤3时,y≤0;③由图象可以得到抛物线对称轴为x=1,由此即可确定抛物线的增减性;④由图象过点(3,0),即可得出9a+3b+c=0.【解答】解:①∵函数图象的对称轴为:x=﹣==1,∴b=﹣2a,即2a+b=0,故①正确;②∵抛物线开口方向朝上,∴a>0,又∵二次函数y=ax2+bx+c的图象与x轴交点为(﹣1,0)、(3,0),∴当﹣1≤x≤3时,y≤0,故②错误;③∵抛物线的对称轴为x=1,开口方向向上,∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;故③错误;④∵二次函数y=ax2+bx+c的图象过点(3,0),∴x=3时,y=0,即9a+3b+c=0,故④正确.故选:B.二、填空题(共6小题,每小题4分,满分24分)11.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是51°.【考点】圆心角、弧、弦的关系.【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×=51°.故答案为:51°.12.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β)>tanα+tanβ.(填“>”“=”“<”)【考点】特殊角的三角函数值;等腰直角三角形;锐角三角函数的定义.【分析】根据正切的概念和正方形网格图求出tanα和tanβ,根据等腰直角三角形的性质和tan45°的值求出tan(α+β),比较即可.【解答】解:由正方形网格图可知,tanα=,tanβ=,则tanα+tanβ=+=,∵AC=BC,∠ACB=90°,∴α+β=45°,∴tan(α+β)=1,∴tan(α+β)>tanα+tanβ,故答案为:>.13.如图所示,DE是△ABC的内切圆I的切线,又BC=2cm,△ADE的周长为4cm,则△ABC的周长是8cm.【考点】切线长定理.【分析】首先根据题意可得⊙I与EC、ED、BC、BD分别相切,可得EG=EH,DH=DF,BF=BM,CG=CM,根据BC=2cm,可得CG+BF=2cm,三角形ABC的周长可化为△AED的周长+2倍BC的长度求解.【解答】解:∵⊙I与EC、ED、BC、BD分别相切于G、H、M、F,∴EG=EH,DH=DF,BF=BM,CG=CM,∴EG+DF=EH+DH=DE,CG+BF=CM+BM=BC,∵BC=2,AD+AE+DE=4,∴△ABC的周长=AD+AE+(EG+DF)+(CG+BF)+BC=(AD+AE+DE)+BC+BC=4+2+2=8.故答案为:8.14.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.【考点】勾股定理;圆周角定理;锐角三角函数的定义.【分析】连接CD,易得CD是直径,在直角△OCD中运用勾股定理求出OD的长,得出cos∠ODC的值,又由圆周角定理,即可求得cos∠OBC的值.【解答】解:连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵点C(0,6),∴OC=6,∴OD==8,∴cos∠ODC===,∵∠OBC=∠ODC,∴cos∠OBC=.故答案为:.15.已知,A、B、C三点在⊙O上,OD⊥BC于点D,∠BOD=40°,则∠BAC的度数等于40°或140°.【考点】圆周角定理;垂径定理.【分析】由在⊙O中,OD⊥BC,根据垂径定理的即可求得:=,然后利用圆周角定理求解即可求得答案.【解答】解:连接OC,∵在⊙O中,OD⊥BC,∴=,∴∠BOC=2∠BOD=80°.∴∠BAC=BOC=40°,∴∠BA′C=180°﹣40°=140°,∴∠BAC的度数等于40°或140°,故答案为:40°或140°.16.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm.动点P从A点开始沿AB 向B点以1cm/s的速度运动(不与B点重合),动点Q从B点开始沿BC以2cm/s 的速度向C点运动(不与C重合).如果P、Q同时出发,四边形APQC的面积最小时,要经过3秒.【考点】二次函数的应用;勾股定理.=S△ABC﹣S△PBQ 【分析】设经过x秒时,四边形APQC的面积为y,根据S四边形APQC列出函数解析式,配方成顶点式即可得.【解答】解:设经过x秒时,四边形APQC的面积为y,则BP=6﹣x,BQ=2x,则y=×6×12﹣×(6﹣x)•2x=x2﹣6x+36=(x﹣3)2+27,∴当x=3时,y最大=27,故答案为:3.三.解答题17.计算:①6tan230°﹣sin60°﹣2cos45°②已知α是锐角,且sin(α+15°)=,计算﹣4cosα﹣(π﹣3.14)°+tanα+()﹣1的值.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】①先把各个角的三角函数值代入,再求出即可;②先求出α的度数,再根据特殊角的三角函数值、零指数幂、负整数指数幂分别求出每一部分的值,再求出即可.【解答】解:①6tan230°﹣sin60°﹣2cos45°=6×()2﹣×﹣2×=2﹣﹣=;②∵α是锐角,sin(α+15°)=,∴α+15°=60°,∴α=45°,∴﹣4cosα﹣(π﹣3.14)°+tanα+()﹣1=2﹣4×﹣1+1+3=3.18.如图,点A是圆弧BC上一点,用尺规作图法找出圆心O点(保留作图痕迹,不写做法)【考点】作图—复杂作图;垂径定理.【分析】利用垂径定理得出两弦的垂直平分线交点O即可.【解答】解:如图所示:19.如图,斜坡AB的坡度是i=1:2,坡角B处有一棵树BC,某一时刻测得树BC在斜坡AB上的影子BD的长度是10米,这时测得太阳光线与水平线的夹角为60°,则树BC的高度为多少米?(结果保留根号).