汽车制动发展简史
车辆EMB制动系统的发展历程简述

车辆EMB制动系统的发展历程简述2010年03月11日 15:46 www.elecfans.co 作者:佚名用户评论(0)关键字:EMB(2)制动系统(10)车辆EMB制动系统的发展历程简述随着消费者对车辆安全性日益提高的重视,车辆制动系统也历经了数次变迁和改进。
从最初的皮革摩擦制动,到后来出现鼓式、盘式制动器,再到后来出现机械式ABS制动系统,紧接着伴随电子技术的发展又出现了模拟电子ABS制动系统、数字式电控ABS制动系统等等。
近10年来西方发达国家又兴起了对车辆线控系统(x-by-wire)的研究,线控制动系统(brake-by-wire)应运而生,由此展开了对电子机械制动器(Electromechanical Brake)的研究,简单的来说电子机械制动器就是把原来由液压或者压缩空气驱动的部分改为由电动机来驱动,借以提高响应速度、增加制动效能等,同时也大大简化了结构、降低了装配和维护的难度。
由于人们对制动性能要求的不断提高,传统的液压或者空气制动系统在加人了大量的电子控制系统如ABS、TCS、ESP等后,结构和管路布置越发复杂,液压(空气)回路泄露的隐患也加大,同时装配和维修的难度也随之提高。
因此结构相对简单、功能集成可靠的电子机械制动系统越来越受到青睐,可以预见EMB将最终取代传统的液压(空气)制动器,成为未来车辆的发展方向。
1 brake-by-wire的发展简介brake-by-wire是指一系列智能制动控制系统的集成,它提供诸如ABS,车辆稳定性控制、助力制动、牵引力控制等等现有制动系统的功能,并通过车载有线网络把各个系统有机的结合成一个完整的功能体系。
原有的制动踏板采用了一个模拟发生器替代,用以接受驾驶员的制动意图,产生、传递制动信号给控制和执行机构,并根据一定的算法模拟反馈给驾驶员。
显而易见,它需要非常安全可靠的结构,用以正常的工作。
其工作原理如图1所示:由于技术发展程度的局限,目前出现了两种形式的brake-by-wire系统:1.1 EHB的简介EHB(Electro-Hydraulic Brake)即线控液压制动器,是在传统的液压制动器基础上发展而来的。
70年来我国铁路机车车辆制动技术的发展历程

第39卷第5期2019年10月铁道机车车辆RAILWAY LOCOMOTIVE I CARVol.39No.5Oct.2019f专题研究I文章编号=1008-7842(2019)05—0025—1170年来我国铁路机车车辆制动技术的发展历程李和平】,严霄蕙2(1中国铁道科学研究院集团有限公司机车车辆研究所,北京100081;2北京电子科技职业学院经济管理学院,北京100176)摘要回顾分析了新中国成立以来我国铁路机车车辆制动技术的发展变化,重点介绍了货运列车、提速旅客客车、重载货运列车、高速列车、复兴号动车组制动技术的自主研发情况及关键技术、性能参数,分析了制动技术在我国铁路发展过程中所起到的重要作用。
最后介绍了我国铁路参与国际铁路机车车辆标准制订情况及对铁路走出去的影响。
关键词铁路;机车车辆;高速列车;制动;发展中图分类号:U260.35文献标志码:A doi:10.3969力.issn.1008—7842.2019.05.06(一)自1876年中国大地上出现第1条营业铁路$$吴淞铁路建成通车之日起,到1949年解放前夕,旧中国在70余年仅仅修建了2.7万余公里铁路,其中能够维持通车的只有2.2万公里#新中国建立后,作为国民经济的大动脉,铁路得到快速发展,截止2018年底,我国铁路总里程已达到13.1万公里,其中高速铁路2.9万公里,占全世界总里程的2/3。
2017年6月26日代表着世界先进水平、被命名为复兴号的两列中国标准动车组在京沪高铁亮相,开启了中国铁路技术装备新时代#回眸70年来我国铁路机车车辆制动技术的发展和变化,每一步都印证着我国铁路的发展和技术进步#1制动机简统化及仿制阶段新中国刚刚成立时,所有的铁路运输设备均为国外生产。
机车车辆制动装置型号也十分繁杂,蒸汽机车大多装备ET—6型制动机。
