天线阻抗匹配 特性阻抗50欧姆

合集下载

天线匹配概念

天线匹配概念

匹配概念什么叫匹配?简单地说,馈线终端所接负载阻抗ZL 等于馈线特性阻抗Z0 时,称为馈线终端是匹配连接的。

匹配时,馈线上只存在传向终端负载的入射波,而没有由终端负载产生的反射波,因此,当天线作为终端负载时,匹配能保证天线取得全部信号功率。

如下图所示,当天线阻抗为50欧时,与50 欧的电缆是匹配的,而当天线阻抗为80 欧时,与50 欧的电缆是不匹配的。

如果天线振子直径较粗,天线输入阻抗随频率的变化较小,容易和馈线保持匹配,这时天线的工作频率范围就较宽。

反之,则较窄。

在实际工作中,天线的输入阻抗还会受到周围物体的影响。

为了使馈线与天线良好匹配,在架设天线时还需要通过测量,适当地调整天线的局部结构,或加装匹配装置。

3.5 反射损耗前面已指出,当馈线和天线匹配时,馈线上没有反射波,只有入射波,即馈线上传输的只是向天线方向行进的波。

这时,馈线上各处的电压幅度与电流幅度都相等,馈线上任意一点的阻抗都等于它的特性阻抗。

而当天线和馈线不匹配时,也就是天线阻抗不等于馈线特性阻抗时,负载就只能吸收馈线上传输的部分高频能量,而不能全部吸收,未被吸收的那部分能量将反射回去形成反射波。

例如,在右图中,由于天线与馈线的阻抗不同,一个为75 欧姆,一个为50 欧姆,阻抗不匹配,其结果是3.6 电压驻波比在不匹配的情况下,馈线上同时存在入射波和反射波。

在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;而在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。

其它各点的振幅值则介于波腹与波节之间。

这种合成波称为行驻波。

反射波电压和入射波电压幅度之比叫作反射系数,记为R反射波幅度(ZL-Z0)R =───── =───────入射波幅度(ZL+Z0 )波腹电压与波节电压幅度之比称为驻波系数,也叫电压驻波比,记为VSWR波腹电压幅度Vmax (1 + R)VSWR =────────────── =────波节电压辐度Vmin (1 - R)终端负载阻抗ZL 和特性阻抗Z0 越接近,反射系数R 越小,驻波比VSWR 越接近于1,匹配也就越好。

50欧姆 π型 电感 电容 阻抗计算

50欧姆 π型 电感 电容 阻抗计算

50欧姆π型电感电容阻抗计算随着电子技术的发展,电路设计和分析变得越来越重要。

其中,阻抗是电路分析中一个重要的参数,它描述了电路对交流电的响应特性。

在电子系统设计中,特别是在通信系统中,理解和计算电路的阻抗是至关重要的。

本文将讨论如何计算50欧姆π型电感电容阻抗。

1. 50欧姆电阻在电子电路中,50欧姆电阻是一种常见的阻抗特性。

它经常用于设计和构建射频电路和通信系统。

50欧姆的阻抗匹配能够最大限度地减少信号的反射,并提高系统的性能。

计算50欧姆π型电感电容阻抗对于射频电路设计和分析至关重要。

2. π型网络π型网络是一种常用的无源滤波器拓扑结构,它由一个串联电感和一个并联电容组成。

在π型网络中,电感和电容的值决定了整个电路的阻抗特性。

我们需要计算π型网络的阻抗来了解电路的响应特性。

3. 电感和电容的阻抗在π型网络中,电感和电容的阻抗分别由以下公式计算:电感的阻抗ZL = jωL电容的阻抗ZC = 1 / (jωC)其中,ZL表示电感的阻抗,ZC表示电容的阻抗,ω表示角频率,L表示电感的值,C表示电容的值。

根据这些公式,我们可以计算出π型网络的总阻抗。

4. 总阻抗计算π型网络的总阻抗可以通过以下公式计算:Ztotal = ZL + (ZC || ZL)其中,Ztotal表示π型网络的总阻抗,ZL表示电感的阻抗,ZC表示电容的阻抗,“||”表示并联。

5. 举例计算假设我们有一个π型网络,其电感值为100μH,电容值为10pF,频率为1MHz。

我们可以通过以上公式计算出π型网络的总阻抗:ZL = j(1x10^6)x100x10^-6 = j100ΩZC = 1 / (j(1x10^6)x10x10^-12) = -j10Ωπ型网络的总阻抗为:Ztotal = j100 + (-j10) = j90Ω6. 结论通过以上计算,我们了解了如何计算50欧姆π型电感电容阻抗。