【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据题意首先利用勾股定理得出DF,DE的长,再利用锐角三角函数关系得出EC的长,进而得出答案.【解答】解:过点D作DF⊥BG,垂足为F,∵斜坡AB的坡度i=1:2,∴设DF=x,BF=2x,则DB=10m,∴x2+(2x)2=102,解得:x=2,故DE=4,BE=DF=2,∵测得太阳光线与水平线的夹角为60°,∴tan60°===,解得:EC=4,故BC=EC+BE=(2+4)(m).20.如图,AB是⊙O的直径,点C在⊙O上(异于A、B两点),AD⊥CD.①若BC=3,AB=5,求AC的长?②若AC是∠DAB的平分线,求证:直线CD与⊙O相切.【考点】切线的判定.【分析】①首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;②连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得∠OCA=∠CAD,即可得到OC∥AD,由于AD⊥CD,那么OC⊥CD,由此得证.【解答】解:①∵AB是⊙O的直径,∴∠ACB=90°,∵BC=3,AB=5,∴AC===4;②证明:连接OC∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.21.如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).(1)求此二次函数的顶点B的坐标;=1,请直接写出点P的坐标.(2)在抛物线上有一点P,满足S△AOP【考点】二次函数的性质.【分析】(1)把A(﹣2,0)、O(0,0)代入解析式y=﹣x2+bx+c,可得出二次函数解析式,即可得出B的坐标;(2)利用三角形的面积可得出P点的纵坐标,可求出点P的横坐标,即可得出点P的坐标.【解答】解:(1)将A(﹣2,0)、O(0,0)代入解析式y=x2+bx+c,得c=0,﹣4﹣2b+c=0,解得c=0,b=﹣2,所以二次函数解析式:y=﹣x2﹣2x=﹣(x+1)2+1,所以,顶点B坐标(﹣1,1);=1,(2)∵AO=2,S△AOP∴P点的纵坐标为:±1,∴﹣x2﹣2x=±1,当﹣x2﹣2x=1,解得:x1=x2=﹣1,当﹣x2﹣2x=﹣1时,解得:x1=1+,x2=1﹣,∴点P的坐标为(﹣1,1)或(1+,﹣1))或(1﹣,﹣1).22.某商品成本价每个80元,1月销售额20000元.2月促销在1月的基础上打九折销售,结果多卖出去50个,销售额也增加了7000元.①求1月的销售单价;②如果2月搞打折销售时,折数x与销量y之间满足y=﹣50x+600.试求商场打几折时利润最大?最大利润是多少元?【考点】二次函数的应用.【分析】①设1月份的销售单价为x元/个,则2月的销售单价为0.9x元/个,根据“1月份的销售量+50=2月份的销售量”列分式方程求解可得;②根据“总利润=单件利润×销售量”列出总利润W关于折数x的函数解析式,再根据二次函数的性质可得其最值情况.【解答】解:①设1月份的销售单价为x元/个,则2月的销售单价为0.9x元/个,根据题意可得: +50=,解得:x=200,经检验x=200是原分式方程的解,答:1月的销售单价为200元/个;②设商场所获利润为W,则W=(﹣50x+600)=﹣1000(x﹣8)2+16000,∴当x=8时,W取得最大值,最大值为16000元,答:商场打8折时利润最大,最大利润是16000元.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.【考点】相似三角形的判定与性质;垂径定理;切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC•BG.24.如图,以E(3,0)为圆心,5为半径的⊙E与x轴交于A、B两点,与y轴交于C点,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,顶点为F.(1)求A、B、C三点的坐标;(2)求抛物线的解析式及顶点F的坐标;=S△ABC,连接PF,判断(3)已知P是抛物线上位于第四象限的点,且满足S△ABP直线PF与⊙E的位置关系并说明理由.【考点】圆的综合题.【分析】(1)由题意可直接得到点A、B的坐标,连接CE,在Rt△OCE中,利用勾股定理求出OC的长,则得到点C的坐标;(2)已知点A、B、C的坐标,利用交点式与待定系数法求出抛物线的解析式,由解析式得到顶点F的坐标;(3)首先求出点P的坐标;连接EP,PF,过点P作PG⊥对称轴EF于点G,求出PE,推出点P在⊙E上;再利用勾股定理求出PF的长度,则利用勾股定理的逆定理可判定△EPF为直角三角形,∠EPF=90°,所以直线PF与⊙E相切.【解答】解:(1)∵以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B 两点,∴A(﹣2,0),B(8,0).如解答图所示,连接CE.在Rt△OCE中,OE=AE﹣OA=5﹣2=3,CE=5,由勾股定理得:OC===4,∴C(0,﹣4).(2)∵点A(﹣2,0),B(8,0)在抛物线上,∴可设抛物线的解析式为:y=a(x+2)(x﹣8).∵点C(0,﹣4)在抛物线上,∴﹣4=a×2×﹣8,解得a=∴抛物线的解析式为:y=(x+2)(x﹣8)=x2﹣x﹣4=(x﹣3)2﹣,∴顶点F的坐标为(3,﹣).(3)直线PF与⊙E相切.理由如下:∵△ABC中,底边AB上的高OC=4,∴若△ABC与△ABP面积相等,则抛物线上的点P须满足条件:|y P|=4,∵点P在第四象限,∴y p=﹣4,则x2﹣x﹣4=﹣4,整理得:x2﹣6x=0,解得x=6或x=0(与点C重合,故舍去).∴点P的坐标为(6,﹣4),连接EP,PF,过点P作PG⊥对称轴EF于点G,则PG=3,EG=4.在Rt△PEG中,由勾股定理得:PE===5,∴点P在⊙E上.由(2)知,顶点F的坐标(3,﹣),∴EF=,∴FG=EF﹣EG=.在Rt△PGF中,由勾股定理得:PF===.在△EFP中,∵EP2+PF2=52+()2=()2=EF2,∴△EFP为直角三角形,∠EPF=90°.∵点P在⊙E上,且∠EPF=90°,∴直线PF与⊙E相切.。