客车大多为PM型和LN型制动机和少量的AV型制动机#货车则以K1、K2型制 动机为主,其他则为QA、Q SL P、H、Q SHU等杂型阀#这些制动阀基本上是20世纪20年代之前的国外产品。
自动紧急制动系统(AEB)的前世今生

自动紧急制动系统(AEB)的前世今生作者:包崇美来源:《世界汽车》2015年第12期如今,主动安全配置越来越受到重视,并逐步在中低端车型上得到普及,比如,对于行车稳定性很有帮助的ESC已被列为很多紧凑型车的标准配置。
而在主动安全方面,有一项已被证实可有效减少意外碰撞事故的技术正得到越来越多的重视,这就是自动紧急制动系统(AEB)。
AEB的“前世”说起AEB,首先就得从车辆制动的历史说起。
在汽车工业的发展初期,制动系统是没有助力的,制动能量完全由驾驶者的作用力来提供,我们可以将这种制动系统称之为“人力制动系统”。
由于没有助力,驾驶者需要费很大的力气才能让车辆停止。
基于这样的现状,工程师们设计了助力系统。
他们在“人力制动系统”的基础上加设了一套动力伺服系统,采用气压能、真空能以及液压能等作为伺服能量,形成了各种形式的助力器。
再后来,由于很多新手在制动时,掌握不好制动车的时机和力度,不习惯“点刹”,于是工程师们又加入了被看做是行车安全历史上最重要的三大发明之一的“ABS”(防抱死系统)。
ABS的原理并不难懂,装有ABS系统的车辆在车轮即将达到抱死临界点时,制动系统在1s内可作用60~120次,相当于不停地制动、放松,类似于机械自动化的“点刹”动作,此举可避免紧急制动时方向失控与车轮侧滑,提高制动效率。
最后大家发现,即便是车辆配备了众多先进的制动技术,但前提是驾驶者得有制动的动作。
而现实的情况是,在遇到突发情况时,很多驾驶者有些措手不及,还来不及制动,就已经与前车发生“亲密接触”。
于是,便有了AEB(自动紧急制动系统)的诞生。
AEB的“今生”AEB,即“Autonomous Emergency Braking”的缩写,意为自动紧急制动系统,可以在检测到危险时通过系统协助驾驶者进行制动,从而避免或减少事故的发生。
AEB也就是我们常听到的预碰撞安全系统,不同厂商对这套系统的称呼有所不同。
简单来说,AEB就像是你在学车时,守护在您身边的那个“高度警觉的教练”。
现代汽车制动系统的发展历程和前景展望

现代汽车制动系统的发展历程和前景展望摘要:汽车制动系统是现代汽车重要的安全系统,随着汽车工业的发展,制动系统也经历了从简单的机械制动到电子智能化制动的演变。
本文回顾了汽车制动系统的发展历程,重点介绍了电子制动系统的优势,并展望了未来汽车制动系统发展趋势。
关键词:汽车制动系统,机械制动,液压制动,电子制动,未来发展趋势正文:汽车制动系统是汽车的重要安全系统,其发展历程可以分为机械制动、液压制动和电子制动三个阶段。
机械制动阶段,最简单的汽车制动系统是通过踩下脚刹来制动,即用脚踩住轮子让车轮停下。
这种方式简单粗暴,但缺点明显,刹车距离长,制动效果差,危险性大。
液压制动阶段,随着液压技术的发展,汽车制动系统逐渐变为液压制动系统,通过踩下踏板来压缩制动液,转化为制动力,提高了制动的准确性和效果,大大降低了刹车距离和危险系数。
电子制动阶段,随着电子技术水平的提高,汽车制动系统逐渐向电子化智能化方向发展,通过ABS技术将车轮的反锁现象消解,大大提高了制动的准确性和反应速度。
近年来,电子制动系统还不断拓展创新,逐渐发展出了EPB、ESC、EHB等多种高级电子制动系统,让制动更加安全高效。
未来发展趋势,随着汽车智能化进程的加速,汽车制动系统也会越来越智能化,未来汽车的制动系统借助AI技术,将能够对驾驶员的驾驶方式进行跟踪、分析,综合判断驾驶员的意图,并进行自动制动,从而实现自动驾驶的目标。
总之,汽车制动系统是汽车安全系统中至关重要的一环,未来汽车制动系统将会实现更加智能化和高效化的发展。
除了向智能化方向发展,未来汽车制动系统还会朝着更加节能环保的方向发展。
例如,通过利用制动能量回收技术,将制动时产生的能量回收并转化为电能,用于辅助汽车行驶,从而降低燃油消耗和减少碳排放,实现绿色出行。