在实际电路设计中,我们可以根据电感和电容的值以及频率来计算电路的阻抗特性,从而更好地理解电路的响应特性并进行系统设计和分析。

通信系统中射频与天线阻抗匹配的调试方法

通信系统中射频与天线阻抗匹配的调试方法

通信系统中射频与天线阻抗匹配的调试方法RF工程师在设计芯片和天线间的阻抗匹配时是否也遇到过这样的问题,根据数据手册的参数进行匹配设计,最后测试发现实际结果和手册的性能大相径庭,你是否考虑过为什么会出现这么大的差别?还有,匹配调试过程中不断的尝试不同的电容、电感,来回焊接元器件,这样的调试方法我们还能改善吗?一、理想的匹配通信系统的射频前端一般都需要阻抗匹配来确保系统有效的接收和发射,在工业物联网的无线通信系统中,国家对发射功率的大小有严格要求,如不高于+20dBm;若不能做到良好的匹配,就会影响系统的通信距离。

射频前端最理想的情况就是源端、传输线和负载端都是50Ω,如图1。

但是这样的情况一般不存在。

即使电路在设计过程中仿真通过,板厂制作过程中,线宽、传输线与地平面间隙和板厚都会存在误差,一般会预留焊盘调试使用。

图1理想的阻抗匹配二、造成与芯片手册推荐电路偏差大的原因?从事RF电路设计的工程师都有过这样的经验,做匹配电路时,根据数据手册给的S参数、电路拓扑结构、元器件的取值进行设计,最后得到的结果和手册上的差别很大。

这是为什么呢?其主要原因是对射频电路来说,“导线”不再是导线,而是具有特征阻抗。

如图2所示,射频传输线看成由电阻、电容和电感构成的网络,此时需要用分布参数理论进行分析。

图2传输线模型特征阻抗与信号线的线宽(w)、线厚(t)、介质层厚度(h)和介质常数()有关。

其计算公式如下:由公式可以知道,特征阻抗和介质层厚度成正比,可以理解为绝缘厚度越厚,信号穿过其和接地层形成回路所遇到的阻力越大,所以阻抗值越大;和介质常数、线宽和线厚成反比。

因为芯片的应用场景不同,虽然电路设计一样,但是设计的PCB受结构尺寸、器件种类、摆放位置等因素的影响,会导致板材、板厚、布线的不同,引起特征阻抗的变化。

当我们还是沿用手册给的参数进行匹配时,并不能做到良好阻抗匹配,自然会出现实际测试的结果与手册给的结果偏差较大的情况。

两层板(双面板)如何控制50欧特性阻抗的设计技巧

两层板(双面板)如何控制50欧特性阻抗的设计技巧

两层板(双面板)如何控制50欧特性阻抗的设计技巧我们都知道,在射频电路的设计过程中,走线保持50欧姆的特性阻抗是一件很重要的事情,尤其是在Wi-Fi产品的射频电路设计过程中,由于工作频率很高(2.4GHz或者5.8GHz),特性阻抗的控制就显得更加重要了。

如果特性阻抗没有很好的控制在50欧姆,那么将会给射频工程师的工作带来很大的麻烦。

什么是特性阻抗?是指当导体中有电子”讯号”波形之传播时,其电压对电流的比值称为”阻抗Impedance”。

由于交流电路中或在高频情况下,原已混杂有其它因素(如容抗、感抗等)的”Resistance”,已不再只是简单直流电的”欧姆电阻”(OhmicResistance),故在电路中不宜再称为”电阻”,而应改称为”阻抗”。

不过到了真正用到”Impedance阻抗”的交流电情况时,免不了会造成混淆,为了有所区别起见,只好将电子讯号者称为”特性阻抗”。

电路板线路中的讯号传播时,影响其”特性阻抗”的因素有线路的截面积,线路与接地层之间绝绿材质的厚度,以及其介质常数等三项。

目前已有许多高频高传输速度的板子,已要求”特性阻抗”须控制在某一范围之内,则板子在制造过程中,必须认真考虑上述三项重要的参数以及其它配合的条件。

两层板如何有效的控制特性阻抗?在四层板或者六层板的时候,我们一般会在顶层(top)走射频的线,然后再第二层会是完整的地平面,这样顶层和第二层的之间的电介质是很薄的,顶层的线不用很宽就可以满足50欧姆的特性阻抗(在其他情况相同的情况下,走线越宽,特性阻抗越小)。

但是,在两层板的情况下,就不一样了。

两层板时,为了保证电路板的强度,我们不可能用很薄的电路板去做,这时,顶层和底层(参考面)之间的间距就会很大,如果还是用原来的办法控制50欧姆的特性阻抗,那么顶层的走线必须很宽。