人教版九年级下学期第一次月考数学试卷含答案详解

九年级(下)第一次月考数学试卷一、选择题:(每小题4分,共48分)1.的值是()A.2B.﹣2C.±2D.42.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.x•x3=x4D.(2x2)3=6x53.如图,已知AB∥CD,∥DFE=135°,则∥ABE的度数为()A.30°B.45°C.60°D.90°4.下列说法中正确的是()A.想了解某种饮料中含色素的情况,宜采用抽样调查B.“打开电视,正在播放《新闻联播》”是必然事件C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小5.若﹣5x2y m与x n y是同类项,则m+n的值为()A.1B.2C.3D.46.若一个多边形的内角和等于900°,则这个多边形的边数是()A.9B.8C.7D.67.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.58.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC∥BD D.AC=BD9.如图,∥ABC内接于∥O,∥OBC=40°,则∥A的度数为()A.80°B.100°C.110°D.130°10.大年三十晚上,小六驾车从家出发到烟花燃放指定点去燃放烟花炮竹,小六驾车匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后小六加快速度继续匀速行驶,零点之前到达指定燃放地点,燃放结束后,小六按驾车匀速返回.其中,x表示小六从家出发后所用时间,y表示小六离家的距离.下面能反映y与x的函数关系的大致图象是()A.B.C.D.11.下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有()A.482B.483C.484D.48512.如图,已知反比函数y=的图象过Rt∥ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若∥ABO的周长为4+2,AD=2,则∥ACO的面积为()A.B.C.1D.2二、填空题(每小题4分,共24分)13.我国国内生产总值约为676700亿元,请用科学记数法表示国内生产总值约为亿元.14.代数式3x2﹣4x+6的值为12,则x2﹣x+6=.15.如图,在∥ABC中,D,E分别是AB,BC上的点,且DE∥AC,AE,CD交于点F,若S∥BDE:S∥DEC=1:3,则S∥DEF:S∥AFC=.16.如图,∥ABC是∥O的内接三角形,AD是∥O的直径,∥ABC=50°,则∥CAD=.17.有五张正面分别标有数字﹣2,﹣1,0,1,2的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是.18.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为,(2)点C的坐标为.三、解答题:(每小题7分,共14分)19.如图,已知AB∥CD,AF=CE,∥B=∥D,证明BE和DF的关系.20.某班有50名同学,男、女生人数各占一半.在本周操行评定中,该班操行得分情况见如下统计表;其中男生操行得分情况见如下不完整的条形统计图:操行分得分1分2分3分4分5分人数2410304(1)补全条形统形图;(2)若要在操行得分为5分的4名同学中选出两名同学作“本周操行明星”,用画树状图或列表的方法求出选为“本周操行明星”的正好是一名男同学和一名女同学的概率.四、解答题:(每题10分,共40分)21.化简下列各式:(1)(x﹣1)2(x+1)2﹣1;(2)÷(﹣x+2)+.22.如图,一次函数的图象与y轴交于C(0,4),且与反比例函数y=(x>0)的图象在第一象限内交于A(3,a),B(1,b)两点,(1)求∥AOC的面积;(2)若=2,求反比例函数和一次函数的解析式.23.如图,我国某边防哨所树立了“祖国在我心中”建筑物,它的横截面为四边形BCNM,其中BC∥CN,BM∥CN,建筑物顶上有一旗杆AB,士兵小明站在D处,由E点观察到旗杆顶部A的仰角为52°,底部B的仰角为45°,已知旗杆AB=2.8米,DE=1.8米.(参考数据:sin52°≈0.788,tan52°≈1.280)(1)求建筑物的高度BC;(2)建筑物长50米,背风坡MN的坡度i=1:0.5,为提高建筑物抗风能力,士兵们在背风坡填筑土石方加固,加固后建筑物顶部加宽4.2米,背风坡GH的坡度为i=1:1.5,施工10天后,边防居民为士兵支援的机械设备终于到达,这样工作效率提高到了原来的2倍,结果比原计划提前20天完成加固任务,士兵们原计划平均每天填筑土石方多少立方米?24.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)例如:如果A(﹣1,3),那么「A」=|﹣1|+|3|=4.(1)点M在反比例函数y=的图象上,且「M」=4,求点M的坐标;(2)求满足条件「N」=3的所有点N围成的图形的面积.五、解答题:(每个小题12分,共24分)25.在∥ABC中,AB=AC,点D,点E在边BC上不同的两点,且∥ADE=75°.