此外,未来汽车制动系统还将越来越注重用户体验和驾驶者的安全感。
例如,通过制动踏板的力度调整,使驾驶员在制动时感受到不同程度的制动力,增加驾驶者对系统的控制感,提高驾驶者的安全感。
汽车制动系统的概况及作用正文

绪论汽车行驶时能在短距离内停车且维持行驶方向稳定性和在下长坡时能维持一定车速的能力称为汽车的制动性。
人们在汽车上装设专门装置,以便驾驶员根据道路和交通等情况借以使外界(主要是路面)在汽车的某些部分(主要是车轮)施加一定的力,对汽车进行一定程度的强制制动,使驾驶员和乘客免受车祸的灾害。
这一系列专门装置即称为制动系。
1.汽车制动系统的概况及作用1.1汽车制动系统的发展概况从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。
近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。
汽车制动系统种类很多,形式多样。
传统的制动系统结构型式主要有机械式、气动式、液压式、气—液混合式。
它们的工作原理基本都一样,都是利用制动装置,用工作时产生的摩擦热来逐渐消耗车辆所具有的动能,以达到车辆制动减速,或直至停车的目的。
伴随着节能和清洁能源汽车的研究开发,汽车动力系统发生了很大的改变,出现了很多新的结构型式和功能形式。
新型动力系统的出现也要求制动系统结构型式和功能形式发生相应的改变。
例如电动汽车没有内燃机,无法为真空助力器提供真空源,一种解决方案是利用电动真空泵为真空助力器提供真空。
汽车制动系统的发展是和汽车性能的提高及汽车结构型式的变化密切相关的,制动系统的每个组成部分都发生了很大变化。
1.2汽车制动系统作用使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。
2.制动器(brake staff)简介制动器就是刹车。
是使机械中的运动件停止或减速的机械零件。
俗称刹车、闸。
制动器主要由制动架、制动件和操纵装置等组成。
有些制动器还装有制动件间隙的自动调整装置。
为了减小制动力矩和结构尺寸,制动器通常装在设备的高速轴上,但对安全性要求较高的大型设备(如矿井提升机、电梯等)则应装在靠近设备工作部分的低速轴上。
有些制动器已标准化和系列化,并由专业工厂制造以供选用。
现代汽车制动器的形式及其发展方向

现代汽车制动器的形式及其发展方向------把握机遇,迎接挑战摘要:从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。
近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现越来越明显。
关键词:发展历史形式功用发展方向挑战机遇一.制动器的发展历史现车制动器的发展起源于原始的机械控制装置,最原始的制动控制只是驾驶员操纵一组代汽简单的机械装置向制动器施加作用力,那时的汽车重量比较小,速度比较低,机械制动已经能够满足汽车制动的需要,但随着汽车自身重量的增加,助力装置对机械制动器来说越来越显得非常重要。
从而开始出现了真空助力装置。
1932年的凯迪拉克V16车四轮采用鼓式制动器,并有制动踏板控制的真空助力装置。
林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空助力器的鼓式制动器。
随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。
DuesenbergEight车率先使用了轿车液压制动器,克莱斯顿的四轮液压制动器于1924年问世,美国通用汽车和福特汽车分别于1934年和1939年采用了液压制动技术。
到20世纪50年代,液压助力制动器才成为现实。
经过80多年的发展,液压制动技术是如今最成熟、最经济的制动技术,并应用在当前绝大多数乘用车上。
二.制动器的形式及功用汽车制动器是指产生阻碍车辆运动或运动趋势的力(制动力)的部件,其中也包括辅助制动系统中的缓速装置。