例如我们假设板子的厚度是39.6mil(1mm),按照常规的做法,在Polar中设计,如下图线宽70mil,这是一个近乎荒谬的结论,简直令人抓狂。

题库-微波技术与天线

题库-微波技术与天线

微波技术与天线题库一、填空题1. 驻波比的取值范围为;当传输线上全反射时,反射系数为,此时驻波比ρ等于。

2. γ=α+jβ称为,其中α称为,它表示传输线上的波,β称为,它表示传输线上的波。

3. 特性阻抗50欧的均匀传输线终端接负载Z1为20j欧、50欧和20欧时,传输线上分别形10cm,如图所示:Z in=;Z in=;在z=5cm处的输入阻抗Z in=;2.5cm<z<5cm处,Z in呈性。

ρ=。

5. 无耗传输线的终端短路和开路时,阻抗分布曲线的主要区别是终端开路时在终端处等效为谐振电路,终端短路时在终端处等效为谐振电路。

6. 一段长度为l(0<l<λ/4)短路线和开路线的输入阻抗分别呈纯和纯。

7. 阻抗匹配分为阻抗匹配、阻抗匹配和阻抗匹配,它们反映Z0,根据各点在下图所示的阻抗圆( );( );⑤R<Z0,X=0 ( ); ⑥R=Z0,X=0 ( );⑦Г=0 ( ); ⑧SWR=1 ( );⑨=1Γ( ); ⑩ SWR=∞( ).9. 在导行波中, 截止波长λc最长的电磁波模称为该导波系统的主模。

矩形波导的主模为模, 因为该模式具有场结构简单、稳定、频带宽和损耗小等特点, 所以实用时几乎毫无例外地工作在该模式。

10. 与矩形波导一样,圆波导中也只能传输TE波和TM波;模是圆波导的主模,模是圆波导第一个高次模,而模的损耗最低,这三种模式是常用的模式。

11. 在直角坐标系中,TEM波的分量E z和H z为零;TE波的分量为零;TM波的分量为零。

12. 低频电路是参数电路,采用分析方法,微波电路是参数电路,采用分析方法。

13. 简并模式的特点就是具有相同的和不同的。

14. 微带线的弯区段、宽度上的阶变或接头的不连续性可能会导致电路性能的恶化,主要是因为这种不连续性会引入。

15. 写出下列微波元件的名称。

(a) (b) (c) (d)16. 下图(a)为微带威尔金森功分器,特性阻抗等于,其电长度L等于。

AppCAD计算天线信号线的特性阻抗

AppCAD计算天线信号线的特性阻抗

AppCAD计算天线信号线的特性阻抗GPS接收机设计时,天线信号线的特性阻抗要求在50欧姆,以实现与天线的阻抗匹配,若人工去计算,计算较繁琐,较容易出错,所以有很我公司推出了计算高频设计时计算特性阻抗等参数的软件。

AppCAD 简单易用,是一款独特的射频设计工具软件,适合很多的射频、微波和无线设计应用中的工程计算,计算简单快速。

AppCAD 可用于很多使用分立的晶体片、二极管到硅和GaAs集成电路等电路、信号和系统的计算和设计。

而软件的快捷键的使用也非常容易快捷。

在GPS天线信号线的走线中,可能会用到微带线(Microstrip)、带状线(Stripline)或共面波导(Coplanar Waveguide),下面以微带线为例介绍AppCAD 计算信号线特性阻抗的方法。

启动软件后,在左边的按钮中按“Passive Circuits”,在出现的选项中按“Microstrip”,如上图所示。

在出现的窗口中,设置相关参数。

如下图所示,在左下边的选项中设置PCB板的介电常数、传输信号的频率和PCB 长度的单位。

介电常数(Dielectric Er)设置是只需在下面的选择框中选择PCB板的材料,如下图中FR-4;或者在下面的选择框中选择“Enter Custom Er Value”,然后在上方直接输入介电常数值。