(1)如图1,若∥BAC=90°,CD=,求BC的长;(2)如图2,若∥BAC=90°,∥EAD=45°,求证:DC=BE;(3)如图3,若∥BAC=120°,∥EAD=60°,请问(2)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.26.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使∥BPC为直角三角形的点P的坐标.-学年重庆市开县九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:(每小题4分,共48分)1.的值是()A.2B.﹣2C.±2D.4【考点】算术平方根.【分析】根据如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.【解答】解:∥表示4的算术平方根,∥=2.故选:A.2.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.x•x3=x4D.(2x2)3=6x5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、利用合并同类项法则计算;B、利用同底数幂的除法计算;C、利用同底数幂的乘法计算;D、利用积的乘方计算,再分别判断对错.【解答】解:A、x+x=2x,此选项错误;B、x6÷x2=x4,此选项错误;C、x•x3=x4,此选项正确;D、(2x2)3=8x6,此选项错误.故选C.3.如图,已知AB∥CD,∥DFE=135°,则∥ABE的度数为()A.30°B.45°C.60°D.90°【考点】平行线的性质.【分析】先根据两角互补的性质得出∥CFE的度数,再由平行线的性质即可得出结论.【解答】解:∥∥DFE=135°,∥∥CFE=180°﹣135°=45°,∥AB∥CD,∥∥ABE=∥CFE=45°.故选B.4.下列说法中正确的是()A.想了解某种饮料中含色素的情况,宜采用抽样调查B.“打开电视,正在播放《新闻联播》”是必然事件C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小【考点】全面调查与抽样调查;众数;方差;随机事件.【分析】根据随机事件、必然事件以及众数、方差的意义即可作出判断.【解答】解:A、正确;B、打开电视,正在播放《新闻联播》”是随机事件,故选项错误;C、数据1,1,2,2,3的众数是1和2,故选项错误;D、一组数据的波动越大,方差越大,故选项错误.故选A.5.若﹣5x2y m与x n y是同类项,则m+n的值为()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n,m的值,再相加即可.【解答】解:∥﹣5x2y m和x n y是同类项,∥n=2,m=1,m+n=2+1=3,故选:C.6.若一个多边形的内角和等于900°,则这个多边形的边数是()A.9B.8C.7D.6【考点】多边形内角与外角.【分析】n边形的内角和为(n﹣2)180°,由此列方程求n的值.【解答】解:设这个多边形的边数是n,则:(n﹣2)180°=900°,解得n=7,故选C.7.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.5【考点】一元一次方程的解.【分析】根据方程的解的定义,把x=2代入方程,解关于a的一元一次方程即可.【解答】解;∥方程2x+a﹣9=0的解是x=2,∥2×2+a﹣9=0,解得a=5.故选:D.8.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC∥BD D.AC=BD【考点】菱形的性质.【分析】直接根据菱形的性质对各选项进行判断.【解答】解:∥四边形ABCD为菱形,∥AD∥BC,OA=OC,AC∥BD,所以A、B、C选项的说法正确,D选项的说法错误.故选D.9.如图,∥ABC内接于∥O,∥OBC=40°,则∥A的度数为()A.80°B.100°C.110°D.130°【考点】圆周角定理.【分析】连接OC,然后根据等边对等角可得:∥OCB=∥OBC=40°,然后根据三角形内角和定理可得∥BOC=100°,然后根据周角的定义可求:∥1=260°,然后根据圆周角定理即可求出∥A的度数.【解答】解:连接OC,如图所示,∥OB=OC,∥∥OCB=∥OBC=40°,∥∥BOC=100°,∥∥1+∥BOC=360°,∥∥1=260°,∥∥A=∥1,∥∥A=130°.故选:D.10.大年三十晚上,小六驾车从家出发到烟花燃放指定点去燃放烟花炮竹,小六驾车匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后小六加快速度继续匀速行驶,零点之前到达指定燃放地点,燃放结束后,小六按驾车匀速返回.其中,x表示小六从家出发后所用时间,y表示小六离家的距离.下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据题意可得离家的距离越来越远,根据途中加油,可得路程不变,根据加速行驶,可得路程变化快,燃放烟花炮竹时,路程不变,时间加长,再匀速回家,离家距离越来越近.【解答】解:由题意得:离家的距离越来越远,直线呈上升趋势,根据途中加油,可得路程不变,时间加长,直线呈水平状态,后来加速行驶,可得路程变化快,直线上升快,燃放烟花炮竹时,路程不变,时间加长,直线呈水平状态,再匀速回家,离家距离越来越近,直线呈下降趋势.故选:A.11.下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有()A.482B.483C.484D.485【考点】规律型:图形的变化类.【分析】由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.