目前,汽车所用的制动器几乎都是摩擦式的,可分为鼓式和盘式两大类。
鼓式制动器的旋转元件为制动鼓,其工作表面为圆柱面;盘式制动器的旋转元件则为旋转的制动盘,以端面为工作表面。
鼓式制动器根据其结构都不同,又分为:双向自增力蹄式制动器、双领蹄式制动器、领从蹄式制动器、双从蹄式制动器。
其制动效能依次降低,最低是盘式制动器;但制动效能稳定性却是依次增高,盘式制动器最高。
汽车行车制动系统的发展

46 汽车维修 2010.7
二、传统的行车制动系统
(一)液压制动系统 液压制动系统是目前汽车上应 用最为广泛的一种制动系统,该系统 主 要 由 制 动 踏 板 、真 空(液 压)助 力 器、制动主缸、轮缸、制动液储液罐、 制动管路和车轮制动器等部件组成。 制动系统不工作时,车轮制动器的蹄
鼓(盘 片)间 有 间 隙 ,车 轮 和 制 动 鼓 (制动盘)可自由旋转,储液罐里的制 动液与制动管路相通;采取制动时, 踏下制动踏板,使真空(液压)助力器 推动主缸活塞前移,管路与储液罐间 的通道关闭,在活塞的作用下,使主 缸制动液压力上升,使制动液在一定 压力下流入轮缸,通过轮缸活塞使制 动蹄摩擦片压紧在制动鼓的内圆面 上(两摩擦片压紧在制动盘上),不转 的制动蹄(摩擦片)对旋转的制动鼓 (制动盘) 产生摩擦,从而产生制动 力,使汽车减速甚至停车;解除制动 时,松开制动踏板,回位弹簧将制动 蹄拉回原位,制动力消失。
四、电子制动力分配系统
传统制动系统会平均将制动总 泵的力量分配至四个车轮,这样的分 配并不符合制动力的使用效益。为提 高 ABS 系统的使用性能,很多汽车 上还安装了电子制动力分配系统 (EBD),该系统依托 ABS 系统的硬 件,组成“ABS+EBD”,以使制动力做 出最佳的应用。配置有 EBD 系统的 汽车,会自动侦测各个车轮与地面的 抓地力状况,将制动系统所产生的能
Hale Waihona Puke 的高压压缩空气进入湿储气筒,经冷 却油水分离之后,进入储气筒。储气 筒内的气压由调压阀控制,当超过规 定值时,空气压缩机空转而停止向储 气筒供气;当储气筒的气压值低于规 定值时,蜂鸣电路接通报警。不采取 制动时,各制动气室分别经制动阀与 大气相通,而与来自储气筒的压缩空 气隔绝;当踏下制动踏板时,制动阀 切断各制动气室与大气的通道,接通 储气筒与各制动气室的通道,于是储 气筒的两个腔便独立地经制动阀向 各制动气室供气,在制动气室推杆的 作用下,使制动蹄摩擦片压紧在制动 鼓的内圆面上,产生摩擦力;当放松 制动踏板时,各制动气室的压缩空气 经制动控制阀放气,制动蹄摩擦片与 制动鼓在回位弹簧的作用下分离,制 动解除。
汽车制动系统发展史

汽车制动系统发展史
汽车制动系统的发展可以追溯到汽车的诞生。
以下是汽车制动系统的发展史的主要里程碑:
1. 19世纪末至20世纪初:最初的汽车制动系统是通过摩擦制
动实现的。
驾驶员可以通过使用手刹或踩踏踏板来施加摩擦力,使车轮停止旋转。
2. 1920年代:液压制动系统的出现。
这种系统通过液体的压
力来施加制动力,比摩擦制动更可靠和有效。
3. 1950年代:电动制动助力器的引入。
这个发明使得踩踏制
动更加轻松,减轻了驾驶员的负担。
4. 1960年代:防抱死制动系统(ABS)的推出。
ABS系统可
以确保车轮在紧急制动时保持转动,提供更好的操控性和制动效果。
5. 1980年代:电子制动分配系统(EBD)和牵引力控制系统(TCS)的推出。
这些系统可以根据不同的路况和驾驶条件自
动调整制动力和牵引力,提高行车的稳定性和安全性。
6. 2000年代至今:电子稳定控制系统(ESP)的普及。
ESP系
统通过车辆传感器和电子控制单元来监控车辆的行驶状态,并自动调整制动力和牵引力,以防止车辆失控或打滑。
此外,近年来还出现了采用电动机实现制动的回收制动系统
(如混合动力车和电动车)和无人驾驶车辆的自动制动系统等新技术。
总体而言,汽车制动系统在安全性、稳定性和便利性上取得了巨大的进步和创新。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l绪论硕」论文