在GPS设计中,民用频率是1.57542GHz,可以直接输入频率值,或者用1.6GHz进行计算。

长度的单位有几种选择,如下图中选择了微米(um)为单位。

在上图中左上边需设置以下参数:线宽“W”,如图中为254微米;单层PCB板的厚度“H”,如8层板的厚度是1.2mm,则每层约150微米,如图中输入为150。

线的厚度“T”,1OUNCE 线厚度约35微米,0.5OUNCE线厚约18微米,如图中输入为18微米,若镀金或镀锡,则需再加25微米。

线的长度“L”线对特性阻抗影响不大,所以可以不考虑线的长度,用默认值就可以了。

Why50ohms

Why50ohms

-----------大哥牛于2008年7月30日 晚上21:30
2 of 2
2008-8-5 20:53
评论: 花了一个多小时翻译了这篇文章,以前一直都说阻抗匹配啊,什么50欧姆,75欧姆啊,但是确无 法说出原因来。凡是最会是有原因的,这篇文章很好的解释了用50欧姆的原因,由来。
1 of 2ຫໍສະໝຸດ 2008-8-5 20:53
为什么要用50欧姆
/articles/why-50-ohms.html
你可以从基本的物理学来证明50欧姆是最好的,电缆的趋肤效应损耗L(以分贝做单位)和总的趋 肤效应电阻R(单位长度)除以特性阻抗Z0成正比。总的趋肤效应电阻R是屏蔽层和中间导体电阻 之和。屏蔽层的趋肤效应电阻在高频时,和它的直径d2成反比。同轴电缆内部导体的趋肤效应电 阻在高频时,和他的直径d1成反比。总共的串联电阻R,因此和(1/d2 +1/d1)成正比。综合这些因 素,给定d2和相应的隔离材料的介电常数ER,你可以用以下公式来减少趋肤效应损耗。
在任何关于电磁场和微波的基础书中,你都可以找到Z0是d2,d1和ER的函数
把公式2带入公式1中,分子分母同时乘以d2,整理得到
公式3分离出常数项( /60)*(1/d2),有效的项((1+d2 /d1 )/ln(d2 /d1 ))确定最小点。仔细查看 公式三公式的最小值点仅由d2 /d1控制,和ER以及固定值d2无关。以d2 /d1为参数,为L做图,显示 d2 /d1=3.5911时,取得最小值。假定固态聚乙烯的介电常数为2.25,d2 /d1=3.5911得出特性阻抗 为51.1欧姆。很久之前,无线电工程师为了方便使用,把这个值近似为50欧姆作为同轴电缆最优 值。这证明了在50欧姆附近,L是最小的。但这并不影响你使用其他阻抗。例如,你做一个75欧姆 的电缆,有着同样的屏蔽层直径和绝缘体,趋肤效应损耗会增加12%。不同的绝缘体,用最优d2 /d1比例产生的最优阻抗会略有不同。

天线阻抗匹配 特性阻抗50欧姆

天线阻抗匹配 特性阻抗50欧姆

常见的射频同轴电缆绝大部分是50Ω特性阻抗的,这是为什么呢?
通常认为导体的截面积越大损耗就越低,但事实并非完全如此。

同轴电缆的每单位长度的损耗是logD/d的函数,也就是说和电缆的特性阻抗有关。

经过计算可以发现,当同轴电缆的特性阻抗为77Ω时,单位长度的损耗最低。

" ]:
L4 G% y, F1 l6 t) E; Q0 W
对于同轴电缆的最大承受功率,通常认为内外导体的间距越大,则同轴电缆可承受电压越高,即承受功率越大,但实际上也不完全准确。

同轴电缆的最大承受功率同样与其特性阻抗有关。

可以计算出当同轴电缆的特性阻抗为30Ω时,其承受的功率最大。

. a3 s4 J& p; d1 P& O& Q# `
为了兼顾最小的损耗和最大的功率容量,应该在77Ω和30Ω之间找一个适当的数值。

二者的算术平均值为53.5Ω,而几何平均值为48.06Ω;选取50Ω的特性阻抗可以做到二者兼顾。

此外,50Ω阻抗的连接器也更加容易设计和加工。

绝大部分应用于通信领域的射频电缆的特性阻抗是50Ω;在广播电视中则用到75Ω的电缆。

大部分的测试仪器都是50Ω的阻抗,如果要测量75Ω阻抗的器件,可以通过一个50~75Ω的阻抗变换器来进行阻抗匹配,但是需要注意这种阻抗变换器有约5.7dB的插入损耗
1/ 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见的射频同轴电缆绝大部分是50Ω特性阻抗的,这是为什么呢?
通常认为导体的截面积越大损耗就越低,但事实并非完全如此。

同轴电缆的每单位长度的损耗是logD/d的函数,也就是说和电缆的特性阻抗有关。

经过计算可以发现,当同轴电缆的特性阻抗为77Ω时,单位长度的损耗最低。

对于同轴电缆的最大承受功率,通常认为内外导体的间距越大,则同轴电缆可承受电压越高,即承受功率越大,但实际上也不完全准确。

同轴电缆的最大承受功率同样与其特性阻抗有关。

可以计算出当同轴电缆的特性阻抗为30Ω时,其承受的功率最大。

为了兼顾最小的损耗和最大的功率容量,应该在77Ω和30Ω之间找一个适当的数值。

二者的算术平均值为53.5Ω,而几何平均值为48.06Ω;选取50Ω的特性阻抗可以做到二者兼顾。

此外,50Ω阻抗的连接器也更加容易设计和加工。

绝大部分应用于通信领域的射频电缆的特性阻抗是50Ω;在广播电视中则用到75Ω的电缆。

大部分的测试仪器都是50Ω的阻抗,如果要测量75Ω阻抗的器件,可以通过一个50~75Ω的阻抗变换器来进行阻抗匹配,但是需要注意这种阻抗变换器有约5.7dB的插入损耗。

相关文档
最新文档