【解答】解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=2×32﹣1=17,第三个图形正三角形的个数为17×3+2=2×33﹣1=53,第四个图形正三角形的个数为53×3+2=2×34﹣1=161,第五个图形正三角形的个数为161×3+2=2×35﹣1=485.如果是第n个图,则有2×3n﹣1个故选:D.12.如图,已知反比函数y=的图象过Rt∥ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若∥ABO的周长为4+2,AD=2,则∥ACO的面积为()A.B.C.1D.2【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.【解答】解:在Rt∥AOB中,AD=2,AD为斜边OB的中线,∥OB=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2﹣x,根据勾股定理得:AB2+OA2=OB2,即x2+(2﹣x)2=42,整理得:x2﹣2x+2=0,解得x1=+,x2=﹣,∥AB=+,OA=﹣,过D作DE∥x轴,交x轴于点E,可得E为AO中点,∥OE=OA=(﹣)(假设OA=+,若OA=﹣,求出结果相同),在Rt∥DEO中,利用勾股定理得:DE==(+),∥k=﹣DE•OE=﹣(+)×(﹣)=﹣,∥S∥AOC=DE•OE=×(+)×(﹣)=,故选A.二、填空题(每小题4分,共24分)13.我国2015年国内生产总值约为676700亿元,请用科学记数法表示2015年国内生产总值约为 6.767×105亿元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将676700亿用科学记数法表示为:6.767×105亿.故答案为:6.767×105.14.代数式3x2﹣4x+6的值为12,则x2﹣x+6=8.【考点】代数式求值.【分析】将原式变形成=(3x2﹣4x)+6,根据题意知3x2﹣4x=6,整体代入上式可得.【解答】解:∥3x2﹣4x+6=12,∥3x2﹣4x=6,则x2﹣x+6=(3x2﹣4x)+6=×6+6=8,故答案为:8.15.如图,在∥ABC中,D,E分别是AB,BC上的点,且DE∥AC,AE,CD交于点F,若S∥BDE:S∥DEC=1:3,则S∥DEF:S∥AFC=1:16.【考点】相似三角形的判定与性质.【分析】由三角形的面积关系得出BE:CE=1:3,得出BE:BC=1:4,由平行线得出DE:AC=BE:BC=1:4,∥DEF∥∥AFC,由相似三角形的面积比等于相似比的平方即可得出结果.【解答】解:∥S∥BDE:S∥DEC=1:3,∥BE:CE=1:3,∥BE:BC=1:4,∥DE∥AC,∥DE:AC=BE:BC=1:4,∥DEF∥∥AFC,∥S∥DEF:S∥AFC=()2=()2=.故答案为:1:16.16.如图,∥ABC是∥O的内接三角形,AD是∥O的直径,∥ABC=50°,则∥CAD=40°.【考点】圆周角定理.【分析】首先连接CD,由AD是∥O的直径,根据直径所对的圆周角是直角,可求得∥ACD=90°,又由圆周角定理,可得∥D=∥ABC=50°,继而求得答案.【解答】解:连接CD,∥AD是∥O的直径,∥∥ACD=90°,∥∥D=∥ABC=50°,∥∥CAD=90°﹣∥D=40°.故答案为:40°.17.有五张正面分别标有数字﹣2,﹣1,0,1,2的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是.【考点】概率公式;根的判别式;二次函数图象上点的坐标特征.【分析】首先根据使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)确定a的值,然后利用概率公式求解.【解答】解:∥使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,∥[﹣2(a﹣1)]2﹣4×1×a(a﹣3)>0,解得:a>﹣1,∥以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0),∥12﹣(a2+1)﹣a+2≠0,∥a≠1且a≠﹣2,∥满足条件的a只有0和2,∥使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x 为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是,故答案为:.18.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为2,(2)点C的坐标为(﹣,1).【考点】正方形的性质;坐标与图形性质.【分析】(1)利用勾股定理直接计算即可求出OA的长;(2)过点A作AD∥x轴于D,过点C作CE∥x轴于E,根据同角的余角相等求出∥OAD=∥COE,再利用“角角边”证明∥AOD和∥OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【解答】解:(1)∥点A的坐标为(1,),∥OA==2,故答案为:2;(2)如图,过点A作AD∥x轴于D,过点C作CE∥x轴于E,∥四边形OABC是正方形,∥OA=OC,∥AOC=90°,∥∥COE+∥AOD=90°,又∥∥OAD+∥AOD=90°,∥∥OAD=∥COE,在∥AOD和∥OCE中,,∥∥AOD∥∥OCE(AAS),∥OE=AD=,CE=OD=1,∥点C在第二象限,∥点C的坐标为(﹣,1).故答案为(﹣,1).三、解答题:(每小题7分,共14分)19.如图,已知AB∥CD,AF=CE,∥B=∥D,证明BE和DF的关系.【考点】全等三角形的判定与性质;平行线的性质.【分析】要证相等,可利用AAS判定∥ABE∥∥CDF从而得出BE=DF.