1.3.3制动系统的基本工作原理
制动系统基本工作原理可以用图1.3.2所示的简单的液压制动系统工作原理示意
图来说明。
在汽车行驶过程中,当驾驶员踩下制动踏板时,通过主缸推杆推动主缸活塞,使得制动主缸内部的制动液在一定的压力作用下流入制动轮缸,制动轮缸内部的
液压迫使摩制动器的擦衬片与制动盘接触,从而产生一个阻碍车轮旋转的摩擦力矩,
同时在车轮与路面的附着力作用下,产生了阻碍车轮运动的外力,此外力称之为地而
制动力。
车轮在制动器与路面的双重作用下,最终使得汽车减速甚至停车。
摩擦衬片
制动踏板
制动盘
图1.3.2液压制动系统工作原理示意图
1.3.4汽车制动性能评价
汽车的制动性能主要从以下三个方面进行评价「`2】:
(1)制动效能
汽车的制动效能是指汽车迅速减速直至停车的能力,主要的评价指标是汽车的制
动距离和制动减速度。
制动距离将直接影响到汽车行驶的安全性,同时制动距离又取决于制动减速度,所以对汽车制动系统设计的关键是在路面附着条件下,尽可能的提
高汽车的制动减速度。
(2)制动效能的恒定性
制动效能的恒定性是指汽车在高速行驶或者长时间连续制动的情况下,制动效能
保持的程度,主要表现在制动器的抗热率性和抗水衰性。
制动器在制动过程中,由于
摩擦作用温度将升高,在长时间的高温下,制动器的摩擦力矩通常会显著的下降;汽
车在涉水行驶时,水进入了制动器后,短时间内制动器的效能也会发生显著的降低。
(3)制动时的方向稳定性
制动时一的方向稳定性是指汽车在制动过程中,不发生制动跑偏、侧滑以及失去转
向能力的性能。
汽车制动时的方向稳定性与汽车前、后轴间制动力分配有着密切的关4
硕士论文汽车制动系统性能分析及优化设计
本世纪开始逐步发展,这个阶段的主要特点是汽车的制动系统完全依赖于电力进行传递,使得汽车的制动系统越来越智能化。
因此,汽车制动技术和制动器产品将会是未
来汽车电子技术应用领域中的重要发展目标。
1.3.2制动系统的组成与分类
制动系统是由制动器和制动驱动机构组成t`。
l。
其中制动器是基于材料的摩擦理论而产生阻碍车轮运动或者运动趋势的力的部件,有鼓式和盘式之分。
制动系统的控制机构是为了提供汽车所需的制动力而进行供能、控制、传动、调节制动能量的部件, 具体包括了助力器、制动踏板、制动主缸、制动轮缸、压力调节阀等。
典型的液压制动系统组成如图1.3.1所示
l`纂巍
1一前制动盘,2一前制动盘总成,3一右前制动管路,4一制动主缸,5一压力调节阀,
6一左前制动赶路,7一制度真空助力器,8一驻车制动操纵杆,9一后制动管路,
10一驻车制动拉丝,11一后制动器总成
图1.3.1制动系统基本结构组成
制动系统按照制动能量传输方式,可分为:机械式、液压式、气压式、电磁式。
按照制动系统的功用,又可分为:行车制动系统、驻车制动系统、应急制动系统以及
辅助制动系统。
汽车制动系统至少配备两套独立的制动装置,即行车制动系统和驻车制动系统
【`']。
行车制动用于在汽车行驶过程中,强制性的减速或者停车,并且使汽车在下坡时能够保持适当的车速;驻车制动系统用于使汽车能够可靠且无时间限制的停驻在某个位置甚至斜坡上,为了避免发生潜在的故障,驻车制动系统一般采用机械式驱动机构。
1.3汽车制动系统概述
1.3.1汽车制动技术的发展
回顾汽车制动技术的发展历史,主要经历了三个阶段[9l。
第一个阶段是机械式制
动,这个阶段汽车的主要特点是质量小、速度慢,对制动力要求不高,依靠纯机械式
制动系统便足以满足制动要求。
第二个阶段是压力制动,包括了液压制动和气压制动, 这个时期的主要特点是汽车质量越来越大,速度越来越快,对制动系统的要求也越来
越高,所以必须借助于相关的助力器装置,通过制动液或者气体传递制动压力。
在此
阶段还出现了电子制动系统如ABS等。
制动系统的第三个阶段是线控阶段,大约从顿卜论文汽车制动系统性能分析及优化设计
系,因此在进行制动系统设计时,对制动力要进行合理分配,应尽量避免后轮比前轮
先抱死的工况发生。