【解答】证明:∥AB∥CD,BE=DF,∥∥A=∥C,又∥AF=CE,∥AF+FE=CE+FE,即AE=CF.在∥ABE和∥CDF中,,∥∥ABE∥∥CDF(AAS),∥BE=DF.20.某班有50名同学,男、女生人数各占一半.在本周操行评定中,该班操行得分情况见如下统计表;其中男生操行得分情况见如下不完整的条形统计图:操行分得分1分2分3分4分5分人数2410304(1)补全条形统形图;(2)若要在操行得分为5分的4名同学中选出两名同学作“本周操行明星”,用画树状图或列表的方法求出选为“本周操行明星”的正好是一名男同学和一名女同学的概率.【考点】列表法与树状图法;条形统计图.【分析】(1)利用男生人数25分别减去1分、2分、3分45分的人数即可得到5分人数,即可解答;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两位同学恰好是一名男同学和一位女同学的情况,再利用概率公式即可求得答案.【解答】解:(1)男生操行得分为5分的人数=25﹣2﹣2﹣8﹣11=2,补全统计图如下:(2)画树状图得:∥共有12种等可能的结果,所选两位同学恰好是一名男同学和一位女同学的有8种情况,∥所选两位同学恰好是一名男同学和一位女同学的概率为:=.四、解答题:(每题10分,共40分)21.化简下列各式:(1)(x﹣1)2(x+1)2﹣1;(2)÷(﹣x+2)+.【考点】分式的混合运算;整式的混合运算.【分析】(1)根据平方差公式进行计算即可;(2)先对式子能分解因式的先分解因式,对括号内的先通分再相加,然后化简即可.【解答】解:(1)(x﹣1)2(x+1)2﹣1=[(x﹣1)(x+1)]2﹣1=(x2﹣1)2﹣1=x4﹣2x2+1﹣1=x4﹣2x2;(2)÷(﹣x+2)+=======.22.如图,一次函数的图象与y轴交于C(0,4),且与反比例函数y=(x>0)的图象在第一象限内交于A(3,a),B(1,b)两点,(1)求∥AOC的面积;(2)若=2,求反比例函数和一次函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)作AD∥y轴于D,根据题意得出AD=3,OC=4,然后关键数据线面积公式即可求得;(2)根据反比例函数系数k=xy,得出3a=b,然后代入=2,即可求得a的值,求得A的坐标,从而求得k的值,然后关键待定系数即可求得一次函数的解析式.【解答】解:(1)作AD∥y轴于D,∥A(3,a),∥AD=3,∥一次函数的图象与y轴交于C(0,4),∥OC=4,∥S∥AOC=OC•AD=×4×3=6;(2)∥A(3,a),B(1,b)两点在反比例函数y=(x>0)的图象上,∥3a=b,∥=2,∥a2﹣2ab+b2=4,∥a2﹣2a•3a+(3a)2=4,整理得,a2=1,∥a>0,∥a=1,∥A(3,1),∥k=3×1=3,设直线的解析式为y=mx+n,∥,解得,∥反比例函数和一次函数的解析式分别为y=和y=﹣x+4.23.如图,我国某边防哨所树立了“祖国在我心中”建筑物,它的横截面为四边形BCNM,其中BC∥CN,BM∥CN,建筑物顶上有一旗杆AB,士兵小明站在D处,由E点观察到旗杆顶部A的仰角为52°,底部B的仰角为45°,已知旗杆AB=2.8米,DE=1.8米.(参考数据:sin52°≈0.788,tan52°≈1.280)(1)求建筑物的高度BC;(2)建筑物长50米,背风坡MN的坡度i=1:0.5,为提高建筑物抗风能力,士兵们在背风坡填筑土石方加固,加固后建筑物顶部加宽4.2米,背风坡GH的坡度为i=1:1.5,施工10天后,边防居民为士兵支援的机械设备终于到达,这样工作效率提高到了原来的2倍,结果比原计划提前20天完成加固任务,士兵们原计划平均每天填筑土石方多少立方米?【考点】解直角三角形的应用-坡度坡角问题;分式方程的应用.【分析】(1)根据题意得出EF=BF,进而利用tan∥AEF=即可得出答案;(2)利用坡比的定义得出QN,QH的长,进而利用梯形面积求法求出总的土方量,进而得出答案.【解答】解:(1)如图所示:过点E作EF∥BF交BC于点F,设EF=x,则EF=x,则根据题意可得:BF=x,同理可知tan∥AEF==≈1.28,解得:x=10,即BC=10+1.8=11.8(m).答:建筑物的高度BC为11.8m;(2)如图所示:过点M,G分别作MQ、GP垂直于CN,交CN于点Q、P,根据题意可得:PH=11.8×1.5=17.7(m),QN=5.9(m),可得:NH=17.7﹣5.9+4.2=11.8(m),故可得加固所需土石方为:(MG+NH)×PG=×11.8×(4.2+16)×50=5959,则根据题意可列方程:设原方程每天填筑土石方a立方米,=20+,解得:a=198.答:士兵们原计划平均每天填筑土石方198立方米.24.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)例如:如果A(﹣1,3),那么「A」=|﹣1|+|3|=4.(1)点M在反比例函数y=的图象上,且「M」=4,求点M的坐标;(2)求满足条件「N」=3的所有点N围成的图形的面积.【考点】反比例函数图象上点的坐标特征.【分析】(1)设点M的坐标为(m,),根据勾股值的定义式可得出关于m的一元二次方程,解方程即可得出m的值,将m的值代入到点M的坐标中即可得出结论;(2)设点N的坐标为(x,y),根据勾股值的定义式可分段找出y关于x的函数解析式,画出图象根据菱形的面积公式即可得出结论.【解答】解:(1)设点M的坐标为(m,),∥「M」=4=|m|+||,∥m2﹣4m+3=0,或m2+4m+3=0,解得:m1=1,m2=3,m3=﹣1,m4=﹣3.∥点M的坐标为(﹣3,﹣1),(﹣1,﹣3),(1,3)和(3,1).(2)设点N的坐标为(x,y),∥「N」=3=|x|+|y|,∥分三种情况考虑.①xy>0时,x+y=3(x、y均为正),或x+y=﹣3(x、y均为负);②xy<0时,x﹣y=3(x>0,y<0),或﹣x+y=3(x<0,y>0);③xy=0时,x=0,y=±3,或y=0,x=±3.画出图象如图所示.点A(0,3),B(3,0),C(0,﹣3),D(﹣3,0).围城图形的面积S=BD•AC=[3﹣(﹣3)]×[3﹣(﹣3)]=6×6=36.五、解答题:(每个小题12分,共24分)25.在∥ABC中,AB=AC,点D,点E在边BC上不同的两点,且∥ADE=75°.(1)如图1,若∥BAC=90°,CD=,求BC的长;(2)如图2,若∥BAC=90°,∥EAD=45°,求证:DC=BE;(3)如图3,若∥BAC=120°,∥EAD=60°,请问(2)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.【考点】相似形综合题.【分析】(1)作DG∥AC于G,证明出∥ABC是等腰直角三角形,进而求出AG的长,即可求出BC的长;(2)作DH∥AE于H,设DC=a,利用a表示出BC、DE和CD的长,根据线段之间的关系得到结论;(3)作DG∥AC于G,AH∥BC于H,设DC=2a,还是利用a表示出BC、DE和CD的长,即可表示出线段DC和BE之间的数量关系.【解答】解:(1)如图1所示,作DG∥AC于G,∥∥BAC=90°,AB=AC,∥∥ABC是等腰直角三角形,∥∥1=∥B=45°,∥∥ADE=75°,∥∥2=60°,∥DAG=30°,∥DG=CG=CD=1,AD=2DG=2,∥AG==,∥AC=AG+CG=+1,∥BC=AG=+;(2)如图2所示,作DH∥AE于H,设DC=a,则DG=CG=a,∥AD=2DG=a,AG=a,∥AC=AG+CG=a,∥BC=AC=(+1)a,∥∥EAD=45°,∥∥ADH是等腰直角三角形,∥AH=DH=AD=a,∥∥4=180°﹣∥ADE﹣∥DAE=60°,∥DE=2EH,∥DE=DH÷=a,∥BE=BC﹣DE﹣CD=a=DC,∥DC=BE;(3)(2)中的结论不成立,理由如下:如图3所示,作DG∥AC于G,AH∥BC于H,∥AB=AC,∥BAC=120°,∥∥B=∥C=30°,∥∥1=60°,又∥∥ADE=75°,∥DAE=60°,∥∥2=∥3=∥4=∥5=45°,设DC=2a,则DG=AG=a,CG=a,∥AC=AG+CG=(+1)a,∥EH=AH=AC=a,CH=AC=a,∥BC=2CH=(3+)a,DH=CH﹣DC=a,∥DE=EH+DH=a,∥BE=BC﹣DE﹣DC=(3+)a﹣a﹣2a=a=DC,∥DC=2BE.26.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使∥BPC为直角三角形的点P的坐标.【考点】二次函数综合题.【分析】(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n 的值即可得到直线解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【解答】解:(1)依题意得:,解之得:,∥抛物线解析式为y=﹣x2﹣2x+3∥对称轴为x=﹣1,且抛物线经过A(1,0),∥把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∥直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∥M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∥B(﹣3,0),C(0,3),∥BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).2016年5月16日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学(下)第一次月考试卷初中数学试卷
金戈铁骑整理制作
初三数学第一次月考试卷
说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.
一、选择题(本大题共10小题,每小题3分,共30分。

每小题只有一个正确答案,请将正确答案的序号填在题后的括号内)
1.的相反数是()
A.B.C.D.
2.下列运算正确的是( )
A. B. C. D.
3.下列A、B、C、D四幅“福牛乐乐”图案中,能通过顺时针旋转180°图案(1)得到的是()B
4.某运动场的面积为300,则它的万分之一的面积大约相当于()
A.课本封面的面积 B.课桌桌面的面积 C.黑板表面的面积 D.教室地面的面积
5.已知一次函数y=kx+b(k、b为常数,且k≠0),x与y的部分对应值如下表所示,那么不等式kx+b0 C.x1
6. 如图是由相同小正方体组成的立体图形,它的主视图为()
A.被藏在白色瓷砖下的概率大B.被藏在黑色瓷砖下的概率大
C.被藏在两种瓷砖下的概率一样大D.无法确定
8.若是方程组的解,则m,n的值分别为()
A.m=2,n=1
B.m=2,n=3
C.m=1,n=8
D.m=-2,n=3
9.将一副三角板按如图所示的位置叠放,则△AOB与△DOC的面积之比等于()
A. B. C. D.
10. 如图,一量角器放置在∠AOB上,角的一边OA与量角器交于点C、D,且点C处的度数是20°,点D处的度数为110°,则∠AOB的度数是( )
A.20°
B. 25°
C.45°
D. 55°
二、填空题(本大题共6小题,每小题3分,共18分)
11.新华网济南2月24日电 ,据山东省经贸委提供的数据,截至22日,山东省累计销售并已登录信息系统的家电下乡试点产品140.46万台,实现销售收入20.53亿元,居全国第一。

那么这个销售收入用科学记数法(保留三个有效数字)表示应为 .
12.函数的自变量的取值范围是.
13.如图,请任意选取一幅图,根据图上信息,写出一个关于温度x(℃)的不等式:___________.
14.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径为 .
15. 小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如右图所示,则小明5次成绩的方差S12与小兵5次成绩的方差S22之间的大小关系为S12 S22.(填“>”、“<”、“=”)
16.已知抛物线的图象如图,则下列结论:①;②;③;④.其中正确的结论是 .
三、(本大题共3小题,第17小题6分,第18、19小题各7分,共20分)
17.计算 18.用恰当的方法解方程
19.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F,求证:△ABC≌△DEF。

四、(本大题共2小题,每小题8分,共16分)
20.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.
21. 第16届广州亚运会门票预定工作即将在全国展开.为了了解全班同学最喜爱哪项球类活动,光明中学初三(2)班对全班共60位同学作了调查,结果用两种统计图表示如下.
(1)图1中喜欢“其它球类”的同学有多少人? 图2中的“一个足球”表示该班喜爱足球的同学有多少人?
五、(本大题共2小题,第22小题8分,第23小题9分,共17分)
22. 如图,⊙O是△ABC的外接圆,AB=AC,过点A作PA∥BC,交BO的延长线于点P;(1)求证:AP是⊙O的切线;
(2)若⊙O的半径R=5,BC=8,求线段AP的长。

23.“百望花园”居民小区有一朝向为正南方向的居民楼,如图该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为30°时.()
(1)问对超市以上的居民住房采光是否有影响,为什么?
(2)若要使超市采光不受影响,两楼应相距多少米?(结果保留整数)
六、(本大题共2小题,第24小题9分,第25小题10分,共19分)
24.由于受到“三鹿奶粉事件”影响,惠客超市销售的蒙牛纯牛奶销量呈下降趋势,为了扩大销量,减少库存,商场决定降价销售. 已知每箱以60元销售,平均每天可销售40箱,进价为每箱45元.价格每降低1元,平均每天多销售20箱,设每箱降价x元(x为正整数),
(1)写出平均每天销售y(箱)与x(元)之间的函数关系式及自变量x的取值范围;(2)如何定价才能能使超市平均每天销售这种牛奶的利润最大?最大利润为多少?
25.如图1,在平面直角坐标系中,已知点,点在正半轴上,且.动点在线段上从点向点以每秒个单位的速度运动,设运动时间为秒.在轴上取两点作等边.
(1)求直线的解析式;
(2)求等边的边长(用的代数式表示),并求出当等边的顶点运动到与原点重合时的值;
(3)如果取的中点,以为边在内部作如图2所示的矩形,点在线段上.设等边和矩形重叠部分的面积为,请求出当秒时与的函数关系式,并求出的最大值.
参考答案:
1-5:ABBAC 6--10: DABCB;
11.2.05×元
12.
13.(或,或)
14.79°
15. <
16.①②
17. 原式=-8+-…….5分
=-8……………6分
18.解:
移项得
(3x-2+x+4)(3x-2-x-4)=0
(4x+2)(2x-6)=0
,……………………7分.
19. (1)众数15,平均数20 …………………2分.
(2)1050 …………………4分.
(3)和题意有关即可!如:加强11:00-12:00的管理。

…………………7分.
20. P(抽到2)=.……………………………………………3分
(2)根据题意可列表
2
3 6 2 22
22
23 26 2 22
22
23 26 3 32
32
33 36 6 62
62
63
…………………………………7分
从表中可以看出所有可能结果共有16种,符合条件的有10种, 8分
21. (1) 图1中喜欢“其它球类”的同学有3人;
图2中的“一个足球”表示的是该班喜爱足球的同学有3人. 4分
(2) 因为全班同学中有50%的人最喜爱足球,高于喜爱篮球、排球和其它球类所以应预定足球比赛的门票. 8分
22. (1)不变,因为四边形AEDF为平行四边形,平行四边形的对角相等;………2分.
(2)因为□AEDF的周长等于等腰三角形的两腰之和,所以□AEDF的周长为20cm; ……6分.
(3)□AEDF的周长保持不变,周长等于常数20cm.
………8分.
23. (1)没有影响,
如图(2),由题意得BC=EF=15米,AB=20米,∠AEF=30°,
在Rt△AEF中,
tan∠AEF=,
∴AF=EF×tan∠AEF=15×tan30°=5≈8.6(米),
∴BF=CE=AB-AF=20-8.6=11.4(米)
∵CE>6米,
∴对超市以上的居民住房采光没有影响。

...4分
(2)如图(3),由题意得
AB=20米,∠ACB=30°,
在Rt△ABC中,
cot∠ACB=,
∴BC=AB×cot∠ACB=20×cot30°=20≈35米。

所以若要使超市采光不受影响,两楼应相距约35米。

...8分24. (1)y=20x+40(0<x≤12)...3分
(2)设每天销售牛奶的利润为W,则
W=(15-x)(20x+40)=-20x2+260x+600=-20(x-)2+1445
∵x为正整数∴当x =6或7时,W最大=1440...8分
即每箱牛奶定价为54或53元时,每天利润最大. ...9分25. (1)直线的解析式为:.
(2)方法一,,,,
,,
,.
方法二,如图1,过分别作轴于,轴于,
可求得,

当点与点重合时,


,。

相关文档
最新文档